FIELDS GENERATED BY TORSION POINTS OF ELLIPTIC CURVES

Keywords: elliptic curves; torsion points; Galois representations

Mathematics subject classification: 11G05; 11F80

ABSTRACT. Let K be a field of characteristic $\operatorname{char}(K) \neq 2,3$ and let $\mathcal E$ be an elliptic curve defined over K. Let m be a positive integer, prime with $\operatorname{char}(K)$ if $\operatorname{char}(K) \neq 0$; we denote by $\mathcal E[m]$ the m-torsion subgroup of $\mathcal E$ and by $K_m := K(\mathcal E[m])$ the field obtained by adding to K the coordinates of the points of $\mathcal E[m]$. Let $P_i := (x_i,y_i)$ (i=1,2) be a $\mathbb Z$ -basis for $\mathcal E[m]$; then $K_m = K(x_1,y_1,x_2,y_2)$. We look for small sets of generators for K_m inside $\{x_1,y_1,x_2,y_2,\zeta_m\}$ trying to emphasize the role of ζ_m (a primitive m-th root of unity). In particular, we prove that $K_m = K(x_1,\zeta_m,y_2)$, for any odd $m \geq 5$. When m=p is prime and K is a number field we prove that the generating set $\{x_1,\zeta_p,y_2\}$ is often minimal, while when the classical Galois representation $\operatorname{Gal}(K_p/K) \to \operatorname{GL}_2(\mathbb Z/p\mathbb Z)$ is not surjective we are sometimes able to further reduce the set of generators. We also describe explicit generators, degree and Galois groups of the extensions K_m/K for m=3 and m=4.

1. Introduction

Let K be a field of characteristic char(K) $\neq 2,3$ and let \mathcal{E} be an elliptic curve defined over K. Let m be a positive integer, prime with char(K) if $char(K) \neq 0$. We denote by $\mathcal{E}[m]$ the m-torsion subgroup of \mathcal{E} and by $K_m := K(\mathcal{E}[m])$ the field generated by the points of $\mathcal{E}[m]$, i.e. the field obtained by adding to K the coordinates of the m-torsion points of \mathcal{E} . As usual, for any point $P \in \mathcal{E}$, we let x(P), y(P) be its coordinates and we indicate its m-th multiple simply by mP. We denote by $\{P_1, P_2\}$ a \mathbb{Z} -basis for $\mathcal{E}[m]$; then $K_m = K(x(P_1), x(P_2), y(P_1), y(P_2))$. To ease notation, we put $x_i := x(P_i)$ and $y_i := y(P_i)$ (i=1,2). By Artin's primitive element theorem the extension K_m/K is monogeneous and one can find a single generator for K_m/K by combining the above coordinates. On the other hand, by the properties of the Weil pairing e_m , we have that $e_m(P_1, P_2) \in K_m$ is a primitive m-th root of unity (we denote it by ζ_m). We want to emphasize the importance of ζ_m as a generator of K_m/K and look for minimal (i.e., with the smallest number of elements) sets of generators contained in $\{x_1, x_2, y_1, y_2, \zeta_m\}$. This kind of information is useful for describing the fields in terms of degrees and Galois groups, as we shall explicitly show for m=3 and m=4. Other applications are local-global problems (see, e.g., [5] or the particular cases of [12] and [11]), descent problems (see, e.g., [14] and the references there or, for a particular case, [2] and [3]), Galois representations, points on modular curves (see Section 4.4) and points on Shimura curves.

It is easy to prove that $K_m = K(x_1, x_2, \zeta_m, y_1)$ (see Lemma 2.1) and we expected a close similarity between the roles of the x-coordinates and y-coordinates; this turned out to be true in relevant cases. Indeed in Section 3 (mainly by analysing the possible elements of the Galois group $\operatorname{Gal}(K_m/K)$) we prove that $K_m = K(x_1, \zeta_m, y_1, y_2)$ at least for odd $m \geq 5$.

This leads to the following (for more precise and general statements see Theorems 2.8, 3.1 and 3.6)

Theorem 1.1. If $m \ge 3$, then $K_m = K(x_1 + x_2, x_1x_2, \zeta_m, y_1)$. Moreover if $m \ge 4$, then $K_m = K(x_1, \zeta_m, y_1, y_2) \Longrightarrow K_m = K(x_1, \zeta_m, y_2)$.

In particular $K_m = K(x_1, \zeta_m, y_2)$ for any odd integer $m \ge 5$.

Note that, by Theorem 1.1, we have $K_p = K(x_1, \zeta_p, y_2)$, for any prime $p \ge 5$. The set $\{x_1,\zeta_p,y_2\}$ seems a good candidate (in general) for a minimal set of generators for K_p/K . Indeed, when K is a number field and \mathcal{E} has no complex multiplication, by Serre's open image theorem (see [15]), we expect that the natural representation

$$\rho_{\mathcal{E},p}: \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$$

provides an isomorphism $\operatorname{Gal}(K_p/K) \simeq \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$ for almost all primes p, and there are hypotheses on x_1, ζ_m and y_2 (see Theorem 4.3) which guarantee that

$$[K(x_1, \zeta_m, y_2) : K] = (p^2 - 1)(p^2 - p) = |\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})|.$$

For (almost all) the exceptional primes for which $Gal(K_p/K)$ is smaller than $GL_2(\mathbb{Z}/p\mathbb{Z})$ (see Definition 4.5), we employ some well known results on Galois representations and on subgroups of $GL_2(\mathbb{Z}/p\mathbb{Z})$ to reduce further the set of generators. Joining the results of Lemmas 4.7 and 4.9 and of Theorems 4.11, 4.12 and 4.13 we obtain

