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Abstract

The recent successes of the European Rosetta mission have shown the possibility of a close observation

with one of the most evasive celestial bodies in the Solar System, the comets, and the practical feasibility

of a comet rendezvous to obtain detailed information and in situ measurements. This paper discusses a

preliminary study of the transfer trajectory toward the comet 67P/Churyumov-Gerasimenko (the same

target used by Rosetta) for a spacecraft whose primary propulsion system is an electric solar wind sail.

The use of a propellantless propulsion system with a continuous thrust is theoretically able to simplify the

transfer trajectory by avoiding the need of intermediate flyby maneuvers. The problem is addressed in a

parametric way, by looking for the possible optimal launch windows as a function of the propulsion system

performance. The study is completed by a mass breakdown analysis of the spacecraft, for some mission

scenarios of practical interest, based on the actual payload mass of the spacecraft Rosetta.
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Nomenclature

a = semimajor axis of the orbit (J2000-Ecliptic)

ac = spacecraft characteristic acceleration

as = E-sail propulsive acceleration

e = orbital eccentricity (J2000-Ecliptic)

f, g, h, k = modified equinoctial elements

H = Hamiltonian

i = orbital inclination (J2000-Ecliptic)

� = tether length

L = true longitude

m = mass

M = mean anomaly at epoch

N = number of tethers

n = number of revolutions

p = semilatus rectum

r = Sun-spacecraft distance

t = time

x = state vector

α = cone angle

δ = clock angle

λ = adjoint vector

ν = true anomaly

τ = switching parameter

ω = argument of perihelion (J2000-Ecliptic)

Ω = longitude of the ascending node (J2000-Ecliptic)
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Subscripts

f = final

i = initial

tether = single tether

tot = total

1 Introduction

The recent soft-landing of the robotic lander Philae [1] on the nucleus of the comet 67P/Churyumov-

Gerasimenko (67P), is the realization of an ambitious and advanced space mission in which

a cometary rendezvous, first in the history of the spaceflight, was completed on August 2014

by the European space probe Rosetta. The Rosetta mission is the most recent example of

scientific missions towards these fascinating, and to some extent elusive, ancient bodies of our

Solar System. In this context, Rosetta and its lander Philae, through in-situ measurements [2],

could give interesting answers to some important questions raised by the international sci-

entific community since many decades. Actually, the main scientific goals of Rosetta are to

investigate both the origin of comets and the relationship between cometary and interstellar

material. These results could be of crucial importance to obtain additional information about

the origin of the Solar System and, more important, of life on Earth [3].

From the viewpoint of propellant consumption, a direct transfer towards comets using a chem-

ical propulsion system is a very demanding option due to the high orbital eccentricity of these

celestial bodies, which is often combined with a considerable orbital inclination with respect to
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the Ecliptic plane. The latter point is confirmed by the data shown in Fig. 1, which illustrates

the distribution of the orbital eccentricity as a function of the orbital inclination for the full

set of 3321 comets 4 contained in the JPL’s small-body database. Note, in particular, the con-

siderable eccentricity of the comet 67P (about 0.641) and its non negligible orbital inclination

(about 7 deg).

A typical solution to save propellant mass is to plan a mission including one or more interme-

diate flyby maneuvers. This approach, however, introduces a substantial complication in the

transfer trajectory and causes a significant increase of the flight time due to the constraints

related to the celestial bodies ephemerides. For example, in its ten years long journey to the

comet, the spacecraft Rosetta exploited three gravity assists with Earth (on 2005, 2007, and

2009), and one with Mars (on 2007). The resulting trajectory also allowed the scientific probe

to take two close passages with asteroids 2867 Steins (on 2008) and 21 Lutetia (on 2010).

An interesting option for saving time and propellant mass, and for avoiding the need of complex

flyby maneuvers, is offered by the use of a continuous-thrust, propellantless, propulsion system

such as a photonic solar sail or the more recent electric solar wind sail (E-sail). The basic idea

behind the E-sail concept is to create an artificial electric field using a number of long charged

tethers. Such an electric field shields the spacecraft from the solar wind ions that, impacting

on it, produce a small but continuous thrust.

