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Abstract

In this paper the disturbance model, used by MPC algorithms to achieve offset-

free control, is optimally designed to enhance the robustness of single-model pre-

dictive controllers. The proposed methodology requires the off-line solution of a

min-max optimization problem in which the disturbance model is chosen to guaran-

tee the best closed-loop performance in the worst case of plant in a given uncertainty

region. Application to a well-known ill-conditioned distillation column is presented

to show that, for ill-conditioned processes, the use of a disturbance model that adds

the correction term to the process inputs guarantees a robust performance, while

the disturbance model that adds the correction term to the process output (used

by industrial MPC algorithms) does not.
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1 Introduction

Model Predictive Control (MPC) has become one of the most studied and applied control

technique both in academia and in the process industries. The original industrial algo-

rithms [1, 2] used finite impulse or step response models to predict the process behavior.

An input sequence is computed from the minimization of a quadratic objective function

that (usually) contains terms related to the error between the predicted output and its

set point, and terms related to the amplitude of the control action. Input and output

constraints can be included in the optimization problem, and the first control move of

the optimal sequence is injected into the plant as input. The optimization is repeated at

each sampling time because the model prediction is updated with a bias term computed

from the difference between the actual and the predicted output. Despite its popularity,

some of the assumptions on which the original formulations of MPC were based, limit the

controller performance [3].

First of all, the use of convolution models limits the class of application to open-loop

stable processes. Lee et al. [4] present a state-space formulation of DMC allowed to handle

integrating processes, still using finite step response models. The easiest way to describe

stable and unstable processes is, however, to use state-space models [5] or autoregressive

models [6].

A disturbance model is used in MPC to achieve offset-free performance. A step dis-

turbance is estimated from measured variables, and its effect on the controlled variables

is removed by shifting the input and state targets. In most industrial MPC implementa-

tions a constant step disturbance is added to the measured process variables. While this

method is acceptable for stable plants, it cannot be used if the plant is unstable because

the observer contains the open-loop unstable poles. A disturbance model that adds step

disturbances either to the state or to the process outputs is used by Muske and Badgwell

[7]. This method is proven to remove offset when all the measured variables are controlled

at a given set point. A general disturbance model for the case in which “some” of the

measured variables are controlled at a given set point is proposed by Pannocchia and

Rawlings [8].

The choice of the disturbance model may have a strong influence on the performance of

MPC regulators. In fact, Shinskey [9] clearly pointed out that DMC is able to outperform

PID controllers on set-point changes but not on load changes introduced upstream of a

dominant lag. The problem of a sluggish rejection of slow disturbances in DMC is strictly
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related to the use of a constant bias term to update the model prediction. Lundström et al.

[10] propose a solution to this problem by modeling the disturbance as a double integrated

white noise sequence. Under this assumption, therefore, the disturbance is assumed to

be a ramp with piece-wise constant slope. In the Generalized Predictive Control (GPC)

framework, the disturbance is modeled by the choice of the observer polynomial (usually

called T (q−1)) [11], which can be chosen to enhance the controller robustness. Typically,

the polynomial T is chosen such that 1/T is a low-pass filter. Kouvaritakis et al. [12] and

Yoon and Clarke [13] provide useful considerations for the choice of T . Prada et al. [14]

present a comparative study of DMC and GPC, emphasizing the role of the polynomial

T . Details for the multivariable extension of GPC can be found in [15, 16].

All the tuning considerations reported in the cited papers are given for SISO systems

and they do not deal with multivariable ill-conditioned processes, which are rather fre-

quent in the process industries, and in particular in chemical applications. Indeed, a great

effort to face this problem can be found in the classical feedback PID [17, 18, 19, 20] and

IMC frameworks [21, 22, 23]. A tight control of ill-conditioned processes, which show

large interactions, requires an inversion of the process model. However, because of the

ill conditioning, this inverse-based controller becomes sensitive to input uncertainties and

plant-model mismatch [17]. DMC and other MPC algorithms suffer from sensitivity to

uncertainties when the process is ill conditioned [10, 24] and, in order to avoid improper

large control actions, it is common to increase the control move suppression factor [25].

