FIELDS GENERATED BY TORSION POINTS OF ELLIPTIC CURVES

Keywords: elliptic curves; torsion points; Galois representations
Mathematics subject classification: 11G05; 11F80

Abstract

Let K be a field of characteristic $\operatorname{char}(K) \neq 2,3$ and let \mathcal{E} be an elliptic curve defined over K. Let m be a positive integer, prime with $\operatorname{char}(K)$ if $\operatorname{char}(K) \neq 0$; we denote by $\mathcal{E}[m]$ the m-torsion subgroup of \mathcal{E} and by $K_{m}:=K(\mathcal{E}[m])$ the field obtained by adding to K the coordinates of the points of $\mathcal{E}[m]$. Let $P_{i}:=\left(x_{i}, y_{i}\right)(i=1,2)$ be a \mathbb{Z}-basis for $\mathcal{E}[m]$; then $K_{m}=K\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$. We look for small sets of generators for K_{m} inside $\left\{x_{1}, y_{1}, x_{2}, y_{2}, \zeta_{m}\right\}$ trying to emphasize the role of ζ_{m} (a primitive m-th root of unity). In particular, we prove that $K_{m}=K\left(x_{1}, \zeta_{m}, y_{2}\right)$, for any odd $m \geqslant 5$. When $m=p$ is prime and K is a number field we prove that the generating set $\left\{x_{1}, \zeta_{p}, y_{2}\right\}$ is often minimal, while when the classical Galois representation $\operatorname{Gal}\left(K_{p} / K\right) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ is not surjective we are sometimes able to further reduce the set of generators. We also describe explicit generators, degree and Galois groups of the extensions K_{m} / K for $m=3$ and $m=4$.

1. Introduction

Let K be a field of characteristic $\operatorname{char}(K) \neq 2,3$ and let \mathcal{E} be an elliptic curve defined over K. Let m be a positive integer, prime with $\operatorname{char}(K)$ if $\operatorname{char}(K) \neq 0$. We denote by $\mathcal{E}[m]$ the m-torsion subgroup of \mathcal{E} and by $K_{m}:=K(\mathcal{E}[m])$ the field generated by the points of $\mathcal{E}[m]$, i.e. the field obtained by adding to K the coordinates of the m-torsion points of \mathcal{E}. As usual, for any point $P \in \mathcal{E}$, we let $x(P), y(P)$ be its coordinates and we indicate its m-th multiple simply by $m P$. We denote by $\left\{P_{1}, P_{2}\right\}$ a \mathbb{Z}-basis for $\mathcal{E}[m]$; then $K_{m}=K\left(x\left(P_{1}\right), x\left(P_{2}\right), y\left(P_{1}\right), y\left(P_{2}\right)\right)$. To ease notation, we put $x_{i}:=x\left(P_{i}\right)$ and $y_{i}:=y\left(P_{i}\right)$ ($i=1,2$). By Artin's primitive element theorem the extension K_{m} / K is monogeneous and one can find a single generator for K_{m} / K by combining the above coordinates. On the other hand, by the properties of the Weil pairing e_{m}, we have that $e_{m}\left(P_{1}, P_{2}\right) \in K_{m}$ is a primitive m-th root of unity (we denote it by ζ_{m}). We want to emphasize the importance of ζ_{m} as a generator of K_{m} / K and look for minimal (i.e., with the smallest number of elements) sets of generators contained in $\left\{x_{1}, x_{2}, y_{1}, y_{2}, \zeta_{m}\right\}$. This kind of information is useful for describing the fields in terms of degrees and Galois groups, as we shall explicitly show for $m=3$ and $m=4$. Other applications are local-global problems (see, e.g., [5] or the particular cases of [12] and [11]), descent problems (see, e.g., [14] and the references there or, for a particular case, [2] and [3]), Galois representations, points on modular curves (see Section 4.4) and points on Shimura curves.

It is easy to prove that $K_{m}=K\left(x_{1}, x_{2}, \zeta_{m}, y_{1}\right)$ (see Lemma 2.1) and we expected a close similarity between the roles of the x-coordinates and y-coordinates; this turned out to be true in relevant cases. Indeed in Section 3 (mainly by analysing the possible elements of the Galois $\left.\operatorname{group} \operatorname{Gal}\left(K_{m} / K\right)\right)$ we prove that $K_{m}=K\left(x_{1}, \zeta_{m}, y_{1}, y_{2}\right)$ at least for odd $m \geqslant 5$.

This leads to the following (for more precise and general statements see Theorems 2.8, 3.1 and 3.6)
Theorem 1.1. If $m \geqslant 3$, then $K_{m}=K\left(x_{1}+x_{2}, x_{1} x_{2}, \zeta_{m}, y_{1}\right)$. Moreover if $m \geqslant 4$, then

$$
K_{m}=K\left(x_{1}, \zeta_{m}, y_{1}, y_{2}\right) \Longrightarrow K_{m}=K\left(x_{1}, \zeta_{m}, y_{2}\right)
$$

In particular $K_{m}=K\left(x_{1}, \zeta_{m}, y_{2}\right)$ for any odd integer $m \geqslant 5$.
Note that, by Theorem 1.1, we have $K_{p}=K\left(x_{1}, \zeta_{p}, y_{2}\right)$, for any prime $p \geqslant 5$. The set $\left\{x_{1}, \zeta_{p}, y_{2}\right\}$ seems a good candidate (in general) for a minimal set of generators for K_{p} / K. Indeed, when K is a number field and \mathcal{E} has no complex multiplication, by Serre's open image theorem (see [15]), we expect that the natural representation

$$
\rho_{\mathcal{E}, p}: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})
$$

provides an isomorphism $\operatorname{Gal}\left(K_{p} / K\right) \simeq \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ for almost all primes p, and there are hypotheses on x_{1}, ζ_{m} and y_{2} (see Theorem 4.3) which guarantee that

$$
\left[K\left(x_{1}, \zeta_{m}, y_{2}\right): K\right]=\left(p^{2}-1\right)\left(p^{2}-p\right)=\left|\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})\right|
$$

For (almost all) the exceptional primes for which $\operatorname{Gal}\left(K_{p} / K\right)$ is smaller than $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ (see Definition 4.5), we employ some well known results on Galois representations and on subgroups of $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ to reduce further the set of generators. Joining the results of Lemmas 4.7 and 4.9 and of Theorems 4.11, 4.12 and 4.13 we obtain
Theorem 1.2. Let K be a number field linearly disjoint from the cyclotomic field $\mathbb{Q}\left(\zeta_{p}\right)$ and assume that $p \geqslant 53$ is unramified in K / \mathbb{Q} and exceptional for the curve \mathcal{E}. If $\operatorname{Gal}\left(K_{p} / K\right)$ is contained in a Borel subgroup or in the normalizer of a split Cartan subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$, then

1. $p \equiv 2(\bmod 3) \Longrightarrow K_{p}=K\left(\zeta_{p}, y_{2}\right)$;
2. $p \equiv 1(\bmod 3) \Longrightarrow\left[K_{p}: K\left(\zeta_{p}, y_{2}\right)\right]$ is 1 or 3 .

If $\operatorname{Gal}\left(K_{p} / K\right)$ is contained in the normalizer of a non-split Cartan subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$, then
3. $p \equiv 1(\bmod 3) \Longrightarrow K_{p}=K\left(\zeta_{p}, y_{2}\right)$;
4. $p \equiv 2(\bmod 3) \Longrightarrow\left[K_{p}: K\left(\zeta_{p}, y_{2}\right)\right]$ is 1 or 3 .

In Subsection 4.4 we give just a hint of the possible applications to points of modular curves. Similar applications, even to Shimura curves, can be further developed in the future. Modular curves might provide a different approach (and more insight) to problems analogous to those treated here.

The final sections are dedicated to the cases $m=3$ and $m=4$. We use the explicit formulas for the coordinates of the torsion points to give more information on the extensions K_{3} / K and K_{4} / K, such as their degrees and their Galois groups.

Acknowledgement. The authors would like to express their gratitude to Antonella Perucca for suggesting the topic of a generalization of the results of [4] and for providing several hints, comments and improvements on earlier drafts of this paper. The authors thank the anonymous referee for pointing out an omission in Section 4 and for various remarks which led to significant improvements in the exposition.

2. The equality $K_{m}=K\left(x_{1}+x_{2}, x_{1} x_{2}, \zeta_{m}, y_{1}\right)$

As mentioned above, we consider a field K of characteristic $\operatorname{char}(K) \neq 2,3$ and an elliptic curve \mathcal{E} defined over K, with Weierstrass form $y^{2}=x^{3}+A x+B$ (actually most of our results are valid in any characteristic as long as the curve has the form $\left.y^{2}=x^{3}+A x+B\right)$. Throughout the paper we always assume that m is an integer, $m \geqslant 2$ and, if $\operatorname{char}(K) \neq 0$, that m is prime with $\operatorname{char}(K)$. We choose two points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ which form a \mathbb{Z}-basis of the m-torsion subgroup $\mathcal{E}[m]$ of \mathcal{E}. We define $K_{m}:=K(\mathcal{E}[m])$ and we denote by $K_{m, x}$ the extension of K generated by the x-coordinates of the points in $\mathcal{E}[m]$. So we have

$$
K\left(x_{1}, x_{2}\right) \subseteq K_{m, x} \subseteq K_{m}=K\left(x_{1}, x_{2}, y_{1}, y_{2}\right)
$$

Let $e_{m}: \mathcal{E}[m] \times \mathcal{E}[m] \longrightarrow \boldsymbol{\mu}_{m}$ be the Weil Pairing, where $\boldsymbol{\mu}_{m}$ is the group of m-th roots of unity. By the properties of e_{m}, we know that $\boldsymbol{\mu}_{m} \subset K_{m}$ and, once P_{1} and P_{2} are fixed, we put $e_{m}\left(P_{1}, P_{2}\right)=: \zeta_{m}$ (a primitive m-root of unity). We remark that the choice of P_{1} and P_{2} is arbitrary; we use this convention for ζ_{m} (which obviously has no effect on the generated field since $K\left(\zeta_{m}\right)=K\left(\boldsymbol{\mu}_{m}\right)$ for any primitive m-th root of unity) to simplify notations and computations. In particular for any $\sigma \in \operatorname{Gal}\left(K_{m} / K\right)$, we have

$$
\sigma\left(\zeta_{m}\right)=\sigma\left(e_{m}\left(P_{1}, P_{2}\right)\right)=e_{m}\left(P_{1}^{\sigma}, P_{2}^{\sigma}\right)=\zeta_{m}^{\operatorname{det}(\sigma)}
$$

where we still use σ to denote the matrix $\rho_{\mathcal{E}, m}(\sigma) \in \mathrm{GL}_{2}(\mathbb{Z} / m \mathbb{Z})$.
The next lemma is rather obvious, but it shows how ζ_{m} can play the role of one of the y-coordinates in generating K_{m} and it will be useful in the rest of the paper.

Lemma 2.1. We have $K_{m}=K\left(x_{1}, x_{2}, \zeta_{m}, y_{1}\right)$.
Proof. An endomorphism of $\mathcal{E}[m]$ fixing P_{1} and x_{2} is of type $\sigma=\left(\begin{array}{cc}1 & 0 \\ 0 & \pm 1\end{array}\right)$. If it also fixes ζ_{m}, then $\operatorname{det}(\sigma)=1$ and eventually $\sigma=\mathrm{Id}$.

We now show that ζ_{m} and $y_{1} y_{2}$ are closely related over the field $K\left(x_{1}, x_{2}\right)$. Let $\left(x_{3}, y_{3}\right)$ (resp. $\left(x_{4}, y_{4}\right)$) be the coordinates of the point $P_{3}:=P_{1}+P_{2}$ (resp. $P_{4}:=P_{1}-P_{2}$). By the group law of \mathcal{E}, we may express x_{3} and x_{4} in terms of x_{1}, x_{2}, y_{1} and y_{2} :

$$
\begin{equation*}
x_{3}=\frac{\left(y_{1}-y_{2}\right)^{2}}{\left(x_{1}-x_{2}\right)^{2}}-x_{1}-x_{2} \quad \text { and } \quad x_{4}=\frac{\left(y_{1}+y_{2}\right)^{2}}{\left(x_{1}-x_{2}\right)^{2}}-x_{1}-x_{2} \tag{2.1}
\end{equation*}
$$

(note that $x_{1} \neq x_{2}$ because P_{1} and P_{2} are independent). By taking the difference of these two equations we get

$$
\begin{equation*}
y_{1} y_{2}=\frac{\left(x_{4}-x_{3}\right)\left(x_{1}-x_{2}\right)^{2}}{4} \tag{2.2}
\end{equation*}
$$

Lemma 2.2. We have

$$
K\left(x_{1}, x_{2}, y_{1} y_{2}\right)=K\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \quad \text { and } \quad K_{m}=K_{m, x}\left(y_{1}\right) .
$$

Proof. Since $y_{i}^{2} \in K\left(x_{i}\right)$, equations (2.1) and (2.2) prove the first equality. For the final statement just note that $K_{m}=K_{m, x}\left(y_{1}, y_{2}\right)=K_{m, x}\left(y_{1}\right)$.
More precisely, we have

Lemma 2.3. Let $L=K\left(x_{1}, x_{2}\right)$. Exactly one of the following cases holds:

1. $\left[K_{m}: L\right]=1$;
2. $\left[K_{m}: L\right]=2$ and $L\left(y_{1} y_{2}\right)=K_{m}$;
3. $\left[K_{m}: L\right]=2, L=L\left(y_{1} y_{2}\right)$ and $L\left(y_{1}\right)=L\left(y_{2}\right)=K_{m}$;
4. $\left[K_{m}: L\right]=4$ and $\left[L\left(y_{1} y_{2}\right): L\right]=2$.

Proof. Obviously the degree of K_{m} over L divides 4 . If $\left[K_{m}: L\right]=1$, then we are in case 1. If $\left[K_{m}: L\right]=4$, then y_{1} and y_{2} must generate different quadratic extensions of L and so $\left[L\left(y_{1} y_{2}\right): L\right]=2$ and we are in case 4. If $\left[K_{m}: L\right]=2$ and $y_{1} y_{2} \notin L$, then we are in case 2. Now suppose that $\left[K_{m}: L\right]=2$ and $y_{1} y_{2} \in L$. Then y_{1} and y_{2} generate the same extension of L and this extension is nontrivial, so we are in case $\mathbf{3}$.

