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Introduction

Solar sailing is known to be a feasible solution for deep space missions requiring extremely

high values of ∆v. As such, it represents a valid option for heliocentric trajectories involving

significant variations of orbital inclination, in particular for missions towards the inner region

of the Solar System [1,2]. Among the scenarios envisaging a substantial plane change, those

involving a heliocentric transfer between circular orbits of different radii have stimulated

different research studies [3, 4].

In principle, the mission analysis does not constitute a challenge in this case, as it may

be reduced to a classical trajectory optimization problem [5, 6]. However, especially for

solar sails of current or next generation with low-medium performance [7–9], the optimal

trajectory design often requires a significant amount of simulation time. This is mainly due

to the long transfer times, on the order of some years, and to the trajectory complexity, which

is characterized by a number of revolutions around the Sun and by a continuous variation of

the sail control parameters [10].

For these reasons, different mathematical models [4, 11, 12] have been developed to give,

with a reduced amount of simulation time, not only an estimate of the main mission per-

formances, but also accurate information about the structure of the optimal trajectory in a
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three-dimensional circle-to-circle (direct) orbit transfer. This is exactly the context within

which the contribution of this Note is inserted. More precisely, the aim of this work is to

reappraise the analytical model originally proposed by Wiesel and Alfano [13] for a space-

craft equipped with a low-performance solar electric propulsion system, and to apply it, in a

similar mission scenario, to a heliocentric transfer trajectory tracked by a low-performance,

ideal, flat solar sail. In this sense, the obtained results extend to a three-dimensional case

the semi-analytical model recently discussed in Ref. [14].

Simplified Dynamical Model

Consider a flat, ideal (that is, perfectly reflecting) solar sail that, at the initial time t0 , 0,

covers a circular heliocentric orbit of semimajor axis a0 and inclination i0 with respect to

the ecliptic plane. The mission aim is to reach a circular heliocentric orbit with prescribed

values of semimajor axis af and inclination if .

Assume that, during the whole transfer, the eccentricity e of the osculating orbit is

sufficiently small, such that its value may be neglected within the spacecraft’s equations of

motions. This situation is representative, for example, of a solar sail of first generation [7,

15, 16], whose performance in terms of characteristic acceleration ac is sufficiently small.

Recall that ac is defined [17] as the maximum solar sail propulsive acceleration when the

Sun-spacecraft distance is r⊕ , 1 AU. Note that the assumption of negligible eccentricity

along the whole transfer is in accordance with the model proposed by Wiesel and Alfano [13].

The variations of a and i with the mean anomaly M are described by the following

simplified Lagrange’s variational equations [17]

da

dM
= 2 β a cos2 α sinα cos δ (1)

di

dM
= β cos2 α sinα cosM sin δ (2)
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where β , ac/(µ�/r
2
⊕) is the sail lightness number [17], which coincides with the ratio of

the maximum propulsive acceleration to the (local) solar gravitational acceleration. Because

the parking orbit is circular, the mean anomaly M is measured counterclockwise from the

Sun-spacecraft line at the beginning of the transfer, that is, M(t0) = 0.

In Eqs. (1)-(2), the term α ∈ [0, π/2] is the sail cone angle, that is, the angle between

the Sun-spacecraft line and the direction of the propulsive acceleration vector, whereas δ ∈

[0, 2 π] is the sail clock angle, see Fig. 1. The latter is measured counterclockwise from the

transverse direction of a heliocentric Radial-Transverse-Normal TRTN reference frame [18],

whose unit vectors are îR, îT, and îN. In particular, a clock angle δ = {0, π} corresponds to

a propulsive acceleration vector belonging to the spacecraft’s osculating orbital plane and,

as such, it is unable to vary the orbital inclination.
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Figure 1: Reference frame and solar sail control angles (α, δ).