In this paper the problem of robust control is addressed in the framework of state-space

single-model predictive control by a suitable design of the disturbance model. A robust

disturbance modeling procedure that can be applied to any kind of linear (square and

non-square) multivariable systems is proposed. Application to ill-conditioned processes is

presented in this paper because they are frequent in the process industries and for these

systems a strong improvement in robustness can be accomplished by choosing a suitable

disturbance model.
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2 Problem formulation

2.1 Plant description

The plant is given by the following linear, discrete, time-invariant equations:

xk+1 = Axk + Buk

yk = Cxk ,
(1)

in which x ∈ Rn is the state, u ∈ Rm is the manipulated input, y ∈ Rp is the measured

output, and the matrices (A, B, C) have appropriate dimensions. In general the number

of manipulated inputs (m) can be different from the number of measured outputs (p).

Typically, a subset of the measured variables are controlled at a given set point. We

denote the vector of the controlled variables as

z = Hy, with dim z = nc , (2)

and assume that the following condition is satisfied (see e.g. [26, Corollary 3] and [8]):

rank

I − A −B

HC 0

 = n + nc . (3)

This condition implies that the number of controlled variables (nc) cannot exceed either

the number of manipulated variables (m) or the number of measured variables (p). More-

over, for square systems (i.e. when nc = m) it implies that the gain matrix is non-singular.

Several descriptions of the uncertainty can be considered. Here we assume a polytopic

plant description as in [27]. That is, the matrices (A, B) are unknown but constant and

they belong to the convex hull of a number of pairs (A1, B1), (A2, B2), . . . , (AN , BN). We

denote this convex hull as Ω. The output matrix C, instead, is assumed to be known. It

is also assumed that, for any pair (A, B) ∈ Ω, (A, B) is stabilizable, (A, C) is detectable

and (3) holds.
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2.2 MPC algorithm

The regulator uses an MPC algorithm based on the following linear, discrete, time-

invariant model:

x̂k+1 = Amx̂k + Bmuk + Bdd̂k

d̂k+1 = d̂k

ŷk = Cx̂k + Cdd̂k ,

(4)

in which the model matrices (Am, Bm) belong to the convex hull previously defined. The

vectors x̂ ∈ Rn, d̂ ∈ Rp and ŷ ∈ Rp represent the model state, disturbance and output,

respectively. The disturbance model matrices (Bd, Cd) have appropriate dimension and

satisfy the following:

rank

I − Am −Bd

C Cd

 = n + p , (5)

which ensures that (4) is detectable [8]. A steady-state Kalman filter is used to estimate

the current model state and disturbance from the plant measurements, yk:

x̂k|k = x̂k|k−1 + Lx(yk − Cx̂k|k−1 − Cdd̂k|k−1)

d̂k|k = d̂k|k−1 + Ld(yk − Cx̂k|k−1 − Cdd̂k|k−1) ,
(6)

in which Lx ∈ Rn×p and Ld ∈ Rp×p are the steady-state Kalman filter gain matrices

computed from the Riccati equation associated with (4). It is important to notice that

the disturbance vector d̂ is added to achieve integral control [8]. The modes associated

with the disturbance vector are clearly non-controllable by the input u. However, since d̂

is observable we use its estimate to remove its influence from the controlled variable, as

discussed below.

Given the controlled variable set point z̄ ∈ Rnc and the current disturbance estimate

d̂k|k we need to compute, at each sampling time, the input and state targets that drive the

predicted controlled variable to this set point. If the system is square (i.e. nc = m) and

unconstrained these steady-state targets are unique, while if the dimension of manipulated

variable is greater than the dimension of controlled variable (i.e. m > nc) infinitely many

combinations of the inputs can track the predicted controlled variable to the same set

point. Therefore, we can search for the input target that is close to a given set point

ū ∈ Rm and tracks the predicted controlled variable to its set point (notice that often
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the input set point, ū, is not specified it can be assumed zero in order to use, if possible,

the optimal input in a least-squares sense). This can be done by solving the following

quadratic program [5]:

min
xt,ut

(ut − ū)T Rs(ut − ū) (7a)

subject to:

I − Am −Bm

HC 0

xt

ut

 =

 Bdd̂k|k

−HCdd̂k|k + z̄

 (7b)

umin ≤ ut ≤ umax (7c)

ymin ≤ Cmxt + Cdd̂k|k ≤ ymax , (7d)

in which Rs is positive definite. We assume that (7) admits a feasible solution. If this is

not satisfied, input and output constraints are too stringent, and the predicted controlled

variable cannot be tracked to the set point z̄ without offset. In this case we can solve a

different quadratic program to find the state and input targets that minimize the steady-

state offset in a least-square sense [5].