Even though the strength of the E-sail effect (Coulomb drag effect on charged tether or wire)

has not yet been measured in space, laboratory measurements by Siguier et al. [4] around a

charged wire in a flowing plasma resembling LEO conditions indicate [5] that the size of the

forming electron sheath is in good agreement with earlier theoretical predictions [6]. On a

technical side, a 1 km long sample of E-sail tether has been already produced [7], a lightweight

Remote Unit compatible with a solar distance of 0.9-4 au is at TRL 4-5 [8] and a 100 m long

4 See http://ssd.jpl.nasa.gov/dat/ELEMENTS.COMET (retrieved on 21 January 2015).
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E-sail tether will fly onboard Aalto-1 CubeSat, which is scheduled to be launched into a LEO

orbit in 2015 [9].

From a historical viewpoint, solar sails were originally selected as a promising option to reach

a comet, starting from the mission proposed at the end of the seventies by the NASA Jet

Propulsion Laboratory to rendezvous with comet 1P/Halley. The role of the solar sail concept

in the Halley race is thoroughly documented in the classical textbook by Jerome Wright [10].

More recently, an interesting study regarding the solar sail capabilities is reported in a paper

by Hughes and McInnes [11]. In particular, Ref. [11] points out that a solar sail mission to

comet 46P/Wirtanen could reduce the launch mass by 44% (and the trip time by 68%) when

compared to the original Rosetta mission scenario. Indeed, recall that Rosetta’s original mission

was to take a rendezvous with the comet 46P/Wirtanen in 2011, but the plan was then changed

after an important failure of Ariane 5 carrier rocket.

The aim of this paper is to analyze an E-sail-based mission scenario towards comet 67P by

taking into account some important characteristics of the Rosetta spacecraft. In particular,

the same payload mass of Rosetta’s mission has been considered to facilitate a direct perfor-

mance comparison of the propulsion systems, but the same results are also applicable, at least

qualitatively, to other Jupiter’s families of comets. The model used to quantify the E-sail per-

formance does not take into account the stochastic nature of the solar wind, which is known to

be a high-variable plasma. Furthermore, the topological structure of the solar wind throughout

the interplanetary space is different from the deterministic model used in the E-sail feasibility

studies. As a result, the force field induced by the solar wind into an E-sail and applied in

the following analysis should be considered as a mean value. Even though it is reasonable to

expect that high-frequency fluctuation modes may be averaged by both the spacecraft inertia

and the use of a suitable control law of the tethers’ voltage, nevertheless more accurate models

are necessary for understanding the real implication of the solar wind fluctuation on the E-sail

performance. This subject is however beyond the scope of this paper.

5 of 39



The transfer problem is addressed in a parametric way by looking at the minimum flight

time to fulfill the comet rendezvous as a function of the spacecraft characteristic acceleration

ac. The latter is defined as the maximum propulsive acceleration when the Sun-spacecraft

distance is one astronomical unit. For a fixed value of ac, the minimum flight time is initially

obtained assuming an ephemeris-free model, that is, by neglecting the relative position of the

celestial bodies along their own orbits. Not only this model provides the minimum transfer time

(compared to the problem in which the actual planetary ephemerides are taken into account),

but it also allows the optimum starting position along the Earth’s heliocentric orbit to be

found, as well as the optimum arrival position along the comet’s heliocentric orbit.

Using the results obtained through the ephemeris-free model, the minimum-time rendezvous

problem is then addressed by taking into account the ephemerides constraint, for a time interval

that includes the launch dates corresponding to the optimal relative positions of the celestial

bodies. Some representative values of the spacecraft characteristic acceleration are analyzed

to compare the simulation results with the real flight times of the Rosetta mission. Finally,

taking into account these value of ac, the paper shows a preliminary mass breakdown analysis

of an E-sail-based spacecraft, that considers a payload mass consistent with the actual value

of Rosetta.

