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Abstract—In this paper, we discuss the opportunities that
Nonlinear Model Predictive Control (NMPC) offers in the area
of pharmacological therapy as an effective way for achieving
optimization goals such as drug usage reduction while respecting
safety and therapeutic constraints imposed by physicians. We first
review a general formulation of NMPC and discuss some issues
associated with its application to biomedical processes. Next, we
present two simulated biomedical applications of NMPC: the
first one deals with the optimization of anti-retroviral therapy in
HIV and the second one discusses the optimization of multiple
injection insulin therapy in Type 1 diabetics. Both these examples
serve to highlight the main advantages of NMPC.

I. INTRODUCTION

MPC algorithms use a (linear or nonlinear) model to fore-
cast the system behavior over a future time horizon, and
solve on-line optimization problems to determine, in real time,
the optimal control policy [1]. Feedback from measurements
is considered by updating the model predictions with suit-
able correction terms computed from the difference between
the measured and predicted outputs. Such approaches have
allowed a tremendous increase in profits, e.g. to refinery
and petrochemical companies due to overall energy reduction
usage, tighter quality control and throughput maximization [2].

The use of mathematical models and control algorithms
in medicine represents nowadays a very active research area
that embraces many different biomedical applications. The
main goal of these research studies is to provide a systematic
approach for the definition of therapeutic protocols by means
of control algorithms similar to those commonly used in indus-
trial contexts (e.g. chemical, refining, automotive, aerospace,
etc.). The typical starting point in the development of such
control algorithms is the derivation of a (dynamic) model of
the system to be controlled. Such step requires, first of all, the
definition of inputs (i.e. independent variables, which some-
times can be adjusted by physicians such as the drug dosage)
and outputs (i.e. dependent variables, which can be possibly
measured either continuously or more often with laboratory
analysis). Then, such independent and dependent variables
need to be “connected” by means mathematical relations
(usually differential and/or algebraic equations), which contain
a number of parameters. Due to popularity and reliability
in many industrial applications, very often the use linear
time-invariant deterministic models is attempted in biomedical

applications as well. However, physiological systems are gen-
erally nonlinear, time variant and stochastic. Therefore, a trade
off between model complexity and tractability is necessary in
order to obtain a sufficiently accurate, yet manageable, system
description.

We here describe the opportunities and issues associated to
the application of MPC strategies in drug administration.

II. A GENERAL FORMULATION OF NONLINEAR MODEL
PREDICTIVE CONTROL

MPC refers to control algorithms in which, at each decision
time, a system model is used to forecast: an optimal “future”
control sequence over a (finite) prediction horizon and an
associated sequence of states originating from the current state
value [1]. The control sequence is chosen in a way that an
appropriate cost function, typically comprising a measure of
the deviation of the future state/output sequence from reference
target values and a measure of the control input effort, is min-
imized while state/output and control constraints are fulfilled.
We here present a general formulation of Nonlinear Model
Predictive Control (NMPC) with the aim of setting up the stage
for the specific formulations used in two pharmacological
therapy optimization applications discussed in Section III.

A. Augmented model and state estimation

We assume that a system model is available in discrete-time
form (k = 0, 1, . . . is the discrete time index):

x(k + 1) = f(x(k), u(k)) + w(k)
y(k) = h(x(k)) + v(k)

(1)

in which x ∈ Rn is the state of the system, u ∈ Rm is
the input (i.e. manipulated variable), y ∈ Rp is the output
(i.e. measured variable); the independent variables w ∈ Rn

and v ∈ Rp represent unpredictable disturbances, such as
measurement noise and/or systematic model errors. The func-
tion f : Rn × Rm → Rn may be analytical or computed
numerically from the integration of an underlying system of
differential/algebraic equations. The function h : Rn → Rp is
often a selection of the state x.