The constrained MPC algorithm used in this work is based on the solution of the

following infinite horizon optimization problem:

min
{uj}

∞∑
j=k

(Hŷj − z̄)T Q(Hŷj − z̄) + (uj − uj−1)
T R(uj − uj−1) (8a)

subject to:



x̂k = x̂k|k, d̂k = d̂k|k

x̂j+1 = Amx̂j + Bmuj + Bdd̂j

d̂j+1 = d̂j

ŷj = Cx̂j + Cdd̂j

(8b)

umin ≤ uj ≤ umax (8c)

|uj − uj−1| ≤ ∆umax (8d)

ymin ≤ ŷj ≤ ymax , (8e)
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in which Q and R are positive definite matrices of appropriate dimensions.

Given the targets computed from (7), the optimization problem (8) can be rewritten

in a standard constrained LQR form by introducing the following change of variables (see

e.g. [28] for more details):

x̃j =

 x̂k+j − xt

uk+j−1 − ut

 , ũj = uk+j − ut, Ã =

Am 0

0 0

 , B̃ =

Bm

I


C̃ =

[
C 0

]
, Q̃ =

CT HT QHC 0

0 R

 , R̃ = R, M̃ =

 0

−R


G̃ =

I

I

 , H̃ =

0 0

0 I

 , ũmax =

umax − ut

∆umax

 , ũmin =

umin − ut

−∆umax


ỹmax = ymax − Cxt − Cdd̂k|k, ỹmin = ymin − Cxt − Cdd̂k|k .

Thus, (8) becomes:

min
{ũj ,x̃j}

∞∑
j=0

x̃T
j Q̃x̃j + ũT

j R̃ũj + 2x̃T
j M̃ũj (9a)

subject to:

x̃0 =

 x̂k|k − xt

uk−1 − ut

 , x̃j+1 = Ãx̃j + B̃ũj (9b)

ũmin ≤ G̃ũj − H̃x̃j ≤ ũmax (9c)

ỹmin ≤ C̃x̃j ≤ ỹmax . (9d)

Clearly, this formulation cannot be implemented as written because it involves an infinite

number of decision variables and constraints. However, it is well known [29, 30] that this

problem can be rewritten in a finite number of decision variables and constraints. In this

work we use the method discussed in [28] to solve (9) in the presence of input and output

constraints. The first component of the optimal solution of (9) is used as process input

(after removing the change of variables), and the optimization is repeated at the next

sampling time, when a new state and disturbance estimate is available and, consequently,

new input and state targets are computed.
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It is also clear that the first component of the unconstrained solution of (9) (that is

(9a) subject to (9b) only) is the standard linear quadratic control law, i.e.:

ũ0 = Kx̃0, (10)

in which K ∈ Rm×(n+m) is the optimal LQR gain matrix computed from the Riccati

equation associated with (9).

3 Robust disturbance modeling method

In this section we propose a method for finding the disturbance model, i.e. the matrices

(Bd, Cd), that guarantees the best unconstrained closed-loop performance for the worst

case of plant within the uncertainty region. In practice, even the nominal model matrices

(Am, Bm) may not be known. Indeed, we can search for the nominal model that guarantees

(along with the disturbance model) the best closed-loop performance for the worst case of

plant within the uncertainty region. Therefore, in general, we consider the case in which

both nominal model and disturbance model are to be chosen.

3.1 Unconstrained closed-loop system

Let the optimal LQR gain matrix K in (10) be partitioned as

K =
[
Kx Ku

]
, Kx ∈ Rm×n, Ku ∈ Rm×m .

Thus, the optimal unconstrained input as in (10) can be rewritten as

uk = ut + Kx(x̂k|k − xt) + Ku(uk−1 − ut), (11)

in which the state and input targets are computed from (7) without including input

and output constraints, that is from (7a) subject to (7b) only (notice that this equality-

constrained quadratic program is always feasible because of (3)). When the feedback law

in (11) is applied to the process (1), we have that the closed-loop system has the following
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linear form:

wk+1 = Λwk + Γv, wk =


xk

x̂k|k−1

d̂k|k−1

uk−1

 , v =

z̄

ū

 , (12)

in which the matrices Λ and Γ are shown in Appendix A.1. It is interesting to notice that

the closed-loop system is stable if and only if the matrix Λ is strictly stable.