2 Simulation results with an ephemeris-free model

The optimal orbit-to-orbit heliocentric transfer is first analyzed as a function of the value of the

spacecraft characteristic acceleration in the range ac ∈ [0.15, 1]mm/s2. The E-sail trajectory

can be tuned through three independent control variables, that is, τ , α and δ. The switching

parameter τ = (0, 1) models the thruster on/off condition, and is used to account for coasting

arcs in the spacecraft trajectory. The sail cone angle α is the angle between the Sun-spacecraft

line and the thrust direction. The value of α can be adjusted in the range [0, 30] deg by suitably
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orienting the plane containing the sail tethers as discussed in Ref. [12]. Finally, the clock angle δ

defines the orientation of the propulsive thrust in the plane perpendicular to the Sun-spacecraft

direction. For all simulations it is assumed that the spacecraft is subjected to the E-sail thrust

(when the propulsion system is switched on) and to the gravitational effect of the Sun only,

thus neglecting any perturbation from other celestial bodies. Also, a mean field of the solar

wind is assumed for all of the mission simulations . During the coasting phases, the motion is

therefore Keplerian. The spacecraft is initially assumed to track an Earth heliocentric orbit.

This amounts to stating that the spacecraft leaves the Earth’s sphere of influence using a

parabolic escape trajectory, i.e. an escape trajectory with a zero hyperbolic excess speed with

respect to the planet.

In the numerical simulations, the orbital elements of Earth+Moon barycenter and comet 67P

are taken from the JPL’s ephemerides database, corresponding to the date of 10 August 2014,

whose Modified Julian Date (MJD) is 56879. These data, which constrain the characteristics

of the spacecraft osculating orbit both at the beginning and at the end of rendezvous mission,

are summarized in Table 1. The optimal position of the spacecraft along the initial (Earth)

and arrival (comet) heliocentric orbit, which corresponds to the solution of the minimum-time

transfer problem, is an output of the optimization process. The mathematical model used to

solve the optimization problem [13,14] is summarized in the Appendix .

Figure 2 shows the minimum flight times, corresponding to the ephemeris-free model, as a

function of the spacecraft characteristic acceleration. In particular, Fig. 2 shows a marked de-

pendence, with a hyperbolic-like behavior, of the flight time as a function of ac. Note that a

flight time of about ten years, comparable to that actually required by Rosetta to complete

its rendezvous mission with the comet 67P, is obtained using ac � 0.18mm/s2, i.e. a moderate

value of the spacecraft characteristic acceleration. The usefulness of an ephemeris-free model,

when compared to a ephemeris-constrained model, is not only confined to the reduced com-

putational time it requires. In fact, an ephemeris-free model can give interesting information
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about the characteristics of the transfer orbit as, for example, the number n of full revolutions

tracked by the spacecraft around the Sun during the transfer. In this sense, Fig. 2 shows that

a reduction of the spacecraft characteristic acceleration implies a substantial increase of the

number n, especially when the value of ac falls below 0.3mm/s2. For this reason, it is useful to

ideally classify the transfer orbit within three possible families as a function of the value of n.

The first type of transfer, which will be referred to as “rapid” transfer, is characterized by the

fact that the comet 67P is reached before completing a (single) full revolution around the Sun

(n = 0). This type of transfer is obtained with a spacecraft characteristic acceleration greater

than about 0.68mm/s2, and it requires a flight time less than two years (or even less than one

year if ac ≥ 0.94mm/s2). An example of rapid transfer trajectory with a flight time of about

340 days is drawn in Fig. 3, which shows the ecliptic projection of the optimal trajectory when

ac = 1mm/s2. Note that all of the transfers studied in this paper are fully three-dimensional

even if, for the sake of visualization, the figures show the ecliptic projection of the spacecraft

heliocentric trajectories.

On the other hand, a mission that requires a number of revolutions n ≥ 3 is referred to as

“slow” transfer. Taking into account Fig. 2, such a transfer is obtained when the spacecraft

characteristic acceleration is less than about 0.28mm/s2. In this case the flight time is greater

than six years and its length quickly increases as ac is decreased. The slow transfers are charac-

terized by involved spacecraft trajectories in which the propulsion system is switched off or on

many times, so that a number of coasting arcs take place. The accurate numerical simulation

of those trajectories is rather difficult and is computationally very expensive, especially due to

the fact that the solution of the two-point boundary value problem associated to the optimal

transfer is highly sensitive to the unknown (initial) variables to be found.

Finally, the intermediate case, in which n = {1, 2}, is referred to as “moderate” transfer.