Lemma 2.4. If $y_{1} y_{2} \notin K\left(x_{1}, x_{2}\right)$, then $\zeta_{m} \notin K\left(x_{1}, x_{2}\right)$.
Proof. We are in case 2 or case 4 of Lemma 2.3 and, in particular, $m>2$ because of $K_{2}=L$. We have $\left[L\left(y_{1} y_{2}\right): L\right]=2$ and there exists $\tau \in \operatorname{Gal}\left(K_{m} / L\right)$ such that $\tau\left(y_{1} y_{2}\right)=$ $-y_{1} y_{2}$. Without loss of generality, we may suppose $\tau\left(y_{1}\right)=-y_{1}$ and $\tau\left(y_{2}\right)=y_{2}$ so that $\tau=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ and $\tau\left(\zeta_{m}\right)=\zeta_{m}^{-1}$. Since $m \neq 2, \zeta_{m}^{-1} \neq \zeta_{m}$ and we get $\zeta_{m} \notin L$.
The connection between ζ_{m} and $y_{1} y_{2}$ is provided by the following statement.
Theorem 2.5. We have $K\left(x_{1}, x_{2}, \zeta_{m}\right)=K\left(x_{1}, x_{2}, y_{1} y_{2}\right)$.
Proof. We first prove that $\zeta_{m} \in K\left(x_{1}, x_{2}, y_{1} y_{2}\right)$ by considering the four cases of Lemma 2.3.

Case 1 or 2: we have $K\left(x_{1}, x_{2}, y_{1} y_{2}\right)=K_{m}$ so the statement clearly holds.
Case 3: we have $K_{m}=L\left(y_{1}\right)$ and $y_{1} y_{2} \in L$ so the nontrivial element $\tau \in \operatorname{Gal}\left(K_{m} / L\right)$ maps y_{i} to $-y_{i}$ for $i=1,2$. In particular, $\tau=-\mathrm{Id}$ and $\tau\left(\zeta_{m}\right)=\zeta_{m}$. Hence $\zeta_{m} \in L=K\left(x_{1}, x_{2}\right)$. Case 4: since $K_{m}=L\left(y_{1}, y_{2}\right)$ and $\operatorname{Gal}\left(K_{m} / L\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, there exists $\tau \in \operatorname{Gal}\left(K_{m} / L\right)$ such that $\tau\left(y_{i}\right)=-y_{i}$ for $i=1,2$. The field fixed by τ is $L\left(y_{1} y_{2}\right)$ and, as in the previous case, we get $\tau\left(\zeta_{m}\right)=\zeta_{m}$: so $\zeta_{m} \in L\left(y_{1} y_{2}\right)=K\left(x_{1}, x_{2}, y_{1} y_{2}\right)$.
Now the statement of the theorem is clear if we are in case $\mathbf{1}$ or in case $\mathbf{3}$ of Lemma 2.3. In cases 2 and 4 we have $\left[L\left(y_{1} y_{2}\right): L\right]=2, \zeta_{m} \notin L$ (Lemma 2.4) and $L\left(\zeta_{m}\right) \subseteq L\left(y_{1} y_{2}\right)$. These three facts yield $L\left(\zeta_{m}\right)=L\left(y_{1} y_{2}\right)$.

We conclude this section with the equality appearing in the title, which still focuses more on the x-coordinates. For that we shall need the following lemma.

Lemma 2.6. The extension $K\left(x_{1}, x_{2}\right) / K\left(x_{1}+x_{2}, x_{1} x_{2}\right)$ has degree $\leqslant 2$. Its Galois group is either trivial or generated by σ with $\sigma\left(x_{i}\right)=x_{j}(i \neq j)$.

Proof. Just note that x_{1} and x_{2} are the roots of $X^{2}-\left(x_{1}+x_{2}\right) X+x_{1} x_{2}$.
Corollary 2.7. We have $K\left(\zeta_{m}+\zeta_{m}^{-1}\right) \subseteq K\left(x_{1}+x_{2}, x_{1} x_{2}\right)$.
Proof. This is obvious if $K\left(x_{1}, x_{2}\right)=K\left(x_{1}+x_{2}, x_{1} x_{2}\right)$. If they are different, take the nontrivial element σ of $\operatorname{Gal}\left(K\left(x_{1}, x_{2}\right) / K\left(x_{1}+x_{2}, x_{1} x_{2}\right)\right)$. By Lemma 2.6, we have $\sigma\left(P_{i}\right)=$ $\pm P_{j}(i \neq j)$, hence $\operatorname{det}(\sigma)= \pm 1$.

Theorem 2.8. For $m \geqslant 3$ we have $K_{m}=K\left(x_{1}+x_{2}, x_{1} x_{2}, \zeta_{m}, y_{1}\right)$.
Proof. We consider the tower of fields

$$
K\left(x_{1}+x_{2}, x_{1} x_{2}\right) \subseteq K\left(x_{1}, x_{2}\right) \subseteq K\left(x_{1}, x_{2}, \zeta_{m}, y_{1}\right)=K_{m}
$$

and adopt the following notations:

$$
\begin{aligned}
G & :=\operatorname{Gal}\left(K_{m} / K\left(x_{1}+x_{2}, x_{1} x_{2}\right)\right) \\
H & :=\operatorname{Gal}\left(K_{m} / K\left(x_{1}, x_{2}\right)\right) \triangleleft G \\
G / H & =\operatorname{Gal}\left(K\left(x_{1}, x_{2}\right) / K\left(x_{1}+x_{2}, x_{1} x_{2}\right)\right)
\end{aligned}
$$

If $K\left(x_{1}+x_{2}, x_{1} x_{2}\right)=K\left(x_{1}, x_{2}\right)$, then the statement holds by Lemma 2.1.
By Lemma 2.6, we may now assume that G / H has order 2 and its nontrivial automorphism swaps x_{1} and x_{2}. Then there is at least one element $\tau \in G$ such that $\tau\left(x_{i}\right)=x_{j}$, with $i, j \in\{1,2\}$ and $i \neq j$. Therefore $\tau\left(y_{i}\right)= \pm y_{j}$. The possibilities are:

$$
\tau= \pm \tau_{1}=\left(\begin{array}{cc}
0 & \pm 1 \\
\pm 1 & 0
\end{array}\right) \quad \text { and } \quad \tau= \pm \tau_{2}=\left(\begin{array}{cc}
0 & \mp 1 \\
\pm 1 & 0
\end{array}\right)
$$

(of order 2 and 4 respectively). Note that $\tau_{2}^{2}=-\mathrm{Id}$ fixes both x_{1} and x_{2}, i.e., the generators of the field L of Lemma 2.3. Moreover, if $y_{2}= \pm y_{1}$, then we have

$$
\tau_{2}^{2}\left(P_{1}\right)=\tau_{2}\left(P_{2}\right)=\tau_{2}\left(x_{2}, \pm y_{1}\right)=\left(x_{1}, \pm y_{2}\right)=P_{1}
$$

a contradiction. The automorphisms τ_{1} and τ_{2} generate a non abelian group of order 8 with two elements of order 4, i.e., the dihedral group

$$
D_{4}=\left\langle\tau_{1}, \tau_{2}: \tau_{1}^{2}=\tau_{2}^{4}=\mathrm{Id} \text { and } \tau_{1} \tau_{2} \tau_{1}=\tau_{2}^{3}\right\rangle
$$

So G is a subgroup of D_{4}. Since G / H has order $2, H$ is isomorphic to either $1, \mathbb{Z} / 2 \mathbb{Z}$ or $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ (note that $\left.\tau_{2} \notin H\right)$ and its nontrivial elements can at most be the following

$$
\tau_{1} \tau_{2}=\tau_{2}^{3} \tau_{1}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \tau_{2} \tau_{1}=\tau_{1} \tau_{2}^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \text { and }-\mathrm{Id}
$$

We distinguish three cases according to the possible degrees $\left[K_{m}: K\left(x_{1}, x_{2}\right)\right]$ mentioned in Lemma 2.3.
The case $K_{m}=K\left(x_{1}, x_{2}\right)$. Since $|H|=1$ and $|G / H|=2$, then $|G|=2$. The nontrivial automorphism of G has to be $\pm \tau_{1}$. In both cases G does not fix ζ_{m} : so $\zeta_{m} \in K\left(x_{1}, x_{2}\right)$ $K\left(x_{1}+x_{2}, x_{1} x_{2}\right)$ and we deduce $K\left(x_{1}+x_{2}, x_{1} x_{2}, \zeta_{m}\right)=K\left(x_{1}, x_{2}\right)=K_{m}$.
The case $\left[K_{m}: K\left(x_{1}, x_{2}\right)\right]=4$. Since $|H|=4$ and $|G / H|=2$, we have $G \simeq D_{4}$. The subgroup $\left\langle\tau_{2}\right\rangle$ of D_{4} is normal of index 2 and it does not contain τ_{1}. Moreover, τ_{2} fixes ζ_{m} and τ_{1} does not. Then we have

$$
\operatorname{Gal}\left(K_{m} / K\left(x_{1}+x_{2}, x_{1} x_{2}, \zeta_{m}\right)\right)=\left\langle\tau_{2}\right\rangle
$$

and $\left[K\left(x_{1}+x_{2}, x_{1} x_{2}, \zeta_{m}\right): K\left(x_{1}+x_{2}, x_{1} x_{2}\right)\right]=2$. If $y_{1}^{2} \in K\left(x_{1}+x_{2}, x_{1} x_{2}, \zeta_{m}\right)$, then $y_{1}^{2}=\tau_{2}\left(y_{1}\right)^{2}=y_{2}^{2}$, giving $y_{1}= \pm y_{2}$ and we already ruled this out. Then the degree of the extensions

$$
K\left(x_{1}+x_{2}, x_{1} x_{2}\right) \subset K\left(x_{1}+x_{2}, x_{1} x_{2}, \zeta_{m}\right) \subset K\left(x_{1}+x_{2}, x_{1} x_{2}, \zeta_{m}, y_{1}\right)
$$

are, respectively, 2 and at least 4 . Since the extension $K_{m} / K\left(x_{1}+x_{2}, x_{1} x_{2}\right)$ has degree 8 the statement follows.
The case $\left[K_{m}: K\left(x_{1}, x_{2}\right)\right]=2$. Since $|H|=2$ and $|G / H|=2$, then $|G|=4$. We have to exclude $G=\left\langle\tau_{2} \tau_{1},-\mathrm{Id}\right\rangle$, because these automorphisms fix both x_{1} and x_{2}, so we would have $G=H$. We are left with $H=\langle-\mathrm{Id}\rangle$ and one the following two possibilities:

$$
G=\left\langle\tau_{2}\right\rangle \quad \text { or } \quad G=\left\langle\tau_{1},-\mathrm{Id}\right\rangle
$$

We now consider each of the two subcases separately. Assume $G=\left\langle\tau_{2}\right\rangle$ and recall that $y_{1} \neq \pm y_{2}$. Then y_{1} and y_{1}^{2} are not fixed by any element in G, i.e.,

$$
\left[K\left(x_{1}+x_{2}, x_{1} x_{2}, y_{1}\right): K\left(x_{1}+x_{2}, x_{1} x_{2}\right)\right]=4
$$

and $K\left(x_{1}+x_{2}, x_{1} x_{2}, y_{1}\right)=K_{m}$. Now assume $G=\left\langle\tau_{1},-\mathrm{Id}\right\rangle$: since τ_{1} does not fix ζ_{m} while - Id does, we have

$$
K\left(x_{1}, x_{2}\right)=K\left(x_{1}+x_{2}, x_{1} x_{2}, \zeta_{m}\right)
$$

Hence $K\left(x_{1}+x_{2}, x_{1} x_{2}, \zeta_{m}, y_{1}\right)=K\left(x_{1}, x_{2}, \zeta_{m}, y_{1}\right)=K_{m}$.
Remark 2.9. The equality $K_{2}=K\left(x_{1}+x_{2}, x_{1} x_{2}, \zeta_{2}, y_{1}\right)$ does not hold in general. Indeed it is equivalent to $K_{2}=K\left(x_{1}+x_{2}, x_{1} x_{2}\right)$ and one can take $\mathcal{E}: y^{2}=x^{3}-1$ (defined over \mathbb{Q}) and the points $\left\{P_{1}=\left(\zeta_{3}, 0\right), P_{2}=\left(\zeta_{3}^{2}, 0\right)\right\}$ (as a \mathbb{Z}-basis for $\mathcal{E}[2]$) to get $K_{2}=\mathbb{Q}\left(\boldsymbol{\mu}_{3}\right)$ and $\mathbb{Q}\left(x_{1}+x_{2}, x_{1} x_{2}\right)=\mathbb{Q}$. The equality would hold for any other basis, but the previous theorems allow total freedom in the choice of P_{1} and P_{2}.

$$
\text { 3. The equality } K_{m}=K\left(x_{1}, \zeta_{m}, y_{2}\right)
$$

We start by proving the equality $K_{m}=K\left(x_{1}, \zeta_{m}, y_{1}, y_{2}\right)$ for every odd $m \geqslant 5$. The cases $m=2,3$ and 4 are treated in Remark 3.3, Section 5 and Section 6 respectively.
Theorem 3.1. If $m \geqslant 5$ is an odd number, then $K_{m}=K\left(x_{1}, \zeta_{m}, y_{1}, y_{2}\right)$. If $m \geqslant 4$ is an even number, then K_{m} is larger than $K\left(x_{1}, \zeta_{m}, y_{1}, y_{2}\right)$ if and only if $\left[K_{m}: K\left(x_{1}, \zeta_{m}, y_{1}, y_{2}\right)\right]=$ 2 and its Galois group is generated by the element sending P_{2} to $\frac{m}{2} P_{1}+P_{2}$. In particular, if m is even then $K_{\frac{m}{2}} \subseteq K\left(x_{1}, \zeta_{m}, y_{1}, y_{2}\right)$.