The spacecraft motion is studied within an optimal framework, that is, by minimizing

the mean anomaly Mf , M(tf ) at the final (given) transfer time tf . This corresponds to

maximizing the performance index J , −Mf . As will be discussed next, under some suitable

assumptions the trajectory that minimizes Mf (or maximizes J) is a good approximation of

the minimum-time transfer trajectory.
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Using an indirect approach, consider the variables adjoint to the semimajor axis λa, and

to the inclination λi, and introduce the Hamiltonian function of the problem

H , 2λa β a cos2 α sinα cos δ + λi β cos2 α sinα cosM sin δ (3)

which defines the two Euler-Lagrange equations [19]

dλi
dM

, −∂H
∂i

= 0 ,
dλa
dM

, −∂H
∂a

= −2λa β cos2 α sinα cos δ (4)

Because H is independent of the orbital inclination, the adjoint variable λi is a constant of

motion. A second integral of motion is obtained when Eq. (1) is substituted into the second

of (4). Indeed, with simple calculations, it may be verified that

a λa = a0 λa0 (5)

where λa0 is the (unknown) initial value of λa. According to Eq. (5), the adjoint variable

λa is obtained as a function of a provided that its initial value λa0 is given. This result

avoids the need of a numerical integration of the second of the Euler-Lagrange equations (4).

Moreover, because a0 > 0, the sign of the product a λa is a function of the sign of λa0 only,

whose value is an output of the boundary value problem associated to the optimal problem.

Note that the special situation in which λa0 = 0 corresponds to having λa = 0 along the

whole trajectory, see Eq. (5).

According to Pontryagin’s maximum principle, the optimal sail cone angle α is given by

the constant value α = α? , arctan(1/
√

2). The latter coincides with the well known value

of α that maximizes the transverse component of the local propulsive acceleration. The value

α = α? is often used for local optimization trajectories [4, 11, 17]. As far as the optimal sail
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clock angle is concerned, the maximization of H with respect to δ provides δ = δ?, with

sin δ? ,
sign (λi) cosM√
k2 + cos2M

, cos δ? ,
sign (λa0) |k|√
k2 + cos2M

(6)

where sign (·) is the signum function (with sign (0) , 0) and k is a dimensionless constant,

whose value depends on the parking orbit characteristics and the initial value of adjoint

variables according to the relationship

k ,
2 a0 λa0
λi

(7)

Equation (7) states that k takes a finite value provided that λi 6= 0. The noteworthy case in

which λi = 0 will be discussed next, along with the other special case λa0 = 0.

Substituting the optimal values α = α? and δ = δ? into Eqs. (1)-(2) and (3), the following

three first order differential equations are obtained:

d

dM

(
ln a

β̃

)
=

2 |k| sign (λa0)√
k2 + cos2M

(8)

d

dM

(
i

β̃

)
=

sign (λi) cos2M√
k2 + cos2M

(9)

H = β̃ |λi|
√
k2 + cos2M (10)

where k is given by Eq. (7), whereas β̃ , 2 β/(3
√

3) represents a sort of modified sail

lightness number that contains the optimal value of the sail cone angle (namely α = α?).

Because β̃ > 0, from Eq. (8) it is found that a positive (negative) value of λa0 corresponds

to an increase (decrease) of the semimajor axis a of the osculating orbit as a function of the

mean anomaly M , which, in turn, implies an orbit raising (lowering). On the other hand,

Eq. (9) shows that a positive (negative) value of λi corresponds to an increase (decrease) of
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the orbital inclination when M is increased. Therefore, when the characteristics of both the

parking and the final (target) orbit are given, that is, (a0, i0) and (af , if ) are known, the

sign of the two adjoint variables is simply given by

sign (λa0) = sign (af − a0) , sign (λi) = sign (if − i0) (11)

The previous equations may be substituted into Eqs. (8)-(9). An interesting result is that

the optimal transfer trajectory, in the space of the two dependent variables ln a/β̃ and i/β̃,

is described by two uncoupled differential equations in the independent variable M . More

precisely, for a given sail lightness number β and a quadruple (a0, af , i0, if ), Eqs. (8)-(9) and

(11) provide the two following integral relationships

|ln(af/a0)|
β̃

= f(k,Mf ) , 2 |k|
∫ Mf

0

dM√
k2 + cos2M

(12)

|if − i0|
β̃

= g(k,Mf ) ,
∫ Mf

0

cos2M√
k2 + cos2M

dM (13)

where it is implicitly assumed that af 6= a0 and if 6= i0. The special cases in which either

af = a0 or if = i0, are strictly related to the situations λa0 = 0 or λi = 0. However

these special cases cannot take place simultaneously otherwise the problem solution would

be trivially Mf = 0, which means that the parking orbit coincides with the target orbit.