In this case the flight times are between two and six years, and the spacecraft characteristic
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accelerations are roughly in the range ac ∈ [0.28, 0.68]mm/s2. The analysis of those trajectories

is much simpler than in the case of slow transfers, partly because the number of coasting

phases is small (i.e., not exceeding two or three). To summarize, the shape of the spacecraft

trajectory (and, in particular, the number of full revolutions) is strongly dependent on the value

of the spacecraft characteristic acceleration, as is clearly shown in Fig. 4, which illustrates

six trajectories obtained with different values of ac. Note that the meaning of the symbols

appearing in the trajectories of Fig. 4 is described in Fig. 3.

The previous classification according to the three transfer types (i.e. slow, moderate and rapid),

is rather arbitrary even if a similar nomenclature was adopted by the Authors in another

study [15] involving a mission analysis toward a near-earth asteroid. However, this nomencla-

ture is particularly useful to give a meaningful and direct description of the simulation times

necessary to obtain the optimal trajectories. For example, the time required to simulate a slow

transfer is about an order of magnitude (in some cases even two orders of magnitude) greater

than that required for a rapid transfer.

It is interesting to note that, according to Fig. 4, the optimal transfer in the ephemeris-free

model is characterized by a final true anomaly (i.e. a spacecraft’s true anomaly on the comet’s

heliocentric orbit at rendezvous) that is nearly independent of the value of ac. Such a true

anomaly value is about νf � 140 deg which, taking into account the comet’s orbital data

summarized in Table 1, implies that the Sun’s distance at rendezvous is roughly rf � 4 au.

This is an useful result, because one important constraint of Rosetta mission is related to the

rendezvous distance [16], which must take place at a Sun’s distance less than 4.4 au. Another

mission constraint [16] states that the spacecraft shall support full science operation at a

distance not less than 3.25 au from the Sun. From this viewpoint an orbital rendezvous that

takes place when the comet is going away from its perihelion (see the black squares in Fig. 4),

is advantageous.
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The flight times and the characteristics of the transfer orbit, which are detailed in Fig. 2 and

Table 2, should be considered as a first approximation only of the actual results that can be

found by taking into account the real position of the celestial bodies (i.e. the Earth at departure

and the comet at rendezvous) along their own orbits. In this sense, these results represent the

starting point for a more accurate analysis with ephemeris-constrained data, which is the topic

of the next section.

3 Simulation results with an ephemeris-constrained model

When the actual positions of the two celestial bodies along their own orbits are taken into

account, the optimal launch date and the corresponding optimal trajectory can be calculated

with the following approach. For a given value of spacecraft characteristic acceleration, Table 2

provides the minimum time interval (Δt) and the spacecraft true anomaly along the Earth’s

heliocentric orbit at departure (νi) and along the comet’s orbit at rendezvous (νf ). Using the

orbital data of Table 1, that is, the position of the two celestial bodies on 10 August 2014,

and solving a classical Kepler problem, it is possible to find the best departure date at which

the actual position of the two celestial bodies is closest to the spatial configuration of the

ephemeris-free model. For a near-term mission, the best departure date has been calculated

within a time range of ten years, from the 1st January 2015 to the 1st January 2025.

When the best departure date is known, the constrained minimum flight time is found starting

from the actual Earth’s position at the departure date, and enforcing the final spacecraft

(heliocentric) position to coincide with the actual position of the comet at the rendezvous

date. This method may be applied to all values of the spacecraft characteristic acceleration

within the range used in the preliminary analysis with the ephemeris-free model. Three different

mission scenarios will now be discussed according to the three different cases of slow, moderate

and rapid transfer.
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3.1 Slow transfer

In this first case study, the spacecraft characteristic acceleration is assumed to be 0.2mm/s2.

Table 2 shows that the minimum flight time in an ephemeris-free model is 3149 days (about

8.63 years) and, during the transfer, the spacecraft completes four revolutions around the Sun.

In particular, the topology of the transfer trajectory is close to that illustrated in Fig. 4 with

ac = 0.18mm/s2.

When the constraint due to ephemerides is taken into account, the best departure date is 14

October 2020. In that case the flight time is 3164 days (only 0.5% greater than the minimum,

ephemeris-free, value), and the rendezvous takes place at a Sun’s distance of 3.44 au, when the

true anomaly is about 130 deg. This result is illustrated in Fig. 5, which shows the spacecraft

(constrained) optimal transfer trajectory.