Proof. Let $\sigma \in \operatorname{Gal}\left(K_{m} / K\left(x_{1}, \zeta_{m}, y_{1}, y_{2}\right)\right)$ and write $\sigma\left(P_{2}\right)=\alpha P_{1}+\beta P_{2}$ for some integers $0 \leqslant \alpha, \beta \leqslant m-1$. Since P_{1} and ζ_{m} are σ-invariant we get

$$
\zeta_{m}=\sigma\left(\zeta_{m}\right)=\sigma\left(e_{m}\left(P_{1}, P_{2}\right)\right)=\zeta_{m}^{\beta}
$$

yielding $\beta=1$ and $\sigma\left(P_{2}\right)=\alpha P_{1}+P_{2}$. Since $K_{m}=K\left(x_{1}, \zeta_{m}, y_{1}, y_{2}, x_{2}\right)$ and x_{2} is a root of $X^{3}+A X+B-y_{2}^{2}$, the order of σ is at most 3 . Assume now that $\sigma \neq \mathrm{Id}$.
If the order of σ is 3: we have

$$
P_{2}=\sigma^{3}\left(P_{2}\right)=3 \alpha P_{1}+P_{2}
$$

hence $3 \alpha \equiv 0(\bmod m)$. Moreover, the three distinct points $P_{2}, \sigma\left(P_{2}\right)$ and $\sigma^{2}\left(P_{2}\right)$ are on the line $y=y_{2}$. Thus their sum is zero, i.e.,

$$
O=P_{2}+\sigma\left(P_{2}\right)+\sigma^{2}\left(P_{2}\right)=3 \alpha P_{1}+3 P_{2}
$$

Since $3 \alpha \equiv 0(\bmod m)$, we deduce $3 P_{2}=O$, contradicting $m \geqslant 4$.
If the order of σ is 2 : as above $P_{2}=\sigma^{2}\left(P_{2}\right)$ yields $2 \alpha \equiv 0(\bmod m)$. If m is odd this
implies $\alpha \equiv 0(\bmod m)$, i.e., σ is the identity on $\mathcal{E}[m]$, a contradiction. If m is even the only possibility is $\alpha=\frac{m}{2}$.
The last statement for m even follows from the fact that σ acts trivially on $2 P_{1}$ and $2 P_{2}$.
Corollary 3.2. Let $p \geqslant 5$ be prime, then $\left[K_{p}: K\left(\zeta_{p}, y_{1}, y_{2}\right)\right]$ is odd.
Proof. Assume there is a $\sigma \in \operatorname{Gal}\left(K_{p} / K\left(\zeta_{p}, y_{1}, y_{2}\right)\right)$ of order 2. For $i \in\{1,2\}$, since $y_{i} \neq 0$ (because $p \neq 2$), one has $\sigma\left(P_{i}\right) \neq-P_{i}$ and $\sigma\left(P_{i}\right)+P_{i}$ is a nontrivial p-torsion point lying on the line $y=-y_{i}$. If $\sigma\left(P_{i}\right)+P_{i}$ is not a multiple of $P_{j}(i \neq j)$; then the set $\left\{P_{j}, \sigma\left(P_{i}\right)+P_{i}\right\}$ is a basis of $\mathcal{E}[p]$. Let $\sigma\left(P_{i}\right)+P_{i}=:\left(\tilde{x}_{i},-y_{i}\right)$; then by Theorem 3.1, we have $K\left(\zeta_{p}, \tilde{x}_{i}, y_{1}, y_{2}\right)=K_{p}$. But σ acts trivially on ζ_{p}, y_{1} and y_{2} by definition and on \tilde{x}_{i} as well (because $\sigma\left(\sigma\left(P_{i}\right)+P_{i}\right)=P_{i}+\sigma\left(P_{i}\right)$). Hence σ fixes K_{p} which contradicts $\sigma \neq \mathrm{Id}$.
Therefore $\sigma\left(P_{1}\right)=-P_{1}+\beta_{1} P_{2}$ and $\sigma\left(P_{2}\right)=\beta_{2} P_{1}-P_{2}$ which, together with $\sigma^{2}=$ Id, yield $\beta_{1}=\beta_{2}=0$. Hence both P_{1} and P_{2} are mapped to their opposite: a contradiction to $\sigma\left(y_{i}\right)=y_{i}$.

Remark 3.3. The equality $K_{2}=K\left(x_{1}, \zeta_{2}, y_{1}, y_{2}\right)$ does not hold in general. A counterexample is again provided by the curve $\mathcal{E}: y^{2}=x^{3}-1$ with $P_{1}=(1,0)$ (as in Remark 2.9 any other choice would yield the equality $K_{2}=K\left(x_{1}\right)$).

Before going to the main theorem we show a little application for primes $p \equiv 2(\bmod 3)$.
Theorem 3.4. Let $p \equiv 2(\bmod 3)$ be an odd prime, then $K_{p}=K\left(x_{1}, y_{1}, y_{2}\right)$ or $K_{p}=$ $K\left(x_{1}, y_{1}, \zeta_{p}\right)$.

Proof. The degree of x_{2} over $K\left(y_{2}\right)$ is at most 3 , hence $\left[K_{p}: K\left(x_{1}, y_{1}, y_{2}\right)\right] \leqslant 3$. By Theorem 3.1 we have the equality $K_{p}=K\left(x_{1}, \zeta_{p}, y_{1}, y_{2}\right)$ and the hypothesis ensures that $\left[\mathbb{Q}\left(\zeta_{p}\right): \mathbb{Q}\right]$ is not divisible by 3 , so the same holds for $\left[K_{p}: K\left(x_{1}, y_{1}, y_{2}\right)\right]$. Thus either $K_{p}=K\left(x_{1}, y_{1}, y_{2}\right)$ or $\left[K_{p}: K\left(x_{1}, y_{1}, y_{2}\right)\right]=2$. If the second case occurs, then let $\sigma \in \operatorname{Gal}\left(K_{p} / K\left(x_{1}, y_{1}, y_{2}\right)\right)$ be nontrivial. Since σ fixes x_{1}, y_{1} and y_{2}, it can be written as

$$
\sigma=\left(\begin{array}{ll}
1 & b \\
0 & d
\end{array}\right) \quad \text { with } \quad \sigma^{2}=\left(\begin{array}{cc}
1 & b(1+d) \\
0 & d^{2}
\end{array}\right)
$$

Since p is an odd prime, then $\sigma^{2}=$ Id leads either to $d=1$ (hence $b=0$ and $\sigma=\operatorname{Id}$, a contradiction) or to $d=-1$. Hence $\sigma\left(P_{2}\right)=b P_{1}-P_{2}$ (with $b \neq 0$ otherwise σ would fix x_{2} as well), i.e., $b P_{1}$ lies on the line $y=-y_{2}$. Thus $K\left(y_{2}\right) \subseteq K\left(x_{1}, y_{1}\right)$ and so $K_{p}=$ $K\left(x_{1}, y_{1}, \zeta_{p}\right)$.

Corollary 3.5. Let $p \equiv 2(\bmod 3)$ be an odd prime. Assume that \mathcal{E} has a K-rational torsion point P_{1} of order p. Then either $K_{p}=K\left(\zeta_{p}\right)$ or $K_{p}=K\left(y_{2}\right)$.

We are now ready to prove the equality appearing in the title of this section.
Theorem 3.6. If $m \geqslant 4$ and $K_{m}=K\left(x_{1}, \zeta_{m}, y_{1}, y_{2}\right)$, then we have $K_{m}=K\left(x_{1}, \zeta_{m}, y_{2}\right)$ (in particular this holds for any odd $m \geqslant 5$, by Theorem 3.1).
Proof. By hypotheses $K_{m}=K\left(x_{1}, \zeta_{m}, y_{2}\right)\left(y_{1}\right)$, so $\left[K_{m}: K\left(x_{1}, \zeta_{m}, y_{2}\right)\right] \leqslant 2$. Take $\sigma \in$ $\operatorname{Gal}\left(K_{m} / K\left(x_{1}, \zeta_{m}, y_{2}\right)\right)$, then $\sigma\left(x_{1}\right)=x_{1}$ yields $\sigma\left(P_{1}\right)= \pm P_{1}$. If $\sigma\left(P_{1}\right)=P_{1}$, then $y_{1} \in$
$K\left(x_{1}, \zeta_{m}, y_{2}\right)$ and $K_{m}=K\left(x_{1}, \zeta_{m}, y_{2}\right)$. Assume that $\sigma\left(P_{1}\right)=-P_{1}$ and let $\sigma=\left(\begin{array}{cc}-1 & a \\ 0 & b\end{array}\right)$. Using the Weil pairing (recall $\zeta_{m}:=e_{m}\left(P_{1}, P_{2}\right)$), we have $\zeta_{m}=\sigma\left(\zeta_{m}\right)=\zeta_{m}^{-b}$, which yields $b \equiv-1(\bmod m)$, while

$$
\sigma^{2}=\left(\begin{array}{cc}
1 & -2 a \\
0 & 1
\end{array}\right)=\mathrm{Id}
$$

leads to $2 a \equiv 0(\bmod m)$.
Case $a \equiv 0(\bmod m)$: we have $\sigma=-\mathrm{Id}$. Then $\sigma\left(P_{2}\right)=-P_{2}$, i.e., $\sigma\left(x_{2}\right)=x_{2} \in$ $K\left(x_{1}, \zeta_{m}, y_{2}\right)$. By Theorem 2.5, this yields $K_{m}=K\left(x_{1}, \zeta_{m}, y_{2}\right)$ and contradicts $\sigma \neq$ Id.
Case $a \equiv \frac{m}{2}(\bmod m)$: we have $\sigma\left(P_{2}\right)=\frac{m}{2} P_{1}-P_{2}$, i.e., $\sigma\left(P_{2}\right)+P_{2}-\frac{m}{2} P_{1}=O$. Since P_{2} and $\sigma\left(P_{2}\right)$ lie on the line $y=y_{2}$ and are distinct, then $-\frac{m}{2} P_{1}$ must be the third point of \mathcal{E} on that line. Since $-\frac{m}{2} P_{1}$ has order 2 this yields $y_{2}=0$, contradicting $m \geqslant 4$.

To provide generators for a more general m one can also use the following lemma.

Lemma 3.7.

1. Assume that $P \in E(K)$ is not a 2-torsion point and that $\phi: E \rightarrow E$ is a K-rational isogeny with $\phi(R)=P$. Then $K(x(R), y(R))=K(x(R))$.
2. If R is a point in $\mathcal{E}(\bar{K})$ and $n \geqslant 1$, then we have $x(n R) \in K(x(R))$.

Proof. Part 1 is [13, Lemma 2.2] and part 2 is well known.
Proposition 3.8. Let m be divisible by $d \geqslant 3$ and let R be a point of order m. Then

$$
K(x(R), y(R))=K\left(x(R), y\left(\frac{m}{d} R\right)\right)
$$

In particular, if $K=K(\mathcal{E}[d])$ and R has order m, then $K(x(R), y(R))=K(x(R))$.
Proof. We apply the previous lemma to the field $K(P)$, with $P=\frac{m}{d} R$ and $\phi=\left[\frac{m}{d}\right]$. Then $K\left(x(R), y\left(\frac{m}{d} R\right), y(R)\right)=K\left(x(R), y\left(\frac{m}{d} R\right)\right)$. The conclusion follows from the fact that $y\left(\frac{m}{d} R\right) \in K(x(R), y(R))$ (because of the explicit expressions of the group-law of \mathcal{E}).

Corollary 3.9. Let m be divisible by an odd number $d \geqslant 5$. Then

$$
K_{m}=K\left(x\left(P_{1}\right), x\left(P_{2}\right), \zeta_{d}, y\left(\frac{m}{d} P_{2}\right)\right)
$$

Proof. By Proposition 3.8, $K_{m}=K_{d}\left(x\left(P_{1}\right), x\left(P_{2}\right)\right)$. Obviously $\left\{\frac{m}{d} P_{1}, \frac{m}{d} P_{2}\right\}$ is a \mathbb{Z}-basis for $\mathcal{E}[d]$, hence Theorem 3.1 and Theorem 3.6 (applied with $m=d$) yield

$$
K_{d}=K\left(x\left(\frac{m}{d} P_{1}\right), \zeta_{d}, y\left(\frac{m}{d} P_{2}\right)\right) .
$$

By Lemma 3.7, we have $x\left(\frac{m}{d} P_{1}\right) \in K\left(x\left(P_{1}\right)\right)$ and the corollary follows.
The previous result leaves out only integers m of the type $2^{s} 3^{t}$. For the case $t=1$ we mention the following

Proposition 3.10. The coordinates of the points of order dividing $3 \cdot 2^{n}$ can be explicitly computed by radicals out of the coefficients of the Weierstrass equation.

Proof. By the Weierstrass equation (recall we are assuming char $(K) \neq 2,3$), we can compute the y-coordinates out of the x-coordinate. Then by the addition formula, it suffices to compute the x-coordinate of two \mathbb{Z}-independent points of order 3 (done in Section 5), and the x-coordinate of two \mathbb{Z}-independent points of order 2^{n} (done in Section 6 for $n=1,2$). The coordinate $x(P)$ of a point P of order 2^{n} (with $n \geqslant 3$) can be computed from $x(2 P)$. Indeed, we have $y(P) \neq 0$ (because the order of P is not 2) and so, by the duplication formula,

$$
x(2 P)=\frac{x(P)^{4}-2 A x(P)^{2}-8 B x(P)+A^{2}}{4 x(P)^{3}+4 A x(P)+4 B}
$$

(a polynomial equation of degree 4 with coefficients coming from the Weierstrass equation).

Proposition 3.11. If m is divisible by 3 (resp. 4), then

$$
K_{m}=K_{m, x} \cdot K\left(y\left(Q_{1}\right), y\left(Q_{2}\right)\right)
$$

where $\left\{Q_{1}, Q_{2}\right\}$ is a \mathbb{Z}-basis for $\mathcal{E}[3]$ (resp. $\mathcal{E}[4]$).
Proof. Just apply Proposition 3.8 with $d=3$ (resp. $d=4$).

4. Galois representations and exceptional primes

We begin with some remarks on the Galois group $\operatorname{Gal}\left(K_{p} / K\right)$ for a prime $p \geqslant 5$, which led us to believe that the generating set $\left\{x_{1}, \zeta_{p}, y_{2}\right\}$ is often minimal.
Lemma 4.1. For any prime $p \geqslant 5$ one has $\left[K_{p}: K\left(x_{1}, \zeta_{p}\right)\right] \leqslant 2 p$. Moreover the Galois group $\operatorname{Gal}\left(K_{p} / K\left(x_{1}, \zeta_{p}\right)\right)$ is cyclic, generated by $\eta=\left(\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right)$.

Proof. By Theorem 3.6, we have $K_{p}=K\left(x_{1}, \zeta_{p}, y_{2}\right)$. Let σ be an element of $\operatorname{Gal}\left(K_{p} / K\left(x_{1}, \zeta_{p}\right)\right)$, then $\sigma\left(P_{1}\right)= \pm P_{1}$ and $\operatorname{det}(\sigma)=1$ yield $\sigma=\left(\begin{array}{cc} \pm 1 & \alpha \\ 0 & \pm 1\end{array}\right)$ (for some $0 \leqslant \alpha \leqslant p-1$). The powers of η are

$$
\eta^{n}= \begin{cases}\left(\begin{array}{cc}
1 & -n \\
0 & 1
\end{array}\right) & \text { if } n \text { is even } \\
\left(\begin{array}{cc}
-1 & n \\
0 & -1
\end{array}\right) & \text { if } n \text { is odd }\end{cases}
$$

and its order is obviously $2 p$; clearly any such σ is a power of η.
Remark 4.2. The group generated by η in $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ is not normal; hence, in general, the extension $K\left(x_{1}, \zeta_{p}\right) / K$ is not Galois.
Since the p-th division polynomial has degree $\frac{p^{2}-1}{2}$ and, obviously, $\left[K\left(x_{1}, \zeta_{p}\right): K\left(x_{1}\right)\right] \leqslant$ $p-1$ one immediately finds

$$
\left[K\left(x_{1}, \zeta_{p}, y_{2}\right): K\right] \leqslant \frac{p^{2}-1}{2} \cdot(p-1) \cdot 2 p=\left|\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})\right|
$$

and can provide conditions for the equality to hold.