Note that the integrals in the right sides of Eqs. (12) and (13) may be rewritten as a

function of elliptic integrals of first and second kind. However, from a practical viewpoint

such a possibility does not change the fact that a numerical scheme is anyway necessary to

calculate their value. For this reason those integrals are left in their original form, on the

understanding that, for a given pair (k,Mf ), the nonnegative functions f and g are calculated

with one of the quadrature algorithms available in the literature. For example, assuming
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Mf ∈ [1, 25] revs and |k| ∈ [0.01, 10] and using an adaptive Gauss/Lobatto quadrature

method [20] with an absolute error tolerance of 10−8, the isocontour lines for f and g are

shown in Fig. 2.
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Figure 2: Contour line of f and g as a function of |k| and Mf , see Eqs. (8)-(9).

The minimum value of Mf , and the corresponding value of k, are obtained by solv-

ing a nonlinear algebraic system constituted by Eqs. (12)-(13), whose numerical solution is

straightforward. A first estimate of the unknowns k and Mf , useful for initializing the nu-

merical procedure, is provided by the data summarized in Fig. 2. When the pair (k,Mf ) has

been found, the adjoint variable λi is obtained by introducing the transversality condition

Hf = 1 into Eq. (10). Finally, Eqs. (7) and (11) provide the value of λa0 that completes the

solution of the optimal problem.

The semimajor axis of the osculating orbit varies with the mean anomaly according to
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Eqs. (8) and (11), viz.

a = a0 exp
[
β̃ sign (af − a0) f(k,M)

]
with M ∈ [0, Mf ] (14)

Using this last equation and the fact that dM/dt =
√
µ�/a3, where µ� is the Sun’s gravita-

tional parameter, the total flight time tf is calculated through a quadrature algorithms [20]

using the equation:

tf =

√
a30
µ�

∫ Mf

0

exp

[
3 β̃ sign (af − a0) f(k,M)

2

]
dM (15)

If af = a0 (which corresponds to a simple orbital cranking) the previous relationship for the

flight time tf must be changed, as is now discussed.

The special cases λa0 = 0 and λi = 0 deserve a specific discussion. Assume first that

λa0 = 0 and λi 6= 0, and consider the spacecraft motion in the plane (a, i). Because β̃ is

constant and different from zero, Eq. (8) states that a remains constant independent of M .

Observing that in general di/dM 6= 0, the case λa0 = 0 corresponds to a pure cranking

maneuver in which the solar sail only changes its orbital inclination starting from a circular

orbit of radius a0. The sail moves along a range of circular orbits [1,3] whose inclination varies

progressively until the final inclination if is reached. The optimal control law for the sail

clock angle (6) states that δ is piecewise constant with M , and it changes its value twice per

full revolution around the Sun. Indeed, if k = 0, Eq. (6) states that δ? = π/2 (or δ? = 3π/2)

when sign (λi cosM) = 1 (or sign (λi cosM) = −1). Such an optimal control law coincides

with the law that locally optimizes the variation of orbital inclination, in accordance with

Refs. [11,17]. In this case, from Eq. (7) it is found that k = 0, while Eq. (13) reduces to

if − i0
β̃ sign (if − i0)

=

∫ Mf

0

|cosM | dM (16)
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whose integration is a simple matter. Once the value of Mf that solves Eq. (16) is found,

the flight time may be expressed as

tf =

√
a30
µ�

Mf (17)

which replaces Eq. (15) when af = a0.