Since we only measure y and given that (w, v) may
represent systematic errors (i.e. with nonzero mean), it is
necessary to adopt an output feedback strategy to compute
state estimates for the model (1) that are consistent with the



input-output behavior of the actual (unknown) process. To
this aim, we augment the system model (1) with fictitious
disturbance variables [3], which lump the effect of systematic
errors. The augmented system is:

x̂(k + 1) = f(x̂(k), u(k)) + gx(d̂(k))

d̂(k + 1) = d̂(k)

ŷ(k) = h(x̂(k)) + gy(d̂(k))

(2)

The vector d̂ ∈ Rp is the lumped disturbance assumed to have
integral dynamics, gx : Rp → Rn and gy : Rp → Rp are
appropriate (user-defined) functions that describe the effect of
such lumped disturbance on the state and output evolution.
Given the measured output value y(k) and the augmented state
predictions (x̂(k), d̂(k)), the prediction error is defined as:

ε(k) = y(k)− ŷ(k) = y(k)−
(
h(x̂(k)) + gy(d̂(k))

)
(3)

from which the augmented state predictions are updated:

x̂(k)← x̂(k) + lx(ε(k))

d̂(k)← d̂(k) + ld(ε(k))
(4)

in which lx : Rp → Rn and ld : Rp → Rp are suitable
functions. Such updated estimates are used to predict the
future state/output trajectories and to achieve output integral
action (i.e. offset-free tracking) in the presence of systematic
model errors, provided that the closed-loop system remains
stable. Offset-free tracking occurs because d̂(k) changes at
each sample time until the prediction error ε(k) vanishes,
i.e. until the output prediction and the actual measurements
become equal. Very often (gx, gy, lx, ld), which define the so-
called “disturbance model”, are assumed to be linear [3], [4].

Sometimes, especially in biomedical applications, the output
measurement is not available at each sample time. In such
cases, we assume that the current prediction error is zero, and
hence the update step (4) is not performed.

B. Optimal control problem formulation
We consider input and output constraints:

umin ≤ u(k) ≤ umax, ymin ≤ y(k) ≤ ymax (5)

Given a positive integer N , we define the following optimal
control problem that is solved at each decision time k, given
the current (updated) augmented state estimates (x̂(k), d̂(k)):

min
{ũi}N−1

i=0 ,{ei,ei
}N

i=0

N−1∑
i=0

`(ỹi, ũi, ei, ei) + `N (ỹi, ei, ei) (6a)

subject to:

x̃0 = x̂(k) (6b)

x̃i+1 = f(x̃i, ũi) + gx(d̂(k)), i = 0, . . . , N − 1 (6c)

ỹi = h(x̃i) + gy(d̂(k)) i = 0, . . . , N (6d)
umin ≤ ũi ≤ umax i = 0, . . . , N − 1 (6e)

ymin − ei ≤ ỹi ≤ ymax + ei i = 0, . . . , N (6f)
ei ≥ 0, ei ≥ 0 i = 0, . . . , N (6g)

in which `(·) and `N (·) are non-negative convex functions. The
terms ei and ei represent violations of the output constraints
(upper and lower, respectively), and such terms are penalized
in the objective function to avoid large (if any) violations.
Such approach, usually referred to as “soft-constraint” formu-
lation [5], is in general necessary to ensure feasibility of the
optimal control problem at all decision times.

The problem (6) is in general a nonlinear program (NLP),
and must be solved with general purpose, often Sequential
Quadratic Programming (SQP), algorithms [6]. One important
observation is that NLP cannot be solved globally, i.e. the
optimizer usually finds a local minimum rather than a global
one. Furthermore, the computational time to solve an NLP
could be relatively high. In fact, one important point that
needs to be taken into account when considering MPC as
possible control strategy is its computational cost (i.e. the CPU
time) compared to the allowed decision time. Fortunately, this
aspect is usually not crucial in decision support algorithms
for pharmacological therapy optimization, in which the sample
time is of the order of days/weeks.

C. Closed-loop implementation

Once the optimal input sequence, {ũi}N−1
i=0 , is computed

from (6), only the first component is actually implemented:

u(k) = ũ0 (7)

while the rest of the sequence is discarded. At the subsequent
decision time, given the (updated) augmented state, a new
optimal control sequence is computed. Such approach is
usually referred to as “Receding Horizon Control” and it is
the usual closed-loop implementation of MPC algorithms.