Theorem 4.3. Let $p \geqslant 5$ be a prime, then $\operatorname{Gal}\left(K_{p} / K\right) \simeq \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ if and only if the following hold:

1. $\zeta_{p} \notin K$;
2. the p-th division polynomial φ_{p} is irreducible in $K\left(\zeta_{p}\right)[X]$;
3. $y_{1} \notin K\left(\zeta_{p}, x_{1}\right)$ and the generator of $\operatorname{Gal}\left(K\left(\zeta_{p}, x_{1}, y_{1}\right) / K\left(\zeta_{p}, x_{1}\right)\right)$ does not send P_{2} to $-P_{2}$ (i.e., it is not represented by -Id).

Proof. Let σ be a generator of $\operatorname{Gal}\left(K\left(\zeta_{p}, x_{1}, y_{1}\right) / K\left(\zeta_{p}, x_{1}\right)\right.$). Then $\sigma\left(P_{1}\right)=-P_{1}$ (because of hypothesis $\mathbf{3}$) and $\operatorname{det}(\sigma)=1$. Hence it is of type $\sigma=\left(\begin{array}{cc}-1 & \alpha \\ 0 & -1\end{array}\right)$ with $\alpha \neq 0$ (again by hypothesis 3). Therefore σ has order $2 p$ in $\operatorname{Gal}\left(K_{p} / K\left(\zeta_{p}, x_{1}\right)\right)$ and the hypotheses lead to the equality $\left[K_{p}: K\right]=\left|\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})\right|$. Vice versa it is obvious that if any of the conditions does not hold we get $\left[K_{p}: K\right]<\left|\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})\right|$.

Remark 4.4. As mentioned in the Introduction, if K is a number field and \mathcal{E} has no complex multiplication, then one expects the equality to hold for almost all primes p (for a recent bound on exceptional primes for which $\rho_{\mathcal{E}, p}$ is not surjective see [9]). Hence for a general number field K (which, of course, can contain ζ_{p} or some coordinates of generators of $\mathcal{E}[p]$ only for finitely many p) one expects $\left\{x_{1}, \zeta_{p}, y_{2}\right\}$ to be a minimal set of generators for K_{p} over K (among those contained in $\left\{x_{1}, x_{2}, y_{1}, y_{2}, \zeta_{p}\right\}$). We have encountered an exceptional case in Theorem 3.4, where for $p \equiv 2(\bmod 3)(p \neq 2)$ one could have $K_{p}=K\left(x_{1}, y_{1}, \zeta_{p}\right)$. If this is the case, the maximum degree for $\left[K_{p}: K\right]$ is $\frac{p^{2}-1}{2} \cdot 2 \cdot(p-1)$. Therefore for infinitely many primes $p \equiv 2(\bmod 3)$ we have $K_{p}=K\left(x_{1}, y_{1}, y_{2}\right)=K\left(x_{1}, \zeta_{p}, y_{2}\right) \neq K\left(x_{1}, y_{1}, \zeta_{p}\right)$ (which emphasizes the need for coordinates of P_{2} in our generating set).

Definition 4.5. For an elliptic curve \mathcal{E} defined over a number field K and a prime p we say that p is exceptional for \mathcal{E} if $\rho_{\mathcal{E}, p}$ is not surjective, i.e., if $\left[K_{p}: K\right]<\left|\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})\right|$. In particular, if \mathcal{E} has complex multiplication, then all primes are exceptional for \mathcal{E}, because K_{p} / K is an abelian extension (see, e.g., [18, Chapter II, §5]).

In the rest of this Section 4 we will investigate the case of exceptional primes, assuming that K is a number field. For exceptional primes the Galois group $\operatorname{Gal}\left(K_{p} / K\right)$ is a proper subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$. Hence it falls in one of the following cases (see [15, Section 2] for a complete proof or [9, Lemma 4] for a similar statement).

Lemma 4.6. Let G be a proper subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$, then one of the following holds:

1. G is contained in a Borel subgroup;
2. G is contained in the normalizer of a Cartan subgroup;
3. G contains the special linear group $\mathrm{SL}_{2}(\mathbb{Z} / p \mathbb{Z})$;
4. the image of G under the projection $\pi: \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z}) \rightarrow \mathrm{PGL}_{2}(\mathbb{Z} / p \mathbb{Z})$ is contained in a subgroup which is isomorphic to one of the alternating groups A_{4} and A_{5} or to the symmetric group S_{4}.

Regarding cases $\mathbf{3}$ and $\mathbf{4}$ we have the following statements.
Lemma 4.7. If K is linearly disjoint from $\mathbb{Q}\left(\zeta_{p}\right)$, then $\operatorname{Gal}\left(K_{p} / K\right)$ does not satisfy $\mathbf{3}$ of Lemma 4.6.

Proof. This readily follows from the fact that $K\left(\zeta_{p}\right)$ is the fixed field of $\mathrm{SL}_{2}(\mathbb{Z} / p \mathbb{Z})$.
Remark 4.8. Obviously $\operatorname{Gal}\left(K_{p} / K\right) \simeq \mathrm{SL}_{2}(\mathbb{Z} / p \mathbb{Z})$ immediately yields $K_{p}=K\left(x_{1}, y_{2}\right)$. If $\operatorname{Gal}\left(K_{p} / K\right)$ is larger than $\mathrm{SL}_{2}(\mathbb{Z} / p \mathbb{Z})$ we have $\left[K\left(\zeta_{p}\right): K\right]<p-1$ (i.e., $K \cap \mathbb{Q}\left(\zeta_{p}\right) \neq \mathbb{Q}$) but this does not alter our set of generators.

Lemma 4.9. If $p \geqslant 53$ is unramified in K / \mathbb{Q} and exceptional for \mathcal{E}, then $\operatorname{Gal}\left(K_{p} / K\right)$ does not satisfy 4 of Lemma 4.6.

Proof. See [9, Lemma 8], depending on [16, Lemma 18].
We shall provide some information on the generating sets for K_{p} when p is exceptional for \mathcal{E} and $\operatorname{Gal}\left(K_{p} / K\right)$ falls in cases $\mathbf{1}$ or $\mathbf{2}$ of Lemma 4.6. We start with the already mentioned exceptional case appearing in Theorem 3.4 and recall that we are always assuming $p \geqslant 5$.

Proposition 4.10. If $K_{p}=K\left(x_{1}, y_{1}, \zeta_{p}\right)$, then $\left[K_{p}: K\right]<\left(p^{2}-1\right)(p-1)$ unless $p=5$ and $\pi\left(\operatorname{Gal}\left(K_{p} / K\right)\right) \simeq S_{4}$.

Proof. We already noticed that $\left[K_{p}: K\right] \leqslant\left(p^{2}-1\right)(p-1)<p\left(p^{2}-1\right)=\left|\mathrm{SL}_{2}(\mathbb{Z} / p \mathbb{Z})\right|$, so the prime p is exceptional and case $\mathbf{3}$ is not possible. The order of a Borel subgroup is $p(p-1)^{2}$, the order of a split Cartan subgroup is at most $(p-1)^{2}$ and the order of a non-split Cartan subgroup is at most $p^{2}-1$ (both have index 2 in their normalizer). So the statement holds when $\operatorname{Gal}\left(K_{p} / K\right)$ falls in cases 1 or 2 of Lemma 4.6. Assume we are in case 4 and note that if $\left|\operatorname{Gal}\left(K_{p} / K\right)\right|=\left(p^{2}-1\right)(p-1)$, then $\left|\pi\left(\operatorname{Gal}\left(K_{p} / K\right)\right)\right| \geqslant p^{2}-1$. Thus case 4 cannot happen for $p \geqslant 11$. Moreover, if $p=7$, then $p^{2}-1>\left|S_{4}\right|$ and $\mathrm{PGL}_{2}(\mathbb{Z} / p \mathbb{Z})$ does not contain $\left|A_{5}\right|$ (see [15, Section 2.5]). We are left with $p=5,\left[K_{5}: K\right]=96$ and $\left|\pi\left(\operatorname{Gal}\left(K_{p} / K\right)\right)\right| \geqslant 24=\left|S_{4}\right|$, which completes the proof.
4.1. Exceptional primes I: Borel subgroup. Assume that $p \geqslant 5$ is exceptional for \mathcal{E} and $\operatorname{Gal}\left(K_{p} / K\right)$ is contained in a Borel subgroup. We can write elements of $\operatorname{Gal}\left(K_{p} / K\right)$ as upper triangular matrices $\sigma=\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right)$ with $a c \neq 0$ (this is not restrictive, since the results of the previous sections were completely independent of the chosen basis $\left\{P_{1}, P_{2}\right\}$).
Theorem 4.11. Let $p \geqslant 5$ and assume that $\operatorname{Gal}\left(K_{p} / K\right)$ is contained in a Borel subgroup.

1. If $p \not \equiv 1(\bmod 3)$, then $K_{p}=K\left(\zeta_{p}, y_{2}\right)$;
2. if $p \equiv 1(\bmod 3)$, then $\left[K_{p}: K\left(\zeta_{p}, y_{2}\right)\right]$ is 1 or 3 .

Proof. We know $K_{p}=K\left(x_{1}, \zeta_{p}, y_{2}\right)$. Take an element $\sigma \in \operatorname{Gal}\left(K_{p} / K\left(\zeta_{p}, y_{2}\right)\right)$ so that $\sigma=\left(\begin{array}{cc}a^{-1} & b \\ 0 & a\end{array}\right)$. Let P_{2}, R_{2} and S_{2} be the three points of the curve \mathcal{E} on the line $y=y_{2}$, so that $P_{2}+R_{2}+S_{2}=O$. We have that $\sigma\left(P_{2}\right)=b P_{1}+a P_{2}$ must be P_{2} or R_{2} or S_{2} (the cases R_{2} and S_{2} are obviously symmetric).
Case 1: $\sigma\left(P_{2}\right)=P_{2}$. Then $b=0, a=1$ and $\sigma=\mathrm{Id}$.
Case 2: $\sigma\left(P_{2}\right)=R_{2}$. Then $\sigma^{2}\left(P_{2}\right)=a^{-1} b P_{1}+a b P_{1}+a^{2} P_{2}$.

- If $\sigma^{2}\left(P_{2}\right)=P_{2}$, then $a^{2}=1$ and $a+a^{-1} \neq 0$ yields $b=0$. Hence $\sigma\left(P_{1}\right)= \pm P_{1}$ and σ fixes x_{1}. Since $K_{p}=K\left(x_{1}, \zeta_{p}, y_{2}\right)$, this implies $\sigma=\mathrm{Id}$.
- If $\sigma^{2}\left(P_{2}\right)=R_{2}$, then one gets $a^{2}=a$ (i.e., $a=1$) and $2 b=b$ (i.e., $b=0$), leading to $\sigma=\mathrm{Id}$.
- If $\sigma^{2}\left(P_{2}\right)=S_{2}$, then $P_{2}+R_{2}+S_{2}=O$ yields

$$
P_{2}+b P_{1}+a P_{2}+a^{-1} b P_{1}+a b P_{1}+a^{2} P_{2}=\left(1+a+a^{2}\right)\left(b a^{-1} P_{1}+P_{2}\right)=O
$$

Thus $1+a+a^{2}=0$ and this is possible if and only if $p \equiv 1(\bmod 3)$.
Therefore, if $p \not \equiv 1(\bmod 3)$, we have $\sigma=\mathrm{Id}$ and $K_{p}=K\left(\zeta_{p}, y_{2}\right)$. If $p \equiv 1(\bmod 3)$ and $1+a+a^{2}=0$, then the above σ has order 3 and the proof is complete.
4.2. Exceptional primes II: split Cartan subgroup. Assume that $p \geqslant 5$ is exceptional for \mathcal{E} and $\operatorname{Gal}\left(K_{p} / K\right)$ is contained in a split Cartan subgroup (resp. in the normalizer of a split Cartan subgroup). Then we can write elements of $\operatorname{Gal}\left(K_{p} / K\right)$ as matrices $\sigma=$ $\left(\begin{array}{ll}a & 0 \\ 0 & c\end{array}\right)\left(\right.$ resp. $\sigma=\left(\begin{array}{ll}a & 0 \\ 0 & c\end{array}\right)$ or $\left.\sigma=\left(\begin{array}{ll}0 & a \\ c & 0\end{array}\right)\right)$ with $a, c \in \mathbb{Z} / p \mathbb{Z}$ and $a c \neq 0$.

Theorem 4.12. Let $p \geqslant 5$ and assume that $\operatorname{Gal}\left(K_{p} / K\right)$ is contained in the normalizer of a split Cartan subgroup. We have $K_{p}=K\left(x_{1}, \zeta_{p}\right)$ or $K\left(x_{1}, y_{1}, \zeta_{p}\right)$. Moreover

1. if $p \not \equiv 1(\bmod 3)$, then $K_{p}=K\left(\zeta_{p}, y_{2}\right)$;
2. if $p \equiv 1(\bmod 3)$, then $\left[K_{p}: K\left(\zeta_{p}, y_{2}\right)\right]$ is 1 or 3 .

Proof. Note that the only elements of the normalizer of a split Cartan subgroup which fix x_{1} and ζ_{p} are $\pm \mathrm{Id}$. In particular, this holds for the elements of a Cartan subgroup itself. Then the first statement follows immediately. Now consider $\sigma \in \operatorname{Gal}\left(K_{p} / K\left(\zeta_{p}, y_{2}\right)\right)$ and let R_{2} and S_{2} be the points defined in Theorem 4.11. If $\sigma=\left(\begin{array}{cc}0 & a \\ -a^{-1} & 0\end{array}\right)$, then $\sigma^{2}\left(P_{2}\right)=\sigma\left(a P_{1}\right)=-P_{2}$. Since σ fixes y_{2}, this implies $y_{2}=0$ which contradicts $p \neq 2$. Therefore we can restrict to Cartan subgroups and consider only $\sigma=\left(\begin{array}{cc}a^{-1} & 0 \\ 0 & a\end{array}\right)$. Case 1: $\sigma\left(P_{2}\right)=P_{2}$. Then $a=1$ and $\sigma=$ Id.
Case 2: $\sigma\left(P_{2}\right)=R_{2}$. Then $\sigma^{2}\left(P_{2}\right)=a^{2} P_{2}$.