The use of a propulsion system with a continuous thrust allows a certain flexibility to be ob-

tained in the departure date. In this respect, a possible shift of the departure date, compared

to the nominal value of 14 October 2020, implies an increase of the total flight time. Neverthe-

less, such an increase is rather small, in percentage terms, even if the departure date is either

advanced or delayed by some weeks. This is confirmed by the results of Fig. 6, which shows the

sensitivity of the flight time as a function of the departure date, using a time interval of three

months around the nominal date of 14 October 2020. For example, by delaying the departure

date of one and half month (thus starting on the 1st December 2020), the minimum flight time

would be 3225 days, which means a transfer time increase less than 2% with respect to the

optimal value of 3164 days.

Figure 7 shows the distance from the Sun at rendezvous rf as a function of the departure

date, when ac = 0.2mm/s2. Note that the value of rf is always less than the maximum

distance (4.4 au) imposed by the mission requirements for Rosetta [16]. In this case the final
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Sun’s distance presents a more pronounced variation with the departure date. For example,

a departure date on 1st December 2020 corresponds to a Sun’s distance of 4.04 au, with an

increase of about 17% with respect to the value that can be obtained when the nominal (i.e.

the best) departure date is selected.

3.2 Moderate transfer

In this case the value of the spacecraft characteristic acceleration is set equal to 0.4mm/s2.

Using the data of Table 2, the ephemeris-free model states that the minimum flight time

is 1357 days, i.e. about 3.71 years. Accordingly, the ephemeris-constrained model suggests an

optimal departure date on 15 July 2019. In that case the comet 67P can be reached within a

flight time of about 1359 days, nearly coinciding with that of the ephemeris-free model. The

optimal trajectory completes one revolution around the Sun, as is shown in Fig. 8.

In terms of performance sensitivity to the departure date, Fig. 9 shows that a delay of few

weeks corresponds to a flight time increase of about one hundred days. An earlier launch,

instead, does not affect substantially the total flight time, because a departure on 1st June

2019 implies, for example, that the comet 67P is reached in less than 1400 days. Moreover, the

Sun-spacecraft distance at rendezvous is between 3.9 au and 4.6 au, see Fig. 10. In particular,

the distance corresponding to the optimal departure date is rf � 3.95 au, a value compatible

with the mission requirements of Rosetta. The constraint on the final distance tends to reduce

the admissible launch window. Indeed, Fig. 10 shows that a departure beyond 15 August 2019

implies a final distance from the Sun exceeding the limit of 4.4 au.
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3.3 Rapid transfer

For the rapid transfer case, the example value of the spacecraft characteristic acceleration is

ac = 1mm/s2. Adopting the same nomenclature used for a photonic solar sails [17], ac =

1mm/s2 is usually referred to as “canonical” value, as it is usually the reference value used

to quantify the mission performance in a given mission scenario. Recalling from Table 2 that

the ephemeris-free model provides a minimum flight time of 340 days, and a true anomaly at

departure (arrival) of about 250 deg (112 deg), the previously described procedure states that

the best departure date is on 3 September 2021. Starting from that date, the flight time with

ephemerides constraint is 393 days, which corresponds to an increase of about 15% compared

to the value shown in Table 2. This increase is, in percentage terms, much higher than that

obtained in the two preceding cases and is probably due to the insufficient length of the time

interval within which the best departure date is sought. Moreover, a high value of the spacecraft

characteristic acceleration implies that the flight times are moderate (about one year) and the

introduction of a constraint on the ephemerides has a strong effect on the total flight time. The

transfer trajectory is drawn in Fig. 11, which is similar to that obtained for an ephemeris-free

model and illustrated in Fig. 3.

The parametric analysis of the sensitivity to the departure date is shown in Fig. 12, which

involves a time range of two months around the nominal departure date. The figure shows the

existence of a marked sensitivity to the departure date (in particular for a delayed launch),

which implies a flight time increase of more than one hundred days. In all of the analyzed cases

the Sun’s distance at rendezvous is always less than the maximum value of 4.4 au, as is shown

in Fig. 13. Moreover, the rendezvous always takes place when the comet is moving away from

the Sun, that is, when the true anomaly is less than 180 deg. In the optimal case the final

distance is rf � 2.85 au and the corresponding true anomaly is νf � 116 deg.
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4 Spacecraft main characteristics

Having found the transfer performance in terms of optimal flight times and the best departure

dates as a function of the value of ac, it is now interesting to analyze the main characteristics

of the E-sail-based spacecraft. To this end, a preliminary spacecraft mass breakdown analysis

was performed using a parametric and semi-analytical model, originally discussed in Ref. [18],

whose main input performance parameter is given by the spacecraft characteristic acceleration.