We can now describe the complete closed-loop implemen-
tation of the general NMPC algorithm.

Algorithm 1 Closed-loop implementation of NMPC

1) Given output y(k) and predictions (x̂(k), d̂(k)), compute
ε(k) from (3) and update (x̂(k), d̂(k)) from (4).

2) Solve the optimal control problem (6) and define the
current input as in (7).

3) Forecast the next augmented state from (2).
4) Set k ← k + 1 and go to 1.

As discussed in Section III, some modifications may be
necessary in each specific biomedical application.

III. CASE STUDIES

We here present two simulated applications of NMPC to
therapy protocol optimization problems.

A. HIV control

1) Preliminaries: In HIV infection, combination of drugs is
used to reduce viral replication and to delay the progression of
pathology [7], thus increasing life expectation and quality. In
particular, Highly Active Anti-Retroviral Therapy (HAART)
is a combination therapy that includes:



– Reverse Transcriptase Inhibitors (RTI), to prevent cell-to-
cell transmission,

– Protease Inhibitors (PI), to prevent the production of
virions by infected cells.

However, there are some limitations to the effectiveness of
HAART. Infected cells have a short half-life (from days to
months), but hidden reservoirs of virus contribute to an even
slower disease phase, that makes complete eradication of the
virus from the body impossible with current therapies. Because
continued administration is associated with severe side effects
and drug resistance generation, more recent research efforts
have been directed at finding therapeutic protocols able to
boost HIV-specific immune responses [8]. Some clinical data
suggest that the so-called “Structured Treatment Interruptions”
(STI) can boost immunity against HIV, especially when per-
formed relatively early after infection [9]. The use of STI
is currently a matter of debate (see [10]–[13] and references
therein). We here present a novel approach towards the defi-
nition of an optimized STI protocol based on NMPC. Other
details on this study can be found in [14].

2) Model and NMPC formulation: In the literature, several
different models have been developed to describe the HIV
evolution, and some review articles are already available [15],
[16]. In this work we use a model recently developed by Landi
et al. [17], described by six state variables:

ẋ = λ − dx − rxv
ẏ = rxv − ay − pyz
ẇ = cxyw − cqyw − bw
ż = cqyw − hz
v̇ = k(1− µP fP )y − uv
ṙ = r0(1 − µT fT )

(8)

The state variables (denoted in bold-face) are as follows: x
and y are the concentration of healthy and infected CD4+
cells, respectively; w and z are the concentration of Cytotoxic
T-Lymphocyte precursors and effectors, respectively; v is the
concentration of free virions and r represents the virus aggres-
siveness. The input variables are fP and fT , which represent
the normalized uptake of RPI and RTI drugs. This model
differs from other HIV models described in the literature, in
the introduction of the new state variable r. According to the
equation describing the r-state dynamics, r increases linearly
with time in the case of an untreated HIV-infected individual,
with a growth rate that depends on the constant r0. Notice that
the considered model does not exhibit any stable (immune)
steady state, given the fact that we will assume that the model
parameters are chosen such that (µT fT ) < 1, and hence ṙ > 0,
i.e. the virulence never becomes a constant.

Consistently with medical practice, we assume to measure
only two state variables, (x, log v), from which the output
function h(·) is accordingly defined. Furthermore, we consider
a discretization time of one week, from which the state evo-
lution function f(·) is computed via numerical integration. In
the augmented model (2), we consider gx = 0 and gy = d̂(k),
and the updating functions in (4) are lx = 0 and ld = ε(k).

Notice that the update step (4) is performed only every four
weeks, i.e. when the output measurements are available.

At each decision time, i.e. every week, we solve the NMPC
problem (6), with horizon of N = 8 and with some specific
modifications as detailed. Only a lower bound on the first
output (x) and an upper bound on the second output (log v)
are considered. Consequently, the violations e and e exist only
for these two output constraints. The inputs u = [fP , fT ]′ are
constrained to be equal, and either 0 or 1. The cost functions
are linear and defined as follows:

`(·) = cP fP + cT fT + qxe+ qve, `N (·) = qxe+ qve

in which all parameters are positive and described else-
where [14]. We observe that the solution of the NMPC
problem with the addition of the binary constraint on the inputs
requires, in principle, a mixed-integer nonlinear programming
solver. However, we used a full enumeration approach in
which the cost of all possible sequences of N weeks, each
at either full or zero therapy, is computed. Then, the sequence
with least cost is chosen as the optimal one, and such approach
allows us to compute the global minimum. The required CPU
time, using Matlab, is of the order of 20-30 seconds, thus
perfectly admissible compared to the discretization time.