- If $\sigma^{2}\left(P_{2}\right)=P_{2}$, then $a^{2}=1$ and $\sigma\left(P_{1}\right)= \pm P_{1}$. As in Theorem 4.11, this implies $\sigma=\mathrm{Id}$.
- If $\sigma^{2}\left(P_{2}\right)=R_{2}$, then $a^{2}=a$ yields $a=1$ and $\sigma=\mathrm{Id}$.
- If $\sigma^{2}\left(P_{2}\right)=S_{2}$, then $P_{2}+R_{2}+S_{2}=O$ yields

$$
P_{2}+a P_{2}+a^{2} P_{2}=\left(1+a+a^{2}\right) P_{2}=O .
$$

Thus $1+a+a^{2}=0$ and this is possible if and only if $p \equiv 1(\bmod 3)$.
Therefore, if $p \not \equiv 1(\bmod 3)$, we have $\sigma=\mathrm{Id}$ and $K_{p}=K\left(\zeta_{p}, y_{2}\right)$. If $p \equiv 1(\bmod 3)$ and $1+a+a^{2}=0$, then σ has order 3 .
4.3. Exceptional primes III: non-split Cartan subgroup. Assume now that $p \geqslant 5$ is exceptional for \mathcal{E} and $\operatorname{Gal}\left(K_{p} / K\right)$ is contained in a non-split Cartan subgroup (resp. in the normalizer of a non-split Cartan subgroup), then we can write elements of $\operatorname{Gal}\left(K_{p} / K\right)$ as
matrices $\sigma=\left(\begin{array}{cc}a & \varepsilon b \\ b & a\end{array}\right)$ (resp. $\sigma=\left(\begin{array}{cc}a & \varepsilon b \\ b & a\end{array}\right)$ or $\sigma=\left(\begin{array}{cc}a & \varepsilon b \\ -b & -a\end{array}\right)$) where $a, b \in \mathbb{Z} / p \mathbb{Z}$, $(a, b) \neq(0,0)$ and ε is fixed and not a square modulo p (see for instance [10]).
Theorem 4.13. Let $p \geqslant 5$ and assume that $\operatorname{Gal}\left(K_{p} / K\right)$ is contained in the normalizer of a non-split Cartan subgroup. We have $K_{p}=K\left(x_{1}, y_{1}\right)$ or $K\left(x_{1}, \zeta_{p}\right)$ or $K\left(x_{1}, y_{1}, \zeta_{p}\right)$. Moreover

1. if $p \equiv 1(\bmod 3)$, then $K_{p}=K\left(\zeta_{p}, y_{2}\right)$;
2. if $p \not \equiv 1(\bmod 3)$, then $\left[K_{p}: K\left(\zeta_{p}, y_{2}\right)\right]$ is 1 or 3 .

Proof. The argument of the proof is very similar to the one used in the split Cartan case. Observe that the only elements of the normalizer of a non-split Cartan subgroup which fix x_{1} are $\pm \mathrm{Id}$ and $\pm\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Hence, if $\operatorname{Gal}\left(K_{p} / K\right)$ is contained in a non-split Cartan subgroup, then $K_{p}=K\left(x_{1}, y_{1}\right)$ and, if $\operatorname{Gal}\left(K_{p} / K\right)$ is larger, then $K_{p}=K\left(x_{1}, \zeta_{p}\right)$ or $K_{p}=K\left(x_{1}, y_{1}, \zeta_{p}\right)$.
Let $\sigma \in \operatorname{Gal}\left(K_{p} / K\left(\zeta_{p}, y_{2}\right)\right)$ and let R_{2} and S_{2} be the points defined in Theorem 4.11. We get rid of the normalizer first: assume that $\sigma=\left(\begin{array}{cc}a & \varepsilon b \\ -b & -a\end{array}\right)$ (recall $\sigma\left(\zeta_{p}\right)=\zeta_{p}$ yields $\left.\operatorname{det}(\sigma)=-a^{2}+\varepsilon b^{2}=1\right)$. Note that $\sigma^{2}\left(P_{2}\right)=\left(a^{2}-\varepsilon b^{2}\right) P_{2}=-\operatorname{det}(\sigma) P_{2}=-P_{2}$. Since σ fixes y_{2}, this yields $y_{2}=0$ which contradicts $p \neq 2$. Therefore we only consider elements in the non-split Cartan subgroup: $\sigma=\left(\begin{array}{cc}a & \varepsilon b \\ b & a\end{array}\right)$ (with $\operatorname{det}(\sigma)=a^{2}-\varepsilon b^{2}=1$).
Case 1: $\sigma\left(P_{2}\right)=P_{2}$. Then $a=1, b=0$ and $\sigma=\mathrm{Id}$.
Case 2: $\sigma\left(P_{2}\right)=R_{2}$. Then $\sigma^{2}\left(P_{2}\right)=2 \varepsilon a b P_{1}+\left(a^{2}+\varepsilon b^{2}\right) P_{2}$.

- If $\sigma^{2}\left(P_{2}\right)=P_{2}$, then

$$
\left\{\begin{array}{l}
2 \varepsilon a b=0 \\
a^{2}+\varepsilon b^{2}=1
\end{array}\right.
$$

Since ε is not a square modulo p, then $a \neq 0$. We have $b=0$ and $a^{2}=1$, hence $\sigma\left(P_{1}\right)= \pm P_{1}$. As in Theorem 4.11, this implies $\sigma=\mathrm{Id}$.

- If $\sigma^{2}\left(P_{2}\right)=R_{2}$, then

$$
\left\{\begin{array}{l}
(2 a-1) \varepsilon b=0 \\
a=a^{2}+\varepsilon b^{2}
\end{array} .\right.
$$

If $b \neq 0$, then $2 a=1$ and $4 \varepsilon b^{2}=1$. Since ε is not a square modulo p, this is not possible and it has to be $b=0$ and $a=a^{2}$, yielding $\sigma=\mathrm{Id}$.

- If $\sigma^{2}\left(P_{2}\right)=S_{2}$, then $P_{2}+R_{2}+S_{2}=O$ implies

$$
(1+2 a) \varepsilon b P_{1}+\left(1+a+a^{2}+\varepsilon b^{2}\right) P_{2}=O .
$$

If $b=0$, then $1+a+a^{2}=0$. But $\operatorname{det}(\sigma)=1$ yields $a^{2}=1$ so $a=-2$ a contradiction (since $p \neq 3$). If $b \neq 0$, then $2 a=-1$ implies $4 \varepsilon b^{2}=-3$. Since ε is not a square modulo p and $p \geqslant 5$, this could hold if and only if -3 is not a square modulo p, i.e., $p \equiv 2(\bmod 3)$. It is easy to check that in this case σ has order 3 .

Therefore, if $p \equiv 1(\bmod 3)$, we have $\sigma=\mathrm{Id}$ and $K_{p}=K\left(\zeta_{p}, y_{2}\right)$. If $p \equiv 2(\bmod 3)$, $2 a=-1$ and $4 \varepsilon b^{2}=-3$, then σ has order 3 .

Remark 4.14. In the (Borel or Cartan) exceptional case, the information carried by ζ_{p} seems more relevant than that by the coordinate x_{1}. Indeed if one considers a $\sigma \in$ $\operatorname{Gal}\left(K_{p} / K\left(x_{1}, y_{2}\right)\right)$, there is always room for elements like $\sigma=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ of order 2. A proof similar to the previous ones leads to

1. $p \not \equiv 1(\bmod 3) \Longrightarrow\left[K_{p}: K\left(x_{1}, y_{2}\right)\right]$ divides 4 (in the Borel or split Cartan case) or divides 12 (in the non-split Cartan case);
2. $p \equiv 1(\bmod 3) \Longrightarrow\left[K_{p}: K\left(x_{1}, y_{2}\right)\right]$ divides 12 (in the Borel or split Cartan case) or divides 4 (in the non-split Cartan case).
4.4. Remarks on modular curves. We give just an application of the results of the previous sections to the classical modular curves $X(p)$ and $X_{1}(p)$, associated to the action of the congruence subgroups

$$
\Gamma(p)=\left\{A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): A \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad(\bmod p)\right\}
$$

and

$$
\Gamma_{1}(p)=\left\{A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): A \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \quad(\bmod p)\right\}
$$

on the complex upper half plane $\mathcal{H}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$ via Möbius trasformations (for detailed definitions and properties see, e.g., [8] or [17]). We recall that $X(p)$ and $X_{1}(p)$ parametrize families of elliptic curves with some extra level p structure via their moduli interpretation. Namely

- non cuspidal points in $X(p)$ correspond to triples $\left(\mathcal{E}, P_{1}, P_{2}\right)$ where \mathcal{E} is an elliptic curve (defined over \mathbb{C}) and P_{1}, P_{2} are points of order p generating the whole group $\mathcal{E}[p]$;
- non cuspidal points in $X_{1}(p)$ correspond to couples (\mathcal{E}, Q) where \mathcal{E} is an elliptic curve (defined over \mathbb{C}) and Q is a point of order p
(all these correspondences have to be considered modulo the natural isomorphisms).
Let K be a number field. The points of $X(p)$ or $X_{1}(p)$ which are rational over K will be denoted by $X(p)(K)$ or $X_{1}(p)(K)$. Obviously a point is K-rational if and only if it is $\operatorname{Gal}(\overline{\mathbb{Q}} / K)$-invariant (in particular, with the representation provided above one needs an elliptic curve \mathcal{E} defined over K).

Definition 4.15. A point $\left(\mathcal{E}, P_{1}, P_{2}\right) \in X(p)\left(r e s p .\left(\mathcal{E}, P_{1}\right) \in X_{1}(p)\right)$ is said to be exceptional if p is exceptional for \mathcal{E}. In particular, if \mathcal{E} is defined over K, we call such a point Borel exceptional (resp. Cartan exceptional) if $\operatorname{Gal}(K(\mathcal{E}[p]) / K)$ is contained in a Borel subgroup (resp. in the normalizer of a split or non-split Cartan subgroup).

The following is an easy consequence of Theorem 3.6.
Corollary 4.16. Assume $p \geqslant 5$; let \mathcal{E} be an elliptic curve defined over a number field K and let $P \in \mathcal{E}[p]$ be of order p. For any field L containing $K\left(x(P), \zeta_{p}\right)$ or containing $K\left(y(P), \zeta_{p}\right)$ and for any point $Q \in \mathcal{E}[p]$ independent from P, we have

$$
(\mathcal{E}, Q) \in X_{1}(p)(L) \Longleftrightarrow(\mathcal{E}, P, Q) \in X(p)(L)
$$

Proof. The arrow \Leftarrow is obvious. Now assume $(\mathcal{E}, Q) \in X_{1}(p)(L)$, then

$$
L \supseteq K\left(x(P), \zeta_{p}, y(Q)\right)=K_{p} \quad \text { or } \quad L \supseteq K\left(y(P), \zeta_{p}, x(Q)\right)=K_{p}
$$

(both final equalities hold because of Theorem 3.6). Hence $(\mathcal{E}, P, Q) \in X(p)(L)$.
It would be interesting to describe the families of elliptic curves for which the previous corollary becomes trivial, i.e., curves for which $K\left(x(P), \zeta_{p}\right)$ or $K\left(y(P), \zeta_{p}\right)$ contain $K(x(P), y(P))$. Some examples are provided by the exceptional primes for which $K\left(\zeta_{p}, y(P)\right)=$ K_{p}.
On exceptional points we have the following
Corollary 4.17. Assume $p \geqslant 53$ is unramified in K / \mathbb{Q} and K is linearly disjoint from $\mathbb{Q}\left(\zeta_{p}\right)$. If $p \not \equiv 1(\bmod 3)$, then, for any field $L \supseteq K\left(\zeta_{p}\right)$, the L-rational Borel exceptional points of $X(p)$ and $X_{1}(p)$ are associated to the same elliptic curves. The same statement holds for any prime if we consider Cartan exceptional points.
Proof. We only need to check that if $(\mathcal{E}, Q) \in X_{1}(p)(L)$ is exceptional, then $(\mathcal{E}, Q, R) \in$ $X(p)(L)$, for any R completing Q to a \mathbb{Z}-basis of $\mathcal{E}[p]$. For Borel exceptional points and $p \not \equiv 1(\bmod 3)$, this immediately follows from

$$
L \supseteq K\left(\zeta_{p}, y(Q)\right)=K_{p}
$$

by Theorem 4.11. If we consider a Cartan exceptional point (\mathcal{E}, Q), then Theorems 4.12 and 4.13 show that

$$
L \supseteq K\left(\zeta_{p}, x(Q), y(Q)\right)=K_{p}
$$

5. Fields $K(\mathcal{E}[3])$

In this section we generalize the classification of the number fields $\mathbb{Q}(\mathcal{E}[3])$, appearing in [4], to the case of a general base field K, whose characteristic is different from 2 and 3 (or, more in general, in which the elliptic curve \mathcal{E} can be written in Weierstrass form $\left.y^{2}=x^{3}+A x+B\right)$. We recall that the four x-coordinates of the 3 -torsion points of \mathcal{E} are the roots of the polynomial $\varphi_{3}:=x^{4}+2 A x^{2}+4 B x-A^{2} / 3$. Solving φ_{3} with radicals, we get explicit expressions for the x-coordinates and we recall that for $m=3$ being \mathbb{Z} independent is equivalent to having different x-coordinates. Let $\Delta:=-432 B^{2}-64 A^{3}$ be the discriminant of the elliptic curve. If $B \neq 0$, the roots of φ_{3} are

$$
\begin{aligned}
& x_{1}=-\frac{1}{2} \sqrt{\frac{\sqrt[3]{\Delta}-8 A}{3}-\frac{8 B \sqrt{3}}{\sqrt{-\sqrt[3]{\Delta}-4 A}}}+\frac{\sqrt{-\sqrt[3]{\Delta}-4 A}}{2 \sqrt{3}} \\
& x_{2}=\frac{1}{2} \sqrt{\frac{\sqrt[3]{\Delta}-8 A}{3}-\frac{8 B \sqrt{3}}{\sqrt{-\sqrt[3]{\Delta}-4 A}}}+\frac{\sqrt{-\sqrt[3]{\Delta}-4 A}}{2 \sqrt{3}} \\
& x_{3}=-\frac{1}{2} \sqrt{\frac{\sqrt[3]{\Delta}-8 A}{3}+\frac{8 B \sqrt{3}}{\sqrt{-\sqrt[3]{\Delta}-4 A}}}-\frac{\sqrt{-\sqrt[3]{\Delta}-4 A}}{2 \sqrt{3}} \\
& x_{4}=\frac{1}{2} \sqrt{\frac{\sqrt[3]{\Delta}-8 A}{3}+\frac{8 B \sqrt{3}}{\sqrt{-\sqrt[3]{\Delta}-4 A}}}-\frac{\sqrt{-\sqrt[3]{\Delta}-4 A}}{2 \sqrt{3}}
\end{aligned}
$$

where we have chosen one square root of $\frac{-\sqrt[3]{\Delta}-4 A}{3}$ and one cubic root for Δ; since $\zeta_{3} \in K_{3}$ the degree $\left[K_{3}: K\right]$ will not depend on this choice.