By using (12) and (11) we can easily compute the true closed-loop objective function

Φ =
∞∑

k=0

(zk − z̄)T Q(zk − z̄) + (uk − uk−1)
T R(uk − uk−1) (13)

as

Φ = ξT
0 Pξ0, with ξ0 =

w0

v

 . (14)

See Appendix A.2 for the definition of the positive semi-definite matrix P .

3.2 Min-max optimization

The nominal model and disturbance model are chosen as the solution of the following

min-max optimization problem:

min
(Am,Bm)∈Ω

Bd,Cd

max
(A,B)∈Ω

ξ0

Φ = ξT
0 Pξ0 . (15)

The matrices (Am, Bm) and (A, B) can be easily expressed as

Am =
N∑

j=1

µm
j Aj, Bm =

N∑
j=1

µm
j Bj, µm

j ≥ 0,
N∑

j=1

µm
j = 1

A =
N∑

j=1

µjAj, B =
N∑

j=1

µjBj, µj ≥ 0,
N∑

j=1

µj = 1 .

Similarly, the disturbance model matrices (Bd, Cd) are chosen as a convex combination of

a number of disturbance models. That is

Bd =
L∑

j=1

ηjB
d
j , Cd =

L∑
j=1

ηjC
d
j , ηj ≥ 0,

L∑
j=1

ηj = 1 ,
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in which (Bd
j , C

d
j ) are L pairs of matrices of appropriate dimension defined by the user.

Given the vectors µ, µm, η, the matrix P is computed by solving a Lyapunov equation

as reported in Appendix A.2. The augmented vector ξ0 includes the initial closed-loop

state w0 =
[
xT

0 x̂T
0 d̂T

0 uT
−1

]T

and the exogenous term v =
[
z̄T ūT

]T

. In general, all

the terms that define the initial augmented state ξ0 can be included in the maximization.

However, for simplicity we only include the initial plant state x0 and the controlled variable

set point z̄, since they are more likely to vary. It is also important to notice that stability

of the unconstrained closed-loop system (12) does not depend on the initial conditions,

but only on the existence of P (see Appendix A.2). Thus, the min-max problem (15) is

rewritten as:

min
µm,η

max
µ,x0,z̄

Φ = ξT
0 P(µ, µm, η)ξ0 (16a)

subject to:

µm
j ≥ 0,

N∑
j=1

µm
j = 1, ηj ≥ 0,

L∑
j=1

ηj = 1, µj ≥ 0,
N∑

j=1

µj = 1 (16b)

‖x0‖∞ ≤ rx, ‖z‖∞ ≤ rz , (16c)

in which rx, rz are non-negative scalars. In this way, (16) is a nonlinear optimization prob-

lem subject to linear constraints, and can be solved by using SQP (Sequential Quadratic

Programs) optimizers for both the maximization and the minimization problems. In par-

ticular, we use an SQP algorithm with trust region as described by Nocedal and Wright

[31].

3.3 Comments and remarks

In the proposed method the nominal model and disturbance model are chosen to obtain

the best closed-loop performance in the worst case of plant within the uncertainty region

and the worst case of initial conditions (plant state and controlled variable set point),

and this search is accomplished without considering the effect of the constraints because

in this way we have a simple relation to evaluate the true closed-loop objective function.

However, once the nominal model and disturbance model are chosen, a constrained MPC

algorithm as described in Section 2.2 is used. Clearly, this does not guarantee that the
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chosen models are optimal in the presence of constraints. However, if a disturbance model

is optimal in the unconstrained case the corrected model prediction and the actual plant

response are similar over the uncertainty region (i.e. the reconstruction error ek = yk− ŷk

quickly goes to zero with time). Thus, the resulting controller is expected to perform

reasonably well even in the presence of constraints because it is based on reliable model

predictions. Moreover, it is important to remark that input and output constraints do

not affect the state and disturbance estimator (6). Indeed, constrained simulations show

that this method provides a practical robust design of single-model predictive controllers,

which are the most common advanced regulators used in the process industries.

Most industrial MPC algorithms use Bd = 0 and Cd = I, which is often called “output

disturbance model” as the disturbance is assumed to be a constant step added to the

process output. For ill-conditioned processes they suffer from sensitivity to modeling

errors and in particular to input uncertainties, because small errors on the process inputs

are amplified by the ill conditioning. In fact, for such processes it is frequent to increase

the input rate-of-change penalty R [25], thus slowing down the control action and making

the controller less sensitive to uncertainties. Here, instead, we show that one can still

use a relatively low input penalty for fast performance, and one can make the controller

robust by using a more appropriate disturbance model. As shown in the next section,

by solving the min-max problem (16) we find that for ill-conditioned processes a more

robust choice for the disturbance model is Bd = B and Cd = 0, which is often called

“input disturbance model” as the disturbance is assumed to be a constant step added

to the process input. In fact, in this way the additional disturbance is able to lump the

input uncertainties quickly thus making the model prediction correct. On the other hand

the output disturbance model corrects the input uncertainties only after a long transient

in which relatively small differences between the plant response and the model prediction

are source of performance degradation because they are amplified by the ill conditioning.