3) Results and discussion: In our simulation study, we
consider three different reference patients obtained by using
slightly different model parameters. The different dynamic
response of these patients under a full (i.e. sustained) HAART
started 2 months after the infection is depicted in Fig. 1
over a period of two years. We notice that Patient A shows
the fastest disease progression, whereas Patient C shows the
slowest progression, and Patient B shows an intermediate
behavior. It can be noticed that the viral load shows faster
dynamics compared to the CD4+ concentration, and further-
more during the first one-two months from infection, a natural
immunological rebound of CD4+ concentration and reduction
of viral load occur even without therapy. In order to assess
the achieved performance, we use three indicators: (i) overall
drug consumption (expressed in weeks of full HAART), (ii)
average CD4+ concentration, (iii) average viral load.

We present in Fig. 2 the simulated response of Patient B
using NMPC-based therapy protocol, assuming perfect knowl-
edge of the patient behavior and noise-free measurements. In
this nominal situation, it follows that ε(k) = 0 at all times,
and so d̂(k) = 0. We consider a lower bound for CD4+
of 800 cells/mm3 and an upper bound on the viral load
of 300 copies/ml. The therapy is started two months after
the infection. As expected, the NMPC-based therapy protocol
is able to satisfy the constraints on CD4+ concentration
and on the viral load while reducing the drug dosage with
respect to sustained HAART therapy at maximum dosage.
In particular, the induced Structured Treatment Interruption
protocol comprises 77 weeks on and 19 weeks off.

We also tested the closed-loop response of Patient B in
other situations, namely when the therapy is started later (4
months after infection) or earlier (1 month after infection), and
with noisy measurements (noise-to-signal ratio of 10%). The



500

550

600

650

700

750

800

850

900

950

1000

0 8 16 24 32 40 48 56 64 72 80 88 96 104

C
D

4+
(c

el
ls

/m
m

3
)

Time from infection (weeks)

Therapy start Pat. A
Pat. B
Pat. C

100

101

102

103

104

105

0 8 16 24 32 40 48 56 64 72 80 88 96 104

V
ir

al
L

oa
d

(c
op

ie
s/

m
l)

Time from infection (weeks)

Pat. A
Pat. B
Pat. C

Fig. 1. Patients response under HAART started after 2 months from infection
over a period of two years.

corresponding results are summarized in Table I by reporting
the performance indicators. From these results, we can observe
that the proposed NMPC-based protocol does not suffer from
sensitivity to noise and can take easily into account variations
in the starting time. In fact, in all cases the average value of
CD4+ is significantly above the lower limit and the viral load
is kept below its upper bound without the necessity of full
HAART. In this way, the severe side effects of a full therapy
can be minimized without jeopardizing the disease control.

In order to assess the robustness of the proposed NMPC
strategy with respect to model errors, we tested the control
of Patients A and C using NMPC algorithms based on the
model of Patient B. In such cases, there is inherent mismatch
between the model prediction and the patient response, and
such mismatch is “captured” into the prediction error ε(k)
every four weeks when the measurements of CD4+ and viral
load become available. In the sake of space, results are only
presented in Table I from which we observe again the ability
of the NMPC protocols to satisfy the therapeutic constraints,
despite the fact that an incorrect model is used. It is interesting
to notice that an STI protocol is essentially inappropriate for
Patient A (the one with fastest disease progression) as only
1 week off is computed. On the other hand, for Patient C
(the one with slowest disease progression) the STI protocol
comprises 56 weeks on and 40 weeks off. From these results,
it is clear that the NMPC-based protocols are adjusted to the
specific, yet unknown, characteristics of the controlled patient.
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Fig. 2. Closed-loop response of Pat. B with NMPC. Top plot: CD4+
concentration (left axis) and viral load (right axis), bottom plot: drug uptake.