To ease notation, we define

$$
\gamma:=\frac{-\sqrt[3]{\Delta}-4 A}{3}, \delta:=\frac{(-\gamma-4 A) \sqrt{\gamma}-8 B}{\sqrt{\gamma}}, \delta^{\prime}:=\frac{(-\gamma-4 A) \sqrt{\gamma}+8 B}{\sqrt{\gamma}} .
$$

Thus, when $B \neq 0$, the roots of φ_{3} are

$$
\begin{gathered}
x_{1}=\frac{1}{2}(-\sqrt{\delta}+\sqrt{\gamma}), x_{2}=\frac{1}{2}(\sqrt{\delta}+\sqrt{\gamma}) \\
x_{3}=\frac{1}{2}\left(-\sqrt{\delta^{\prime}}-\sqrt{\gamma}\right) \text { and } x_{4}=\frac{1}{2}\left(\sqrt{\delta^{\prime}}-\sqrt{\gamma}\right) .
\end{gathered}
$$

The corresponding points $P_{i}:=\left(x_{i}, \sqrt{x_{i}^{3}+A x_{i}+B}\right)$ have order 3 and are pairwise \mathbb{Z}-independent (this would hold with any choice for the sign of the square root providing the y-coordinate). For completeness, we show the expressions of y_{1}, y_{2}, y_{3} and y_{4} in terms of A, B, γ, δ and δ^{\prime} :

$$
\begin{aligned}
& y_{1}=\sqrt{\frac{(-\gamma \sqrt{\gamma}+4 B) \sqrt{\delta}+\gamma \delta}{4 \sqrt{\gamma}}}, y_{2}:=\sqrt{\frac{(\gamma \sqrt{\gamma}-4 B) \sqrt{\delta}+\gamma \delta}{4 \sqrt{\gamma}}} \\
& y_{3}=\sqrt{\frac{(-\gamma \sqrt{\gamma}-4 B) \sqrt{\delta^{\prime}}-\gamma \delta^{\prime}}{4 \sqrt{\gamma}}}, y_{4}=\sqrt{\frac{(\gamma \sqrt{\gamma}+4 B) \sqrt{\delta^{\prime}}-\gamma \delta^{\prime}}{4 \sqrt{\gamma}}}
\end{aligned}
$$

If $B=0$, then $\gamma=0$ too and the formulas provided above do not hold anymore. The x-coordinates are now the roots of $\varphi_{3}=x^{4}+2 A x^{2}-A^{2} / 3$. Let

$$
\beta:=-\left(\frac{2 \sqrt{3}}{3}+1\right) A \text { and } \eta:=\left(\frac{2 \sqrt{3}}{3}-1\right) A
$$

then the roots of φ_{3} are $x_{1}=\sqrt{\beta}, x_{2}=-\sqrt{\beta}, x_{3}=\sqrt{\eta}$ and $x_{4}=-\sqrt{\eta}$. Furthermore

$$
y_{1}=\sqrt{\frac{-2 A \sqrt{\beta}}{\sqrt{3}}}=\sqrt{\frac{-2 A}{3} \sqrt{-2 A \sqrt{3}-3 A}}
$$

Using the results of the previous sections and the explicit formulas, we can now give the following description of K_{3}.
Proposition 5.1. We have $K_{3}=K\left(x_{1}+x_{2}, \zeta_{3}, y_{1}\right)$. Moreover

1. if $B \neq 0$, then $K_{3}=K\left(\sqrt{\gamma}, \zeta_{3}, y_{1}\right)$,
2. if $B=0$, then $K_{3}=K\left(\zeta_{3}, y_{1}\right)$.

Proof. By Theorem 2.8, $K_{3}=K\left(x_{1}+x_{2}, x_{1} x_{2}, \zeta_{3}, y_{1}\right)$. If $B \neq 0$, since $x_{1}+x_{2}=\sqrt{\gamma}$ and

$$
x_{1} x_{2}=\frac{\gamma}{2}+A+\frac{2 B}{\sqrt{\gamma}} \in K(\sqrt{\gamma})
$$

one has $K_{3}=K\left(x_{1}+x_{2}, \zeta_{3}, y_{1}\right)=K\left(\sqrt{\gamma}, \zeta_{3}, y_{1}\right)$. If $B=0$, the statement follows from $x_{1}+x_{2}=0$ and $K\left(x_{1} x_{2}\right)=K(\sqrt{3}) \subseteq K\left(y_{1}\right)$.
5.1. The degree $\left[K_{3}: K\right]$. Because of the embedding

$$
\operatorname{Gal}\left(K_{n} / K\right) \hookrightarrow \mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})
$$

one has that $d:=\left[K_{3}: K\right]$ is a divisor of $\left|\mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})\right|=48$ (in particular, if $B=0$, then $K_{3}=K\left(\zeta_{3}, y_{1}\right)$ and y_{1} has degree at most 8 over K so $\left[K_{3}: K\right]$ divides 16). Therefore $d \in \Omega:=\{1,2,3,4,6,8,12,16,24,48\}$. In [4], we proved that the minimal set for $[\mathbb{Q}(\mathcal{E}[3])$: $\mathbb{Q}]$ is $\widetilde{\Omega}:=\{2,4,6,8,12,16,48\}$ and showed also explicit examples for any degree $d \in \widetilde{\Omega}$. When K is a number field we can get also examples of degree 1,3 and 24: it suffices to take the curves in [4] with degree $d \in\{2,6,48\}$ and choose $K=\mathbb{Q}\left(\zeta_{3}\right)$ as base field. In general, once we have a curve \mathcal{E} defined over \mathbb{Q} with $[\mathbb{Q}(\mathcal{E}[3]): \mathbb{Q}]=48$, we produce examples of any degree $d \in \Omega$ by simply considering the same curve over subfields K of $\mathbb{Q}(\mathcal{E}[3])$ (obviously for those K one has $\left.K_{3}=\mathbb{Q}(\mathcal{E}[3])\right)$.

Theorem 5.2. With notations as above let $d=\left[K_{3}: K\right]$. For $B \neq 0$, put $K^{\prime}:=K\left(\zeta_{3}, \sqrt[3]{\Delta}\right)$ with $d^{\prime}:=\left[K^{\prime}: K\right]$ and consider the following conditions

$$
\text { A1. } \sqrt{\gamma} \notin K^{\prime} ; \quad \text { A2. } \sqrt{\delta} \notin K^{\prime}(\sqrt{\gamma}) ; \quad \text { A3. } y_{1} \notin K^{\prime}(\sqrt{\delta}) \text {. }
$$

For $B=0$, put $K^{\prime \prime}:=K\left(\zeta_{3}\right)$ with $d^{\prime \prime}:=\left[K^{\prime \prime}: K\right]$ and consider the following conditions

$$
\text { B1. } \sqrt{3} \notin K^{\prime \prime} ; \quad \text { B2. } \sqrt{\beta} \notin K^{\prime \prime}(\sqrt{3}) ; \quad \text { B3. } y_{1} \notin K^{\prime \prime}(\sqrt{\beta}) \text {. }
$$

Then the degrees are the following

B	d	holding conditions	B	d	holding conditions
$\neq 0$	$8 d^{\prime}$	A1, A2, A3	$=0$	$8 d^{\prime \prime}$	B1, B2, B3
$\neq 0$	$4 d^{\prime}$	2 of A1, A2, A3	$=0$	$4 d^{\prime \prime}$	2 of B1, B2, B3
$\neq 0$	$2 d^{\prime}$	1 of A1, A2, A3	$=0$	$2 d^{\prime \prime}$	1 of B1, B2, B3
$\neq 0$	d^{\prime}	none	$=0$	$d^{\prime \prime}$	none

Proof. We use Proposition 5.1, the explicit description of the generators of K_{3} given at the beginning of this section and the towers of fields

$$
K \subseteq K^{\prime} \subseteq K^{\prime}(\sqrt{\gamma}) \subseteq K^{\prime}(\sqrt{\gamma}, \sqrt{\delta}) \subseteq K^{\prime}\left(\sqrt{\gamma}, y_{1}\right)=K_{3}
$$

(for $B \neq 0$) and

$$
K \subseteq K^{\prime \prime} \subseteq K^{\prime \prime}(\sqrt{3}) \subseteq K^{\prime \prime}(\sqrt{\beta}) \subseteq K^{\prime \prime}\left(y_{1}\right)=K_{3}
$$

(for $B=0$).
Looking at the explicit expressions of γ in terms of $\sqrt[3]{\Delta}$, of δ in terms of $\sqrt{\gamma}$, etc... one sees that all inclusions provide (at most) quadratic extensions: the computation of the degrees follows easily.
5.2. Galois groups. We now list all possible Galois groups $\operatorname{Gal}\left(K_{3} / K\right)$ via a case by case analysis (one can easily connect a Galois group to the conditions in Theorem 5.2, so we do not write down a summarizing statement here).
5.2.1. $\mathbf{B} \neq \mathbf{0}$. The degree is a divisor of 48 . Looking at the subgroups of $\mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ one sees that certain orders do not leave any choice: indeed $d=1,2,3,12,16,24$ and 48 give $\operatorname{Gal}\left(K_{3} / K\right) \simeq \operatorname{Id}, \mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 3 \mathbb{Z}, D_{6}, S D_{8}, \mathrm{SL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ and $\mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ respectively ${ }^{1}$. The remaining orders are $d=4,6$ and 8 .
If $d=4$: then $d^{\prime}=1$ or 2 . In any case there is at least a cube root of Δ in K and we can pick that as our $\sqrt[3]{\Delta}$.

- If $d^{\prime}=2$ and $\mathbf{A 1}$ holds, then $\sqrt{\gamma}$ provides another quadratic extension of K disjoint from K^{\prime} : hence $\operatorname{Gal}\left(K_{3} / K\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
- If $d^{\prime}=2$ and A2 holds, then there are two possibilities:
a) if $\sqrt{\gamma} \in K$, then $\sqrt{\delta}$ provides another quadratic extension of K disjoint from K^{\prime} and $\operatorname{Gal}\left(K_{3} / K\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$;
b) if $\sqrt{\gamma} \in K^{\prime}-K$, then K^{\prime} is the unique quadratic subextension of K_{3} and $\operatorname{Gal}\left(K_{3} / K\right) \simeq \mathbb{Z} / 4 \mathbb{Z}$.
- If $d^{\prime}=2$ and $\mathbf{A 3}$ holds, then there are two possibilities:
c) if $\sqrt{\delta} \in K$, then y_{1} provides another quadratic extension of K disjoint from K^{\prime} and $\operatorname{Gal}\left(K_{3} / K\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$;
d) if $\sqrt{\delta} \in K^{\prime}-K$, then K^{\prime} is the unique quadratic subextension of K_{3} and $\operatorname{Gal}\left(K_{3} / K\right) \simeq \mathbb{Z} / 4 \mathbb{Z}$.
- If $d^{\prime}=1$, then $K(\sqrt{\gamma})$ (if A1 holds) or $K(\sqrt{\delta})$ (if A1 does not hold) is the unique quadratic subextension of K_{3} and $\operatorname{Gal}\left(K_{3} / K\right) \simeq \mathbb{Z} / 4 \mathbb{Z}$.
If $d=6$: then $d^{\prime}=3$ or 6 .
- If $d^{\prime}=6$, then $K_{3}=K^{\prime}$ and $\operatorname{Gal}\left(K_{3} / K\right) \simeq S_{3}$.
- If $d^{\prime}=3$, then $\operatorname{Gal}\left(K_{3} / K\right)$ is a group of order 6 with a normal subgroup $\operatorname{Gal}\left(K_{3} / K^{\prime}\right)$ of order 2, i.e., $\operatorname{Gal}\left(K_{3} / K\right) \simeq \mathbb{Z} / 6 \mathbb{Z}$.
If $d=8$: then $d^{\prime}=1$ or 2 (and again we can pick a cube root of Δ in K).
- If $d^{\prime}=1$, then for a $\varphi \in \operatorname{Gal}\left(K_{3} / K\right)$ one can have $\varphi(\delta)=\delta$ or δ^{\prime} and both cases occur. Therefore $\varphi\left(y_{1}\right)$ can be any of the other y_{i} and this provides 6 elements of order 4 (namely the morphisms sending y_{1} to $\pm y_{2}, \pm y_{3}$ and $\pm y_{4}$, see for example those denoted by $\varphi_{i, j}$ for $i=3,5,7$ and $j=1,2$ in [4, Appendix]: even if that paper is written for $K=\mathbb{Q}$ the formulas are valid in general). We have that $\operatorname{Gal}\left(K_{3} / K\right)$ is the quaternion group Q_{8} with generators of order 4

$$
\varphi_{2}\left\{\begin{array}{rl}
y_{1} & \mapsto y_{2} \\
\sqrt{\gamma} & \mapsto \sqrt{\gamma}
\end{array} \quad, \varphi_{3}\left\{\begin{array}{rll}
y_{1} & \mapsto & y_{3} \\
\sqrt{\gamma} & \mapsto & -\sqrt{\gamma}
\end{array} \quad, \varphi_{4}\left\{\begin{array}{rll}
y_{1} & \mapsto & y_{4} \\
\sqrt{\gamma} & \mapsto & -\sqrt{\gamma}
\end{array}\right.\right.\right.
$$

and the element of order 2

$$
\varphi_{1}\left\{\begin{array}{rll}
y_{1} & \mapsto & -y_{1} \\
\sqrt{\gamma} & \mapsto & \sqrt{\gamma}
\end{array} .\right.
$$