In particular, the auxiliary tethers are assumed to be made of 7.6μm thin Kapton, whereas the

nominal tether voltage is set equal to 25 kV. For comparative purposes, the same payload mass

used in the Rosetta spacecraft is assumed, that is, a total payload mass of 265 kg, comprising

165 kg of science payload and 100 kg of lander [19].

Taking into account the results from the previous section, the representative values of spacecraft

characteristic acceleration are chosen to be ac = {0.2, 0.4, 1}mm/s2, which correspond to the

cases of slow, moderate and rapid transfers. The results are summarized in Table 3 for mission

scenarios with and without the lander.

For each pair of payload mass and spacecraft characteristic acceleration, Table 3 shows the

required total E-sail tether length �tot, the total mass of the spacecraft including a 20% un-

certainty margin, the number of tethers N , the length of each tether �tether, and the optimal

ephemeris-free flight time (see also Table 2). Note that values in Table 3 are calculated without

including the mass of a conventional propulsion system required by the probe to fly around

the comet in a controlled way, because the E-sail is not necessarily agile enough for such a

task. Table 3 shows that, even in the challenging case in which the lander is included and the

spacecraft characteristic acceleration is 1mm/s2, a solution exists with a reasonable value of

in-flight total mass of about 820 kg. Also, a spacecraft without a lander and a mission with a

moderate value of flight time (for example, 3.7 years), requires a total mass of 470 kg and about
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28 tethers of 11 km length each. Finally, Table 3 summarizes the main spacecraft characteristics

for a hypothetical mission with a (small) payload mass of 30 kg. Note that a scientific payload

mass value on the order of 10 kg− 20 kg is consistent with other studies for a rendezvous mis-

sion with a near-Earth asteroid using a solar sail-based spacecraft [20]. In that case, a rapid

transfer would require a total in-flight mass of 130 kg and 24 tethers of 9.4 km length each.

5 Discussion and conclusions

The capability of providing a continuous propulsive acceleration, for a prolonged time inter-

val and without the need of propellant, makes an E-sail an interesting option for missions

toward minor celestial bodies such as the comets. An analysis of a mission scenario involving

a rendezvous mission to the comet 67P/Churyumov-Gerasimenko has shown that an E-sail-

based spacecraft with medium-low performance is able to reach this celestial body with transfer

times comparable to that of the European Rosetta mission. However, significantly shorter flight

times can be obtained with an E-sail with medium-high performance, i.e. with a spacecraft

characteristic acceleration of about one millimeter per square seconds.

Assuming a scientific payload mass of 30 kg and a spacecraft characteristic acceleration of about

0.4mm/s2, the optimal ephemeris-free flight time is 3.7 years and the propulsion system requires

12 tethers only of 6.1 km length each. In that case, the total in-flight mass is 105 kg including a

20% margin. This preliminary mission analysis indicates that if future E-sail experimental tests

were to show the basic properties investigated so far (and mentioned in the Introduction), then

the E-sail propulsion would become a very useful tool also for cometary rendezvous missions

like the Rosetta mission.

An interesting extension of this work involves the possibility of widening the space mission,

including an Earth return phase. As a matter of fact, since no propellant is required by the
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spacecraft, the only condition for the return phase fulfillment is that the vehicle has to wait

until a suitable reentry window opens. Such a mission extension would theoretically guarantee

not only an in situ analysis of the comet, but also the possibility of transferring to Earth some

samples taken from the comet’s surface. Another extension of the work involves the use of a

fleet of smaller E-sail-based spacecraft, which could be used to study different targets with

the aim of performing more limited tasks, such as measuring some isotope ratios of different

celestial bodies.