TABLE I
DRUG CONSUMPTION (WEEKS OF FULL THERAPY), AVER. CD4+

(cell/mm3) AND AVER. VIRAL LOAD (COPIES/ML).

(Patient B)

Case Drug CD4+ VL

No treatment 0 726 399
Full HAART 96 897 29.4
NMPC 77 881 32.6
NMPC started after 4 m. 64 861 54.7
NMPC started after 1 m. 78 881 29.8
NMPC noise measurements (10%) 74 877 40.6

(Patient A)

No treatment 0 676 628
Full HAART 96 893 48.8
NMPC based on pat.B 95 891 51.7

(Patient C)

No treatment 0 741 362
Full HAART 96 899 26.2
NMPC based on pat.B 56 860 73.2

B. Type I Diabetes Mellitus control

1) Introduction: Type I diabetes mellitus is a metabolic
disease in which an absolute deficiency of insulin secretion
causes hyperglycemia, which is known to be source of several
long-term complications, including heart disease and stroke,
hypertension, retinopathy, nephropathy, and neuropathy. In
order to achieve euglycemic control, patients depend on the



supply of external insulin, which is typically administrated by
means of multiple daily injections.

A significant amount of research studies aim at implement-
ing the so-called “artificial pancreas”, a closed-loop system
comprising: an implantable glucose sensor, an insulin delivery
pump (and a reservoir), and a control algorithm that adjusts
the insulin rate in order to maintain a normal glycemic level,
in spite of disturbances (e.g. meals and physical activity). See
[18], [19] and references therein for a current assessment. In
this respect, the main technological issues are associated to
the availability of reliable implantable sensors and to reducing
dimensions and portability of the insulin pumps.

Still, the majority of diabetics is currently treated with
multiple injections, and the objective of the present study is
to define a Nonlinear MPC based therapeutic protocol opti-
mization strategy to determine the appropriate insulin doses
for each specific patient. We consider to optimize a protocol
comprising three pre-prendial injections of Lispro insulin and
an injection of Glargine insulin for overnight control.

2) Physiological model and NMPC algorithm: Many phys-
iological models for the glucose/insulin system have been
published in the literature. In this work we use the com-
partmental model developed by Lehmann and Deutsch [20],
chosen because it is particularly suitable for simulation of
multiple daily injection protocols comprising different insulin
preparations. The model differential equations are (notice that
state variables are shown in bold-face):

İ =
Iabs(t)
VI

− keI

İa = k1I− k2Ia

Ġ =
kabsGgut +GNHB(t)−Gout(t)−Gren(t)

VG

˙Ggut = Gempt(t)− kabsGgut

(9)

in which I and Ia are the plasmatic and active insulin concen-
tration, respectively; G and Ggut are the plasmatic and gut
glucose concentration, respectively. The time varying function
Iabs(t) is the insulin absorbed with the previous injections and
the contribution of each injection can be expressed as:

Iabs(t) =
s(t− t0)s−1T s

50D

(T s
50 + (t− t0)s)2

(10)

in which t0 is the injection time, D is the injected dose,
while the parameters s and T50 vary with the insulin type
(normal, NPH, etc.). Gempt(t) represents the glucose gastric
emptying rate occurring after a meal and has trapezoidal (or
triangular) shape. GNHB(t) is the so-called “Net Hepatic
Glucose Balance” and depends on the active insulin Ia and
on the glucose level G. Gout(t) represents the peripheral use
of glucose and also depends on Ia and G. Finally, Gren(t) is
the glucose renal excretion and depends on G. For a complete
description the interested reader is referred to [20], [21].

In this study, we consider a therapy protocol comprising
three daily injections of Lispro insulin (right before breakfast,
lunch and dinner), and one injection of Glargine administrated

before bed time. These two recent insulin types were not con-
sidered in the original model and, therefore, we evaluated the
associated parameters from data as discussed in [21]. Thus, the
overall nonlinear model has two manipulated inputs, the doses
of Glargine and Lispro injected, and external “disturbances”
associated with the carbohydrate uptakes.