[^0]- If $d^{\prime}=2$ and A1 holds, then $K\left(\sqrt{\gamma}, y_{1}\right)$ and K^{\prime} are disjoint over K and there are (at most) 2 elements of order 4 (and none of order 8). Therefore, since $(\mathbb{Z} / 2 \mathbb{Z})^{3}$ is not a subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z}), \operatorname{Gal}\left(K_{3} / K\right)$ is the dihedral group D_{4}.
- If $d^{\prime}=2$ and $\mathbf{A 1}$ does not hold, then there are two possibilities:
a) if $\sqrt{\gamma} \in K$, then $K\left(\sqrt{\delta}, y_{1}\right)$ is an extension of K disjoint from K^{\prime}, there are (at most) 2 elements of order 4 and $\operatorname{Gal}\left(K_{3} / K\right)$ is the dihedral group D_{4};
b) if $\sqrt{\gamma} \in K^{\prime}-K$, then $\varphi\left(y_{1}\right)$ can again be any of the y_{i}. As seen above for the case $d=8$ with $d^{\prime}=1$, there are 6 elements of order 4 and $\operatorname{Gal}\left(K_{3} / K\right) \simeq Q_{8}$.
5.2.2. $\mathbf{B}=\mathbf{0}$. The degree $\left[K_{3}: K\right]$ divides 16. Hence $\operatorname{Gal}\left(K_{3} / K\right)$ is a subgroup of the 2-Sylow subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ which is isomorphic to $S D_{8}$ (the semidihedral group of order 16). Obviously if $d=16,2$ or 1 , then $\operatorname{Gal}\left(K_{3} / K\right) \simeq S D_{8}$ or $\mathbb{Z} / 2 \mathbb{Z}$ or Id. Hence we are left with $d=4$ and 8 .
If $d=4$: then $d^{\prime \prime}=1$ or 2 .
- If $d^{\prime \prime}=2$ and B1 holds, then $K^{\prime \prime}$ and $K(\sqrt{3})$ are disjoint over K and $\operatorname{Gal}\left(K_{3} / K\right) \simeq$ $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ (note that this happens if $i \notin K$).
- If $d^{\prime \prime}=2$ and $\mathbf{B 2}$ holds, then there are two possibilities:
a) if $\sqrt{3} \in K$ (note that, for this case, this is equivalent to $i \notin K$), then $K(\sqrt{\beta})$ provides another quadratic extension of K disjoint from $K^{\prime \prime}$ and $\operatorname{Gal}\left(K_{3} / K\right) \simeq$ $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$;
b) if $\sqrt{3} \in K^{\prime \prime}-K$ (equivalently $i \in K$), then $K^{\prime \prime}$ is the unique quadratic subextension of K_{3} and $\operatorname{Gal}\left(K_{3} / K\right) \simeq \mathbb{Z} / 4 \mathbb{Z}$.
- If $d^{\prime \prime}=2$ and $\mathbf{B 3}$ holds, then there are two possibilities:
c) if $\sqrt{\beta} \in K$, then $K\left(y_{1}\right)$ provides another quadratic extension of K disjoint from $K^{\prime \prime}$ and $\operatorname{Gal}\left(K_{3} / K\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$;
d) if $\sqrt{\beta} \in K^{\prime \prime}-K$, then $K^{\prime \prime}$ is the unique quadratic subextension of K_{3} and $\operatorname{Gal}\left(K_{3} / K\right) \simeq \mathbb{Z} / 4 \mathbb{Z}$.
- If $d^{\prime \prime}=1$, then $K(\sqrt{3})$ (if $\mathbf{B 1}$ holds) or $K(\sqrt{\beta})$ (if $\mathbf{B} 1$ does not hold) is the unique quadratic subextension of K_{3} and $\operatorname{Gal}\left(K_{3} / K\right) \simeq \mathbb{Z} / 4 \mathbb{Z}$.
If $d=8$: then $d^{\prime \prime}=1$ or 2 .
- If $d^{\prime \prime}=1$, then there are elements φ of $\operatorname{Gal}\left(K_{3} / K\right)$ such that $\varphi(\sqrt{3})=\sqrt{-3}$ and $\varphi(\sqrt{\beta})=-\sqrt{\beta}$. Therefore the image of x_{1} can be any of the other x_{i} and the image of y_{1} can be any of the other y_{i}. As in the case $B \neq 0$ with $d=8$ and $d^{\prime}=1$, one sees that the elements sending y_{1} to $\pm y_{i}(2 \leqslant i \leqslant 4)$ are of order 4 in the Galois group and $\operatorname{Gal}\left(K_{3} / K\right) \simeq Q_{8}$.
- If $d^{\prime \prime}=2$ and $\mathbf{B 1}$ holds, then $K^{\prime \prime}$ and $K\left(y_{1}\right)$ are disjoint over K, there are 2 elements of order 4 and $\operatorname{Gal}\left(K_{3} / K\right) \simeq D_{4}$.
- If $d^{\prime \prime}=2$ and B1 does not hold, then there are two possibilities:
a) if $\sqrt{3} \in K$, then $K\left(y_{1}\right)$ is an extension of K disjoint from $K^{\prime \prime}$, there are 2 elements of order 4 and $\operatorname{Gal}\left(K_{3} / K\right)$ is the dihedral group D_{4};
b) if $\sqrt{3} \in K^{\prime \prime}-K$, then $\varphi\left(y_{1}\right)$ can be any of the y_{i}, there are 6 elements of order 4 and $\operatorname{Gal}\left(K_{3} / K\right) \simeq Q_{8}$.

6. Fields $K(\mathcal{E}[4])$

This section focuses on the case $m=4$ (we remark that the γ and δ here have no relation with the same symbols appearing in Section 5). Let K be a field, with $\operatorname{char}(K) \neq 2,3$, and let \mathcal{E} be an elliptic curve defined over K, with Weierstrass form $y^{2}=x^{3}+A x+B$. The roots α, β and γ of $x^{3}+A x+B=0$ are the x-coordinates of the points of order 2 of \mathcal{E}. In particular $\alpha+\beta+\gamma=0$. The points of exact order 4 of \mathcal{E} are $\pm P_{1}, \pm P_{2}, \pm P_{3}, \pm P_{4}$, $\pm P_{5}, \pm P_{6}$, where

$$
\begin{aligned}
& P_{1}=(\alpha+\sqrt{(\alpha-\beta)(\alpha-\gamma)},(\alpha-\beta) \sqrt{\alpha-\gamma}+(\alpha-\gamma) \sqrt{\alpha-\beta}), \\
& P_{2}=(\beta+\sqrt{(\beta-\alpha)(\beta-\gamma)},(\beta-\gamma) \sqrt{\beta-\alpha}+(\beta-\alpha) \sqrt{\beta-\gamma}), \\
& P_{3}=(\alpha-\sqrt{(\alpha-\beta)(\alpha-\gamma)},(\alpha-\beta) \sqrt{\alpha-\gamma}-(\alpha-\gamma) \sqrt{\alpha-\beta}), \\
& P_{4}=(\beta-\sqrt{(\beta-\alpha)(\beta-\gamma)},(\beta-\alpha) \sqrt{\beta-\gamma}-(\beta-\gamma) \sqrt{\beta-\alpha}), \\
& P_{5}=\left(\gamma+\sqrt{(\alpha-\gamma)(\beta-\gamma)}, \frac{(\alpha-\gamma)(\beta-\gamma)}{\sqrt{\gamma-\alpha}}+\frac{(\alpha-\gamma)(\beta-\gamma)}{\sqrt{\gamma-\beta}}\right), \\
& P_{6}=\left(\gamma-\sqrt{(\alpha-\gamma)(\beta-\gamma)}, \frac{(\alpha-\gamma)(\beta-\gamma)}{\sqrt{\gamma-\alpha}}-\frac{(\alpha-\gamma)(\beta-\gamma)}{\sqrt{\gamma-\beta}}\right) .
\end{aligned}
$$

We take P_{1} and P_{2} as basis of the 4 -torsion subgroup of \mathcal{E}. With the explicit formulas for the coordinates of the 4 -torsion points its easy to check that (see, for example, [6])

$$
K_{4}=K(\sqrt{-1}, \sqrt{\alpha-\beta}, \sqrt{\beta-\gamma}, \sqrt{\gamma-\alpha}) .
$$

Another quick way to find this extension is by applying the results of Section 2.
6.1. The degree $\left[K_{4}: K\right]$. By definition $K(\alpha, \beta)$ is the splitting field of $x^{3}+A x+B$, i.e., the field generated by the 2-torsion points. Hence $[K(\alpha, \beta): K]=\left[K_{2}: K\right] \leqslant 6$. Then $K_{4}=K(\sqrt{\alpha-\beta}, \sqrt{\alpha-\gamma}, \sqrt{\beta-\gamma}, \sqrt{-1})$ has degree at most $16 \cdot[K(\alpha, \beta): K] \leqslant 96$ which is, as expected, the cardinality of $\mathrm{GL}_{2}(\mathbb{Z} / 4 \mathbb{Z})$. As mentioned at the beginning of Section 5.1, once we find a curve \mathcal{E} defined over \mathbb{Q} with $[\mathbb{Q}(\mathcal{E}[4]): \mathbb{Q}]=96$ (see Proposition 6.2 below), we know that any degree d dividing 96 is obtainable over some number field K.

Theorem 6.1. With notations as above, put $d^{\prime}:=\left[K_{2}: K\right]$ and $d:=\left[K_{4}: K\right]$. Consider the conditions

A1. $\sqrt{\alpha-\beta} \notin K_{2}, \quad$ A3. $\sqrt{\beta-\gamma} \notin K_{2}(\sqrt{\alpha-\beta}, \sqrt{\alpha-\gamma})$,
A2. $\sqrt{\alpha-\gamma} \notin K_{2}(\sqrt{\alpha-\beta})$, A4. $\sqrt{-1} \notin K(\sqrt{\alpha-\beta}, \sqrt{\alpha-\gamma}, \sqrt{\beta-\gamma})$.
Then the degrees are the following

d	holding conditions
$16 d^{\prime}$	$\mathbf{A 1}, \mathbf{A 2}, \mathbf{A 3}, \mathbf{A 4}$
$8 d^{\prime}$	3 of A1, A2, A3, A4
$4 d^{\prime}$	2 of A1, A2, A3, A4
$2 d^{\prime}$	1 of A1, A2, A3, A4
d^{\prime}	none

Proof. Computations are straightforward (every condition provides a degree 2 extension).

We show that any degree d is obtainable by providing a rather general case over \mathbb{Q} with $d=96$. To stay coherent with our previous notations we set $\mathbb{Q}(\mathcal{E}[4])=: \mathbb{Q}_{4}$ and $\mathbb{Q}(\mathcal{E}[2])=$: \mathbb{Q}_{2} (not to be confused with the 2-adic field).
Proposition 6.2. Assume that $x^{3}+A x+B \in \mathbb{Q}[x]$ is irreducible, that $\Delta=-16\left(27 B^{2}+\right.$ $4 A^{3}$) is positive and not a square in \mathbb{Q} and that α, β and γ are pairwise distinct real numbers. Then $\left[\mathbb{Q}_{4}: \mathbb{Q}\right]=96$.

Proof. Put $\delta=-3 \alpha^{2}-4 A$ and note that, once α is fixed the other two roots are $\frac{-\alpha \pm \sqrt{\delta}}{2}$. By renaming the three roots (if necessary), we may assume that $\alpha>\beta>\gamma$, so that all the generators except $\sqrt{-1}$ are real and

$$
\begin{align*}
{\left[\mathbb{Q}_{4}: \mathbb{Q}\right] } & =2[\mathbb{Q}(\sqrt{\alpha-\beta}, \sqrt{\alpha-\gamma}, \sqrt{\beta-\gamma}): \mathbb{Q}] \\
& =2\left[\mathbb{Q}\left(\sqrt{\frac{3 \alpha+\sqrt{\delta}}{2}}, \sqrt{\frac{3 \alpha-\sqrt{\delta}}{2}}, \sqrt[4]{\delta}\right): \mathbb{Q}\right] . \tag{6.1}
\end{align*}
$$

By the choice of α, we have that $A<0$ and the polynomial $x^{3}+A x+B$ has a minimum in $x=\sqrt{-\frac{A}{3}}$. Hence $\alpha>\sqrt{-\frac{A}{3}}$ and in particular $3 \alpha^{2}+A>0$.
By the hypotheses, we have that $\left[\mathbb{Q}_{2}: \mathbb{Q}\right]=[\mathbb{Q}(\alpha, \sqrt{\delta}): \mathbb{Q}]=6$ and $\delta>0$ is not a square in $\mathbb{Q}(\alpha)$. Obviously $\left[\mathbb{Q}_{2}(\sqrt[4]{\delta}): \mathbb{Q}_{2}\right]=2$; moreover $\frac{3 \alpha+\sqrt{\delta}}{2}$ is a square in \mathbb{Q}_{2} if and only if $\frac{3 \alpha-\sqrt{\delta}}{2}$ has the same property. Assume $\frac{3 \alpha+\sqrt{\delta}}{2} \in\left(\mathbb{Q}_{2}^{*}\right)^{2}$, i.e., $\frac{3 \alpha+\sqrt{\delta}}{2}=(a+b \sqrt{\delta})^{2}$, for some $a, b \in \mathbb{Q}_{2}$. Then

$$
\left\{\begin{array} { l }
{ a ^ { 2 } + b ^ { 2 } \delta = \frac { 3 \alpha } { 2 } } \\
{ 2 a b = \frac { 1 } { 2 } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
a^{2}+\frac{\delta}{16 a^{2}}=\frac{3 \alpha}{2} \\
b=\frac{1}{4 a}
\end{array}\right.\right.
$$

leading to

$$
a^{2}=\frac{12 \alpha \pm \sqrt{144 \alpha^{2}-16 \delta}}{16}=\frac{3 \alpha \pm \sqrt{9 \alpha^{2}-\delta}}{4} \in \mathbb{Q}(\alpha) .
$$

Hence $9 \alpha^{2}-\delta=12 \alpha^{2}+4 A$ must be a square in $\mathbb{Q}(\alpha)$, i.e., $3 \alpha^{2}+A \in\left(\mathbb{Q}(\alpha)^{*}\right)^{2}$. Let N denote the norm map from $\mathbb{Q}(\alpha)$ to \mathbb{Q}. Then $N\left(3 \alpha^{2}+A\right)=27 B^{2}+4 A^{3}$ is not a square in \mathbb{Q} by hypothesis and this contradicts $3 \alpha^{2}+A \in\left(\mathbb{Q}(\alpha)^{*}\right)^{2}$. Therefore

$$
\left[\mathbb{Q}_{2}\left(\sqrt{\frac{3 \alpha+\sqrt{\delta}}{2}}\right): \mathbb{Q}_{2}\right]=\left[\mathbb{Q}_{2}\left(\sqrt{\frac{3 \alpha-\sqrt{\delta}}{2}}\right): \mathbb{Q}_{2}\right]=2
$$

and we have to prove that the three quadratic extensions of \mathbb{Q}_{2} we found are independent.