The second special case is λi = 0 and λa0 6= 0, that is, according to Eq. (7), when

|k| → ∞. In this case Eq. (9) states that the orbital inclination i is a constant of motion

and, therefore, if = i0. Indeed, the optimal control law shows that sin δ? = 0, see Eq. (6),

which defines a two-dimensional transfer trajectory. In the latter case the right hand side

of Eq. (1) becomes 2 sign (λa0) ≡ 2 sign (af − a0), and the semimajor axis of the osculating

orbit varies according the law

a = a0 exp
[
2 β̃ sign (af − a0) M

]
(18)

from which the minimum value of the final mean anomaly is found to be

Mf =
ln (af/a0)

2 β̃ sign (af − a0)
(19)

while Eq. (15) provides the total flight time as

tf =

√
a30
µ�

(af/a0)
3/2 − 1

3 β̃ sign (af − a0)
(20)

Equation (20) coincides with the relationship found in Ref. [14] using a different approach

and, more important, by minimizing the total flight time tf .
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Results and Discussion

It might be argued that the problem of minimizing Mf is of limited practical impor-

tance because the typical performance index for a solar sail based mission is the total flight

time [17]. However, under some additional assumptions (besides the zero eccentricity of

the osculating orbit) the transfer trajectories that minimize the final mean anomaly Mf are

nearly coincident with the minimum-time transfer trajectories. As stated in the previous

section this is true, for example, when the spacecraft performs a pure cranking maneuver

(λa0 = 0), or when it executes a circle-to-circle two-dimensional transfer (λi = 0). Indeed,

for the pure cranking maneuver it may be verified that Eqs. (16)-(17) give the same results

of those discussed by McInnes [17] for locally optimal trajectories. On the other hand, as far

as the circle-to-circle two-dimensional transfer is concerned, it has been already noted that

Eq. (20) coincides with the approximate expression for the minimum flight time discussed in

Ref. [14].

More involved is the analysis of a situation in which the spacecraft must vary both the

semimajor axis and the orbital inclination. In this case the effectiveness of estimating the

minimum flight time using the flight time corresponding to the minimum value of the mean

anomaly must be validated by numerical simulations. A comparison between the two flight

times has been performed using an optimization program, based on modified equinoctial

parameters, whose mathematical model is described in Ref. [21]. Extensive simulations

have shown that for characteristic accelerations ac ≤ 0.5 mm/s2 and variations of orbital

inclination ∆i , |if − i0| ≤ 25 deg, the difference in terms of flight time between the optimal

value and the approximate value obtained using the simplified procedure discussed in this

Note is less than 5%.

For example, consider a parking orbit along the ecliptic plane (i0 = 0) with a radius a0 =

1 AU, and a target orbit with inclination if = 15 deg and radius af = 0.48 AU. Assuming an
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ideal solar sail with a characteristic acceleration ac = 0.5 mm/s2 (that is, β̃ = 3.24531×10−2)

and using the previous simplified model, the flight time obtained by means of the simplified

model is tf ' 571.2 days. The same mission, when analyzed using an optimization software

that considers the actual spacecraft’s equations of motion, may be completed with a minimum

flight time of about 577.5 days and 2.64 revolutions around the Sun. The difference between

the two transfer times is therefore about 1% only.

For this example the variation of i is illustrated in Fig. 3 as a function of a. According

to the simplified model, the orbital inclination varies nearly linearly with the semimajor

axis, while the (truly) optimal variation shows a marked increase of inclination when the

spacecraft reaches its minimum distance from the Sun (in this example equal to 0.48 AU).
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Figure 3: Orbital inclination vs. semimajor axis when ac = 0.5 mm/s2.

To summarize, while in the simplified mathematical model the mean rate of change of

Quarta and Mengali 11 of 17



i with respect to a is roughly constant during the transfer, in a truly optimal trajectory

a marked variation in orbital inclination takes place in the closeness of the transfer orbit

perihelion. Such a peculiarity of the truly optimal trajectory answers for the differences

between the simplified model and the optimal model when the mission requires a substantial

variation of both orbital inclination and semimajor axis.

An exemplary case is constituted by the Solar Polar mission, whose primary goal is

a scientific analysis of the solar polar regions [2] using a circular target orbit with radius

0.48 AU and an inclination greater than 75 deg with respect to the ecliptic plane. The lack

of accuracy provided by the proposed simplified model is related to the particular structure

of the optimal transfer orbit. Indeed, as shown by Sauer [1], assuming an orbit lowering

with af = 0.48 AU and a variation of orbital inclination of about ninety degrees, the optimal

trajectory for an ideal solar sail with a characteristic acceleration ac = 0.5 mm/s2 may be

virtually divided into two phases.