Appendix

This Appendix summarizes the mathematical model used for simulating the optimal trajecto-

ries discussed in the paper. The E-sail equations of motion are written in terms of modified

equinoctial elements {p, f, g, h, k, L} while the time scale used for the numerical integration

of the equations is the JPL ephemeris time argument Teph. The compact form of equations of

motion is

ẋ = Aas + c

where as is the E-sail propulsive acceleration and x is the vector of modified equinoctial

elements, defined as

x � [p, f, g, h, k, L]T

Also

c �
⎡
⎣0, 0, 0, 0, 0, √μ� p

(
1 + f cosL+ g sinL

p

)2
⎤
⎦

T
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and A ∈ R
6×3 is a suitable matrix whose generic entry is referred to as Aij. In particular,

A11 = A13 = A41 = A42 = A51 = A52 = A61 = A62 = 0, while

A12 =
2 p

1 + f cosL+ g sinL

√
p

μ�

A21 = sinL

√
p

μ�

A22 =
(2 + f cosL+ g sinL) cosL+ f

1 + f cosL+ g sinL

√
p

μ�

A23 = −g (h sinL− k cosL)

1 + f cosL+ g sinL

√
p

μ�

A31 = − cosL

√
p

μ�

A32 =
(2 + f cosL+ g sinL) sinL+ g

1 + f cosL+ g sinL

√
p

μ�

A33 =
f (h sinL− k cosL)

1 + f cosL+ g sinL

√
p

μ�

A43 =
(1 + h2 + k2) cosL

2 (1 + f cosL+ g sinL)

√
p

μ�

A53 =
(1 + h2 + k2) sinL

2 (1 + f cosL+ g sinL)

√
p

μ�

A63 =
h sinL− k cosL

1 + f cosL+ g sinL

√
p

μ�

The components of the propulsive acceleration as in a classical radial-tangential-normal refer-

ence frame T are

[as]T = τ ac

(
r⊕

r

)
[cosα, sinα cos δ, sinα sin δ]T
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where r⊕ = 1 au, while the Sun-spacecraft distance r can be written in terms of modified

equinoctial elements as

r =
p

1 + f cosL+ g sinL
(1)

The problem discussed in section 2 consists of finding the control law u(t), where u � [α, δ, τ ]T

that maximizes the performance index J � −tf , where tf is the flight time necessary to transfer

the spacecraft from an initial x0 to a final xf prescribed state. The Hamiltonian of the system

is

H � (Aas) · λ+ c · λ (2)

where λ � [λp, λf , λg, λh, λk, λL]
T is the adjoint vector whose time derivative is given by the

Euler-Lagrange equation:

λ̇ = −∂H

∂x
(3)

The explicit expression of the Euler-Lagrange equation is rather involved and is not reported

here for the sake of conciseness. The optimal value of the control variables α, δ and τ is

obtained by maximizing, at any time, the Hamiltonian H. For example, by enforcing the

necessary condition ∂H/∂δ = 0, the optimal control law for the clock angle δ is:

sin δ = A23 λf + A33 λg + A43 λh + A53 λk + A63 λL (4)

cos δ = A32 λg + A12 λp + A22 λf (5)

Likewise, ∂H/∂α = 0 and ∂H/∂τ = 0 can be solved for obtaining the control laws of α and

τ . The two-point boundary-value problem associated to the variational problem is constituted

by the 6 scalar equations of motion and by the 6 scalar Euler-Lagrange equations. The cor-

responding 12 boundary conditions are related to the desired spacecraft position and velocity

at the initial (t = 0) and final (t = tf ) time. In particular, the boundary conditions for the
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ephemeris-free model are

p(0) = p⊕, f(0) = f⊕, g(0) = g⊕, h(0) = h⊕, k(0) = k⊕, λL(0) = 0 (6)

p(tf ) = p�, f(tf ) = f�, g(tf ) = g�, h(tf ) = h�, k(tf ) = k�, λL(tf ) = 0 (7)

where subscript � corresponds to the target comet 67P. The transversality condition H(tf ) = 1

is finally used to obtain the (optimal) value of tf .
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Earth Comet 67P

a [au] 1.000000920477849 3.463049865528343

e 1.667259177730655× 10−2 6.410189001180967× 10−1

i [deg] 1.862063137086164× 10−3 7.040450026522257

ω [deg] 2.874007612074662× 102 1.277996164427588× 101

Ω [deg] 1.756254311917600× 102 5.014697961599386× 101

M [deg] 2.151682696364959× 102 3.03710525763619× 102

Table 1
Orbital elements of the comet 67P and the Earth+Moon barycenter at 10 August 2014 (MJD =
56879).
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ac [mm/s2] νi [deg] νf [deg] rf [au] Δt [days] n