We assume to measure the glucose level in the morning, one
hour before breakfast, and this measurement is used to update
the augmented state predictions from (4). As in the previous
application we use the following disturbance model: gx =
0, gy = d̂(k) and lx = 0, ld = ε(k). In the optimal control
problem (6), we assume to know in advance the (predicted)
amount carbohydrates contained in the meals, and we consider
quadratic stage cost functions:

`(·) = q(ỹi − ys)2 + s(ũi − us
i )

2 + q e2i + q e2i

`N (·) = q(ỹi − ys)2 + q e2i + q e2i
(11)

(ỹi, ũi) are the predicted glucose concentration and insulin
dose at time i, respectively; ys is the euglycemic level; us

i is
the dose predicted in the previous NMPC problem. The stage
cost is evaluated every 15 minutes for a horizon of 3 days.

3) Results and comments: We consider the application
of the proposed NMPC algorithm to a reference (female)
patient whose model parameters can be found in [20], [22].
In reference conditions, we consider the following values
for the carbohydrates contained in the meals: 20 g (8:00
AM, breakfast), 30 g (10:00 AM, snack), 70 g (1:00 PM,
lunch), 20 g (5:00 PM, snack), 70 g (8:00 PM, dinner). The
following reference protocol is considered for the first day:
2 U Lispro at 8:00 AM, 4 U Lispro at 1:00 PM, 4 Lispro
at 8:00 PM, 10 U Glargine at 10:30 PM. For subsequent
days, the daily protocol is computed by the NMPC algorithm
given the glucose concentration measurement made at 7:00
AM. The reference glycemic level is ys = 7.5 mmol/L,
the hyperglycemic and hypoglycemic bounds are ymax =
10 mmol/L and ymin = 4 mmol/L, respectively. The cost
function weights are: q = 1, s = 0.01, q = 100, q = 103. A
dedicated nonlinear “trust region” optimization [6] algorithm
was written in Octave/C++, and a randomized procedure for
the computation of the initial guess was accurately developed
to reduce local minima effects.

We present in Fig. 3 the glucose concentration profile and
the insulin doses administrated over a four day period. In this
first simulation the model used by the NMPC algorithm is
perfect. We can immediately notice that the initial reference
protocol is too mild. In fact, during the first day, the average
glycemic level is 9.6 mmol/L and the hyperglycemic bound is
exceeded, during the whole day, for 4 more hours. On the
other hand, when the protocol is optimized by the NMPC
algorithm, the glycemic level is always within the bounds,
with an average level of 7.52 mmol/L. We next present in
Fig. 4 the corresponding results obtained when the model
used by NMPC is not perfect (the two main patient depen-
dent parameters, the Hepatic and Peripheral sensitivities are
incorrect). Again, we can notice that the NMPC algorithm is
able to lower the average glucose concentration (to a level
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of 8.4 mmol/L). Furthermore, it is interesting to notice the
effect of feedback from the morning glucose measurements.
During Day 2 (the first one using NMPC) there are still some
hyperglycemic episodes (overall duration of 1.5 hr), whereas
during the remaining two days only 0.5 hr of hyperglycemic
conditions are experienced. This is due to the fact that the
updated model predictions become more accurate as feedback
measurements are acquired. We also simulated the case in
which the amounts of carbohydrates actually assumed during
the meals are different from the values known by the NMPC
algorithm, and also in this case (whose results are not shown
due to space limitations) the algorithm shows remarkable
robustness properties.

IV. CONCLUSIONS

In this paper we presented a general framework of Non-
linear Model Predictive Control (NMPC) strategies and two
simulated applications to drug administration problems. We
showed how such NMPC strategies are well suited for this
type of biomedical “systems” due to their definite applicability
to the case of infrequent measurements and the presence of
constraints on both decision and controlled variables (where
other non-predictive feedback algorithm can be hardly ap-
plied). Furthermore, the adopted feedback mechanism allows
one to embed effective robustness properties, and therefore to
cope with unavoidable model errors.
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