It is also important to point out that the optimization problem (16) is, in general,

non-convex, so that there is no guarantee that a global solution is found. Once again, this

limitation appears to be more theoretical than practical, because the problem (16) can be

solved starting from several initial guesses, and the “best” local optimum can be chosen.

In fact, it is important to mention that there are no concerns about the computational

cost for solving (16) since this problem needs to be solved off line.
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4 Application example

4.1 Plant description

The well known ill-conditioned LV distillation column presented by Morari and coworkers

[17, 21] is chosen as case study. The nominal transfer function matrix is

G(s) =
1

75s + 1

0.878 −0.864

1.082 −1.096

 . (17)

This process is ill conditioned since the steady-state condition number is 142. Choosing

a sampling time Ts = 5min, a state-space minimal representation of the nominal system

is found, which is defined by the matrices (A, B, C) in which the dimension of the state

is n = 2.

We consider bounded input uncertainties, i.e. the actual process is

Gactual = G(s)

1 + δ1 0

0 1 + δ2

 with |δ1|, |δ2| ≤ 0.2 . (18)

This uncertainty region is a convex hull Ω defined by four pairs of matrices (A1, B1),

. . . , (A4, B4) not shown for the sake of space. Notice that the nominal case (17) is

the center of the convex hull and corresponds to choosing the plant weight vector as

µ =
[
0.25 0.25 0.25 0.25

]
.

4.2 “Optimal” regulator design

The disturbance model is chosen as a convex combination of the following “candidate”

disturbance models (input and output disturbance model, respectively):

Bd
1 = B, Cd

1 = 02×2, and Bd
2 = 02×2, Cd

2 = I2×2 . (19)

Zero output and state noise is assumed to tune the estimator (standard DMC-like tuning),

and the regulator tuning matrices are Q = 500I2×2 and R = I2×2.

We solve the optimization problem (16) with rx = 0 and rz = 1, obtaining the following

(local) optimum vectors µm and η, which define the nominal model and the disturbance
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model, respectively:

µm =
[
0.249 0.251 0.249 0.251

]
, η =

[
1.000 0.000

]
.

It is interesting to notice that the “optimal” nominal model nearly corresponds to (17),

while the “optimal” disturbance model corresponds to the input disturbance model.

4.3 Closed-loop simulations

Two model predictive controllers, based on the same “optimal” nominal model but differ-

ent disturbance model, are compared in a set-point change z̄ =
[
−0.781 .625

]T

, which

corresponds to the unfavorable direction for this plant. MPC 1 uses the optimal distur-

bance model obtained with the proposed method, while MPC 2 uses the output distur-

bance model. Both controllers are tuned as specified in the previous paragraph.

In Figures 1 and 2 we report the unconstrained simulation results (outputs and inputs,

respectively) for the worst case of plant in the uncertainty region, which corresponds to

the plant matrices (A2, B2), i.e. input uncertainties of opposite sign. The closed-loop

objective function is 5182 in the nominal case for both controllers, while it is 6080 for

MPC 1 and 32435 for MPC 2 in the worst uncertainty case.

In Figures 3 and 4 we report the simulation results for the worst case of plant in the

uncertainty region in the presence of the following input constraints:−70

−70

 ≤ uk ≤

70

70

 ,

−10

−10

 ≤ uk − uk−1 ≤

10

10

 .

The closed-loop objective function is 5267 in the nominal case for both controllers, while

it is 6353 for MPC 1 and 27565 for MPC 2 in the worst uncertainty case.