0.15 208.17 142.38 4.14 4409 5

0.16 244.94 139.65 3.98 4057 5

0.17 178.56 148.07 4.47 3986 5

0.18 214.05 140.58 4.04 3553 4

0.19 244.57 138.29 3.91 3317 4

0.20 270.58 137.20 3.85 3149 4

0.21 294.75 136.60 3.81 3012 4

0.22 208.74 139.40 3.97 2805 4

0.23 234.49 136.89 3.83 2631 3

0.24 256.15 135.58 3.76 2507 3

0.25 274.85 134.80 3.72 2407 3

0.26 292.07 134.27 3.69 2320 3

0.27 309.15 133.87 3.67 2242 3

0.28 191.49 140.76 4.05 2125 3

0.29 214.28 135.98 3.78 1980 2

0.30 233.56 133.79 3.66 1882 2

0.31 249.16 132.47 3.59 1807 2

0.32 262.68 131.60 3.55 1745 2

0.33 274.68 130.96 3.51 1690 2

0.34 285.65 130.44 3.49 1641 2

0.35 295.97 129.99 3.46 1596 2

0.36 305.94 129.60 3.44 1554 2

0.37 315.83 129.23 3.43 1514 2

0.38 325.94 128.90 3.41 1477 2

0.39 336.67 128.60 3.40 1440 2

0.40 191.46 140.40 4.03 1357 1

0.45 247.64 126.39 3.29 1085 1

0.50 283.86 122.96 3.13 962 1

0.55 309.91 121.09 3.04 873 1

0.60 332.04 119.65 2.98 801 1

0.65 352.77 118.45 2.93 739 1

0.70 217.82 139.30 3.96 651 0

0.75 229.69 133.62 3.65 552 0

0.80 238.15 128.33 3.38 479 0

0.85 244.02 123.35 3.15 424 0

0.90 247.78 118.79 2.95 383 0

0.95 249.44 114.89 2.79 355 0

1 249.57 112.18 2.69 340 0

Table 2
Optimal transfer performance in an ephemeris-free model.
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payload mass [kg] ac[ mm/s2] flight time [ years] �tot[ km] m[ kg] N �tether[ km]

265

0.2 8.6 242 701 24 10.1

0.4 3.7 506 733 36 14.1

1.0 0.9 1412 819 60 23.5

165

0.2 8.6 154 446 20 7.7

0.4 3.7 325 470 28 11.6

1.0 0.9 919 533 48 19.1

30

0.2 8.6 33 96 8 4.1

0.4 3.7 73 105 12 6.1

1.0 0.9 225 130 24 9.4

Table 3
Spacecraft main parameters for some representative mission scenarios.
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Figure 1. Orbital eccentricity as a function of the orbital inclination for the set of comets contained
in the JPL’s small-body database.
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Figure 2. Minimum flight time as a function of the spacecraft characteristic acceleration in an
ephemeris-free model. The circles correspond to the trajectories illustrated in Fig. 4.
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Figure 3. Optimal transfer orbit when ac = 1 mm/s2 in an ephemeris-free model (ecliptic projection).
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Figure 4. Optimal transfer orbits in an ephemeris-free model for some values of ac (ecliptic projection).
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Figure 5. Optimal transfer trajectory when ac = 0.2 mm/s2, departure date 14 October 2020 (ecliptic
projection).
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Figure 6. Minimum flight time as a function of the departure date when ac = 0.2 mm/s2.
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Figure 7. Sun-spacecraft distance at rendezvous as a function of the departure date when ac = 0.2
mm/s2.
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Figure 8. Optimal transfer trajectory when ac = 0.4 mm/s2, departure date 15 July 2019 (ecliptic
projection).
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Figure 9. Minimum transfer time as a function of the departure date when ac = 0.4 mm/s2.
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Figure 10. Sun-spacecraft distance at rendezvous as a function of the departure date when ac = 0.4
mm/s2.
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Figure 11. Optimal transfer trajectory when ac = 1 mm/s2, departure date 3 September 2021 (ecliptic
projection).
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Figure 12. Minimum transfer time as a function of the departure date when ac = 1 mm/s2.
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Figure 13. Sun-spacecraft distance at rendezvous as a function of the departure date when ac = 1
mm/s2.
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