A first phase, whose length is about 578 days, in which the spacecraft uses the propulsive

thrust mainly for reducing the semimajor axis until a nearly circular orbit is reached with

a radius of 0.48 AU and an inclination of about 15 deg with respect to the parking orbit.

In a second phase, with a length of about 1212 days, the orbital inclination is varied by

maintaining a nearly constant Sun-spacecraft distance at about 0.48 AU from the star.

When the approximate model developed in this Note is applied to the case of Solar Polar

mission (assume a0 = 1 AU, af = 0.48 AU, i0 = 0, if = 90 deg, and ac = 0.5 mm/s2 to

obtain results comparable with those by Sauer [1]), it is found that the total flight time is

tf ' 2676 days. However, according to Ref. [1], the same mission may be fulfilled with a

minimum total flight time of 1790 days, and the corresponding error of the simplified model

exceeds therefore 50%.

Nevertheless, even within such an unfavorable mission scenario, it will be shown now that
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it is still possible to use the previous simplified method by introducing suitable corrections

suggested by the particular structure of the optimal solution. Actually if the mission is

virtually divided into two parts, that is, an orbit lowering with a variation of inclination of

15 deg followed by a pure orbit cranking of 75 deg, the simplified model can be successfully

employed. Indeed, as far as the orbit lowering phase is concerned, the flight time estimated

with the simplified model is about 577.5 days (a value nearly coincident with that obtained in

Ref. [1]). For the cranking phase, assuming that it is performed at a distance of 0.48 AU from

the Sun and using Eq. (16), the final mean anomaly is Mf = 3619.5 deg (about 10.05 revs).

This value, when substituted into Eq. (17), estimates a cranking time of about 1221.3 days.

With this simplified approach the total mission time is therefore 1798.8 days, which is nearly

coincident with that found by Sauer [1].

The latter result implies an a priori knowledge of the structure of the optimal transfer

trajectory, which in turn corresponds to the knowledge of the variation of orbital inclination

when the spacecraft approaches the perihelion distance. In the previous example the optimal

variation ∆̃i = 15 deg was known in advance due to the results of Ref. [1]. However, even

if the optimal value of ∆̃i were not known, the previous approximate model could be still

employed through a parametric approach in which the total flight time vs ∆̃i is calculated by

points. To better illustrate this algorithm, consider again the previous Solar Polar mission

assuming now that the optimal value of ∆̃i is not a priori known. Because ∆̃i ∈ [0, 90] deg,

consider the set of equispaced values S = {0, 90/n, 2 ·90/n, 3 ·90/n, . . . , 90} deg, where n is a

given integer number. For each value of ∆̃i ∈ S, the total flight time may be calculated as the

sum of the time necessary to move the spacecraft from {a = a0, i = 0} to {a = af , i = ∆̃i},

and the time required to perform the (pure) cranking phase from {a = af , i = ∆̃i} to

{a = af , i = if}. Repeating the same procedure for all values of the set S results in the

curve illustrated in Fig. 4, which confirms that the minimum total mission time corresponds
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to about ∆̃i ' 15 deg. More precisely, the value obtained through the simplified model is

∆̃i ' 11 deg, with a flight time of 1787 days. Notably, Fig. 4 is generated with a minimum

simulation effort, much less than that required to solve the full optimal control problem.
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Figure 4: Total flight time as a function of ∆̃i for the Solar Polar mission (af =
0.48 AU, if = 90 deg and ac = 0.5 mm/s2).

Conclusions

The problem of trajectory optimization for a circle-to-circle orbit transfer with plane

change using a low-performance solar sail is a rather complex task, which usually requires a

significant amount of simulation time. The methodology developed in this Note guarantees

a quick estimate, with a precision level consistent with a preliminary mission analysis, of the

optimal performance of an ideal solar sail.

In particular, the proposed mathematical model provides a good approximation of the
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minimum flight time when the variation of orbital inclination is on the order of a few ten

degrees. In addition, the same mathematical model may also be adapted, with minor changes,

to study mission scenarios involving high variations of orbital inclination. In this sense, the

proposed model is therefore useful also when high energy missions are considered.
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