5 Conclusions

MPC algorithms use a disturbance model to lump the sources of plant-model mismatch

and achieve offset-free control. Most industrial implementations of Model Predictive Con-

trol (e.g. DMC) use an “output disturbance model” to correct the model prediction in

the presence of plant-model mismatch, and for ill-conditioned processes this is not a very

robust choice.
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In this work, it has been shown that the degrees of freedom given by the disturbance

model allows the designer to increase the robustness of MPC algorithms significantly

without having to modify the computational complexity of the on-line implementation. To

this aim, a general methodology for designing a disturbance model that is able to improve

the robustness properties of predictive controllers has been proposed, which requires the

off-line solution of a min-max optimization problem. The method is based on a state-

space realization of the unconstrained closed-loop system, which permits one to evaluate

the implications of the choice of the disturbance model on the closed-loop performance

over the plant uncertainty region. The proposed algorithm also permits one to choose the

nominal model, used by the regulator, within the plant uncertainty region.

Application to a well-known ill-conditioned distillation column has been presented to

show that for ill-conditioned processes a great improvement in robust performance can be

achieved by adopting a more appropriate disturbance model, which for the case study and

other examples that we tested is (close to) the “input disturbance model”. This occurs

because the input disturbance model corrects quickly the input uncertainties to which

the common industrial MPC algorithms are sensitive. That is, the input disturbance

model makes the reconstruction error (i.e. the difference between the actual plant output

and the model prediction) go to zero in a short period of time. Moreover, the input

disturbance model describes in a more realistic way the unmeasured disturbances, which

generally enter upstream of a dominant lag [9], thus making more efficient the rejection

of unmeasured disturbances [7]. Finally, results have also shown that for robust control

of ill-conditioned processes the choice of the nominal model is not as important as the

choice of the disturbance model.
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A Complements to Section 3

A.1 Closed-loop system matrices

The closed-loop matrices Λ and Γ are as follows:

Λ =


Λ11 Λ12 Λ13 Λ14

Λ21 Λ22 Λ23 Λ24

Λ31 Λ32 Λ33 Λ34

Λ41 Λ42 Λ43 Λ44

 , Γ =


Γ11 Γ12

Γ21 Γ22

Γ31 Γ32

Γ41 Γ42

 ,

in which

Λ11 = A + B(KxLx + αLd)C

Λ12 = B (Kx(I − LxC)− αLdC)

Λ13 = B (−KxLxCd + α(I − LdCd))

Λ14 = BKu

Λ21 = (Am + BmK)LxC + (Bd + Bmα)LdC

Λ22 = (Am + BmK)(I − LxC)− (Bd + Bmα)LdC

Λ23 = −(Am + BmK)LxCd + (Bd + Bmα)(I − LdCd)

Λ24 = BmKu

Λ31 = LdC

Λ32 = −LdC

Λ33 = I − LdCd

Λ34 = 0

Λ41 = (KxLx + αLd)C

Λ42 = Kx(I − LxC)− αLdC

Λ43 = −KxLxCd + α(I − LdCd)

Λ44 = Ku ,

Γ11 = Bβ Γ12 = BγRs Γ21 = Bmβ Γ22 = BmγRs

Γ31 = 0 Γ32 = 0 Γ41 = β Γ42 = γRs ,
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α = (I −Ku)(θ23Bd − θ24HCd)−Kx(θ13Bd − θ14HCd)

β = (I −Ku)θ24 −Kxθ14

γ = (I −Ku)θ22 −Kxθ12 ,

Θ−1 =


0 0 I − AT

m CT HT

0 Rs −BT
m 0

I − Am −Bm 0 0

HC 0 0 0

 ⇒ Θ =


θ11 θ12 θ13 θ14

θ21 θ22 θ23 θ24

θ31 θ32 θ33 θ34

θ44 θ42 θ43 θ44

 .

A.2 True closed-loop objective function

The penalty matrix P in (14) is the solution of the following Lyapunov equation:

P = Q+ATPA ,

in which

A =

Λ Γ

0 I

 , Q =

 CT QC + ET RE DT QC + FT RE

CT QD + ET RF DT QD + FT RF


C =

[
HC 0 0 0

]
, D =

[
I 0

]
, E =

[
Λ41 Λ42 Λ43 Λ44 − I

]
, F =

[
Γ41 Γ42

]
.

Notice that P is function of the nominal model matrices (Am, Bm), of the disturbance

model matrices (Bd, Cd), of the actual plant matrices (A, B). Also, notice that the matrix

P is defined if and only if the matrix Λ is strictly stable.
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Figure captions

Figure 1: Unconstrained closed-loop responses (outputs)

Figure 2: Unconstrained closed-loop responses (inputs)

Figure 3: Constrained closed-loop responses (outputs)

Figure 4: Constrained closed-loop responses (inputs)
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