The elements $\sqrt{\frac{3 \alpha+\sqrt{\delta}}{2}}$ and $\sqrt{\frac{3 \alpha-\sqrt{\delta}}{2}}$ generate the same quadratic extension over \mathbb{Q}_{2} if and only if

$$
\frac{3 \alpha+\sqrt{\delta}}{2} \cdot \frac{2}{3 \alpha-\sqrt{\delta}}=\frac{9 \alpha^{2}-\delta}{(3 \alpha-\sqrt{\delta})^{2}} \in\left(\mathbb{Q}_{2}^{*}\right)^{2}
$$

i.e., if and only if $3 \alpha^{2}+A \in\left(\mathbb{Q}_{2}^{*}\right)^{2}$. We have already seen that $3 \alpha^{2}+A \notin\left(\mathbb{Q}(\alpha)^{*}\right)^{2}$, so we must have $3 \alpha^{2}+A=(a+b \sqrt{\delta})^{2}$ with $a, b \in \mathbb{Q}(\alpha)$ and $b \neq 0$. A little computation gives

$$
b^{2}=-\frac{3 \alpha^{2}+A}{3 \alpha^{2}+4 A} \in\left(\mathbb{Q}(\alpha)^{*}\right)^{2},
$$

but

$$
N\left(-\frac{3 \alpha^{2}+A}{3 \alpha^{2}+4 A}\right)=-1 \notin\left(\mathbb{Q}^{*}\right)^{2}
$$

and this is a contradiction. Hence

$$
\left[\mathbb{Q}_{2}\left(\sqrt{\frac{3 \alpha+\sqrt{\delta}}{2}}, \sqrt{\frac{3 \alpha-\sqrt{\delta}}{2}}\right): \mathbb{Q}_{2}\right]=4 .
$$

Now $\sqrt[4]{\delta}$ and $\sqrt{\frac{3 \alpha \pm \sqrt{\delta}}{2}}$ generate the same quadratic extension of \mathbb{Q}_{2} if and only if

$$
\frac{3 \alpha \pm \sqrt{\delta}}{2} \cdot \frac{1}{\sqrt{\delta}}=\frac{6 \alpha \sqrt{\delta} \pm 2 \delta}{4 \delta} \in\left(\mathbb{Q}_{2}^{*}\right)^{2}
$$

i.e., if and only if $6 \alpha \sqrt{\delta} \pm 2 \delta=(a+b \sqrt{\delta})^{2}$ for some $a, b \in \mathbb{Q}(\alpha)$. This leads to

1. $a^{2}+b^{2} \delta=2 \delta$ and $2 a b=6 \alpha$: solving for a we get

$$
a^{2}=\delta \pm \sqrt{\delta^{2}-9 \alpha^{2} \delta} \in \mathbb{Q}(\alpha)
$$

Hence

$$
\delta^{2}-9 \alpha^{2} \delta=\left(-3 \alpha^{2}-4 A\right)\left(-12 \alpha^{2}-4 A\right) \in\left(\mathbb{Q}(\alpha)^{*}\right)^{2}
$$

i.e., $\left(3 \alpha^{2}+4 A\right)\left(3 \alpha^{2}+A\right) \in\left(\mathbb{Q}(\alpha)^{*}\right)^{2}$. But by hypothesis $3 \alpha^{2}+4 A=-\delta<0$ and we recall that $3 \alpha^{2}+A>0$; thus $\left(3 \alpha^{2}+4 A\right)\left(3 \alpha^{2}+A\right)<0$ cannot be a square in the real field $\mathbb{Q}(\alpha)$.
2. $a^{2}+b^{2} \delta=-2 \delta$ and $2 a b=6 \alpha$: this is impossible because $a^{2}+b^{2} \delta>0$, while $-2 \delta<0$.
Then

$$
\left[\mathbb{Q}_{2}\left(\sqrt[4]{\delta}, \sqrt{\frac{3 \alpha+\sqrt{\delta}}{2}}\right): \mathbb{Q}_{2}\right]=\left[\mathbb{Q}_{2}\left(\sqrt[4]{\delta}, \sqrt{\frac{3 \alpha-\sqrt{\delta}}{2}}\right): \mathbb{Q}_{2}\right]=4
$$

With similar computations one checks that the extension generated by $\sqrt[4]{\delta}$ is also independent from $\mathbb{Q}_{2}\left(\sqrt{3 \alpha^{2}+A}\right)$ (the third quadratic extension contained in $\mathbb{Q}_{2}\left(\sqrt{\frac{3 \alpha+\sqrt{\delta}}{2}}, \sqrt{\frac{3 \alpha-\sqrt{\delta}}{2}}\right)$).

Hence

$$
\left[\mathbb{Q}_{2}\left(\sqrt{\frac{3 \alpha+\sqrt{\delta}}{2}}, \sqrt{\frac{3 \alpha-\sqrt{\delta}}{2}}, \sqrt[4]{\delta}\right): \mathbb{Q}\right]=48
$$

and, by (6.1), we have $\left[\mathbb{Q}_{4}: \mathbb{Q}\right]=96$.
With reducible polynomials $x^{3}+A x+B$ we can easily obtain examples of smaller degrees, in particular when $A=0$ or $B=0$ (obviously, since $\sqrt{-1} \in \mathbb{Q}_{4}$, we cannot obtain extension of degree 1 or 3 over \mathbb{Q}).

Example 6.3. The curve

$$
y^{2}=x^{3}-\frac{481}{3} x+\frac{9658}{27}=\left(x-\frac{34}{3}\right)\left(x-\frac{7}{3}\right)\left(x+\frac{41}{3}\right)
$$

provides $\sqrt{\alpha-\beta}=3, \sqrt{\alpha-\gamma}=5$ and $\sqrt{\beta-\gamma}=4$. Then $\mathbb{Q}_{4}=\mathbb{Q}(\sqrt{-1})$ has degree 2 over \mathbb{Q}.
The curve

$$
y^{2}=x^{3}-22 x-15=(x-5)\left(x^{2}+5 x+3\right)
$$

yields

$$
\mathbb{Q}_{2}=\mathbb{Q}(\sqrt{13}) \quad \text { and } \quad \mathbb{Q}_{4}=\mathbb{Q}\left(\sqrt{\frac{5+\sqrt{13}}{2}}, \sqrt{\frac{5-\sqrt{13}}{2}}, \sqrt[4]{5}, \sqrt{-1}\right)
$$

which has degree 32 over \mathbb{Q}.
Proposition 6.4. If $A=0$, then $\mathbb{Q}_{4}=\mathbb{Q}\left(\zeta_{12}, \sqrt{\sqrt[3]{B}\left(1-\zeta_{3}\right)}\right)$ and

$$
\left[\mathbb{Q}_{4}: \mathbb{Q}\right]= \begin{cases}8 & \text { if } B \in\left(\mathbb{Q}^{*}\right)^{3} \\ 24 & \text { otherwise }\end{cases}
$$

If $B=0$, then $\mathbb{Q}_{4}=\mathbb{Q}(\sqrt{2}, \sqrt{-1}, \sqrt[4]{-A})$ and

$$
\left[\mathbb{Q}_{4}: \mathbb{Q}\right]= \begin{cases}16 & \text { if } A \neq \pm 2 a^{2}, \pm a^{2} \text { with } a \in \mathbb{Q} \\ 8 & \text { if } A= \pm 2 a^{2} \text { with } a \in \mathbb{Q} \\ 4 & \text { if } A=a^{4}, \pm 4 a^{4} \text { with } a \in \mathbb{Q} \\ 8 & \text { otherwise }\end{cases}
$$

Proof. For $A=0$ just take $\alpha=\sqrt[3]{B}, \beta=\zeta_{3} \sqrt[3]{B}$ and $\gamma=\zeta_{3}^{2} \sqrt[3]{B}$ to get

$$
\mathbb{Q}_{4}=\mathbb{Q}\left(\zeta_{3}, \sqrt{-1}, \sqrt{\sqrt[3]{B}\left(1-\zeta_{3}\right)}, \sqrt{\sqrt[3]{B}\left(1-\zeta_{3}^{2}\right)}, \sqrt{\sqrt[3]{B}\left(\zeta_{3}-\zeta_{3}^{2}\right)}\right)
$$

Obviously $\mathbb{Q}\left(\zeta_{3}, \sqrt{-1}\right)=\mathbb{Q}\left(\zeta_{12}\right)$, moreover $\sqrt{\sqrt[3]{B}\left(1-\zeta_{3}\right)}, \sqrt{\sqrt[3]{B}\left(1-\zeta_{3}^{2}\right)}$ and $\sqrt{\sqrt[3]{B}\left(\zeta_{3}-\zeta_{3}^{2}\right)}$ generate the same extension of $\mathbb{Q}\left(\zeta_{12}\right)$. Therefore

$$
\mathbb{Q}_{4}=\mathbb{Q}\left(\zeta_{12}, \sqrt{\sqrt[3]{B}\left(1-\zeta_{3}\right)}\right)
$$

and the first statement follows.

For $B=0$ let $\alpha=0, \beta=\sqrt{-A}$ and $\gamma=-\beta$ to get $\mathbb{Q}_{4}=\mathbb{Q}(\sqrt[4]{-A}, \sqrt{2}, \sqrt{-1})$. The unique quadratic subfield of $\mathbb{Q}(\sqrt[4]{-A})$ is $\mathbb{Q}(\sqrt{-A})$, hence, if $\mathbb{Q}(\sqrt{-A}) \neq \mathbb{Q}(\sqrt{ \pm 2}), \mathbb{Q}(\sqrt{-1}), \mathbb{Q}$, i.e., if $A \neq \pm 2 a^{2}, \pm a^{2}$ for some $a \in \mathbb{Q}$, we have $\left[\mathbb{Q}_{4}: \mathbb{Q}\right]=16$. The remaining cases are straightforward.
6.2. Galois groups. One can find descriptions for $\mathrm{GL}_{2}(\mathbb{Z} / 4 \mathbb{Z})$ in [1, Section 5.1] or [7, Section 3]: the most suitable for our goals is the exact sequence coming from the canonical projection $\mathrm{GL}_{2}(\mathbb{Z} / 4 \mathbb{Z}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$, whose kernel we denote by H_{2}^{4}. Obviously

$$
H_{2}^{4}=\left\{\left(\begin{array}{cc}
1+2 a & 2 b \\
2 c & 1+2 d
\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{Z} / 4 \mathbb{Z})\right\}
$$

and it is easy to check that it is an abelian group of order 16 and exponent 2, i.e., isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{4}$. By sending the row (11) to (3 3) and leaving rows (10) and (0 1) fixed, we see that there exists a section $\mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / 4 \mathbb{Z})$ which splits the sequence

$$
H_{2}^{4} \hookrightarrow \mathrm{GL}_{2}(\mathbb{Z} / 4 \mathbb{Z}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})
$$

as a semi-direct product. For any K, we have a commutative diagram

The structure of $\operatorname{Gal}\left(K_{4} / K\right)$ can be derived from the lower sequence (which splits as well), checking the conditions of Theorem 6.1 to compute d^{\prime} (which identifies $\operatorname{Gal}\left(K_{2} / K\right)$ as one among Id, $\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 3 \mathbb{Z}$ or $\left.S_{3}\right)$ and the $i \in\{0, \ldots, 4\}$ for which $\operatorname{Gal}\left(K_{4} / K_{2}\right) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{i}$.

References

[1] C. Adelmann, The decomposition of primes in torsion point fields, Lecture Notes in Mathematics 1761, Springer-Verlag, Berlin, 2001.
[2] A. Bandini, Three-descent and the Birch and Swinnerton-Dyer conjecture, Rocky Mount. J. of Math. 34 (2004), 13-27.
[3] A. Bandini, 3-Selmer groups for curves $y^{2}=x^{3}+a$, Czechoslovak Math. J. 58 (2008), 429-445.
[4] A. Bandini and L. Paladino, Number fields generated by the 3-torsion poins of an elliptic curve, Monatsh. Math. 168, no. 2 (2012), 157-181.
[5] R. Dvornicich and U. Zannier, Local-global divisibility of rational points in some commutative algebraic groups, Bull. Soc. Math. France 129, no. 3 (2001), 317-338.
[6] R. Dvornicich R. and U. Zannier, An analogue for elliptic curves of the Grunwald-Wang example, C. R. Acad. Sci. Paris, Ser. I 338 (2004), 47-50.
[7] C. Holden, Mod 4 Galois representations and elliptic curves, Proc. Amer. Math. Soc. 136, no. 1 (2008), 31-39.
[8] N.M. Katz - B. Mazur, Arithmetic moduli of elliptic curves, Annals of Math. Studies 108, Princeton Univ. Press, Princeton, 1985.
[9] E. Larson and D. Vaintrob, On the surjectivity of Galois representations associated to elliptic curves over number fields, Bull. Lond. Math. Soc. 46, no. 1 (2014), 197-209.
[10] Á. Lozano-Robledo, On the field of definition of p-torsion points of elliptic curves over the rationals, Math. Ann. 357, no. 1 (2013), 279-305.
[11] L. Paladino, Local-global divisibility by 4 in elliptic curves defined over \mathbb{Q}, Annali di Matematica Pura e Applicata 189, no. 1 (2010), 17-23.
[12] L. Paladino, Elliptic curves with $\mathbb{Q}(\mathcal{E}[3])=\mathbb{Q}\left(\zeta_{3}\right)$ and counterexamples to local-global divisibility by 9, J. Théor. Nombres Bordeaux 22 (2010), no. 1, 138-160.
[13] J. Reynolds, On the pre-image of a point under an isogeny and Siegel's theorem, New York J. Math. 17 (2011), 163-172.
[14] E.F. Schaefer and M. Stoll, How to do a p-descent on an elliptic curve, Trans. Amer. Math. Soc. 356 (2004), 1209-1231.
[15] J.-P. Serre, Proprietés Galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331.
[16] J.-P. Serre, Quelques applications du théorèm de densité de Chebotarev, Ist. Hautes Études Sci. Publ. Math. 54 (1981), 323-401.
[17] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, Princeton, 1971.
[18] J.H. Silverman, Advanced topics in the arithmetic of elliptic curves, GTM 151 Springer-Verlag, New York, 1994.

[^0]: ${ }^{1}$ One can also note that the unique normal subgroup of order 8 is the quaternion group Q_{8}; hence, whenever $\left[K_{3}: K^{\prime}\right]=8$, one has $\operatorname{Gal}\left(K_{3} / K^{\prime}\right) \simeq Q_{8}$.