Theorem 1.2. Let K be a number field linearly disjoint from the cyclotomic field $\mathbb{Q}(\zeta_p)$ and assume that $p \ge 53$ is unramified in K/\mathbb{Q} and exceptional for the curve \mathcal{E} . If $Gal(K_p/K)$ is contained in a Borel subgroup or in the normalizer of a split Cartan subgroup of $GL_2(\mathbb{Z}/p\mathbb{Z})$, then

- 1. $p \equiv 2 \pmod{3} \Longrightarrow K_p = K(\zeta_p, y_2);$ 2. $p \equiv 1 \pmod{3} \Longrightarrow [K_p : K(\zeta_p, y_2)] \text{ is } 1 \text{ or } 3.$

If $Gal(K_p/K)$ is contained in the normalizer of a non-split Cartan subgroup of $GL_2(\mathbb{Z}/p\mathbb{Z})$, then

- 3. $p \equiv 1 \pmod{3} \Longrightarrow K_p = K(\zeta_p, y_2);$
- **4.** $p \equiv 2 \pmod{3} \Longrightarrow [K_p: K(\zeta_p, y_2)]$ is 1 or 3.

In Subsection 4.4 we give just a hint of the possible applications to points of modular curves. Similar applications, even to Shimura curves, can be further developed in the future. Modular curves might provide a different approach (and more insight) to problems analogous to those treated here.

The final sections are dedicated to the cases m=3 and m=4. We use the explicit formulas for the coordinates of the torsion points to give more information on the extensions K_3/K and K_4/K , such as their degrees and their Galois groups.

Acknowledgement. The authors would like to express their gratitude to Antonella Perucca for suggesting the topic of a generalization of the results of [4] and for providing several hints, comments and improvements on earlier drafts of this paper. The authors thank the anonymous referee for pointing out an omission in Section 4 and for various remarks which led to significant improvements in the exposition.

2. The equality
$$K_m = K(x_1 + x_2, x_1x_2, \zeta_m, y_1)$$

As mentioned above, we consider a field K of characteristic $\operatorname{char}(K) \neq 2, 3$ and an elliptic curve \mathcal{E} defined over K, with Weierstrass form $y^2 = x^3 + Ax + B$ (actually most of our results are valid in any characteristic as long as the curve has the form $y^2 = x^3 + Ax + B$). Throughout the paper we always assume that m is an integer, $m \geq 2$ and, if $\operatorname{char}(K) \neq 0$, that m is prime with $\operatorname{char}(K)$. We choose two points $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ which form a \mathbb{Z} -basis of the m-torsion subgroup $\mathcal{E}[m]$ of \mathcal{E} . We define $K_m := K(\mathcal{E}[m])$ and we denote by $K_{m,x}$ the extension of K generated by the x-coordinates of the points in $\mathcal{E}[m]$. So we have

$$K(x_1, x_2) \subseteq K_{m,x} \subseteq K_m = K(x_1, x_2, y_1, y_2)$$
.

Let $e_m : \mathcal{E}[m] \times \mathcal{E}[m] \longrightarrow \boldsymbol{\mu}_m$ be the Weil Pairing, where $\boldsymbol{\mu}_m$ is the group of m-th roots of unity. By the properties of e_m , we know that $\boldsymbol{\mu}_m \subset K_m$ and, once P_1 and P_2 are fixed, we put $e_m(P_1, P_2) =: \zeta_m$ (a primitive m-root of unity). We remark that the choice of P_1 and P_2 is arbitrary; we use this convention for ζ_m (which obviously has no effect on the generated field since $K(\zeta_m) = K(\boldsymbol{\mu}_m)$ for any primitive m-th root of unity) to simplify notations and computations. In particular for any $\sigma \in \operatorname{Gal}(K_m/K)$, we have

$$\sigma(\zeta_m) = \sigma(e_m(P_1, P_2)) = e_m(P_1^{\sigma}, P_2^{\sigma}) = \zeta_m^{\det(\sigma)} ,$$

where we still use σ to denote the matrix $\rho_{\mathcal{E},m}(\sigma) \in \mathrm{GL}_2(\mathbb{Z}/m\mathbb{Z})$.

The next lemma is rather obvious, but it shows how ζ_m can play the role of one of the y-coordinates in generating K_m and it will be useful in the rest of the paper.

Lemma 2.1. We have $K_m = K(x_1, x_2, \zeta_m, y_1)$.

Proof. An endomorphism of $\mathcal{E}[m]$ fixing P_1 and x_2 is of type $\sigma = \begin{pmatrix} 1 & 0 \\ 0 & \pm 1 \end{pmatrix}$. If it also fixes ζ_m , then $\det(\sigma) = 1$ and eventually $\sigma = \operatorname{Id}$.

We now show that ζ_m and y_1y_2 are closely related over the field $K(x_1, x_2)$. Let (x_3, y_3) (resp. (x_4, y_4)) be the coordinates of the point $P_3 := P_1 + P_2$ (resp. $P_4 := P_1 - P_2$). By the group law of \mathcal{E} , we may express x_3 and x_4 in terms of x_1, x_2, y_1 and y_2 :

(2.1)
$$x_3 = \frac{(y_1 - y_2)^2}{(x_1 - x_2)^2} - x_1 - x_2 \quad \text{and} \quad x_4 = \frac{(y_1 + y_2)^2}{(x_1 - x_2)^2} - x_1 - x_2$$

(note that $x_1 \neq x_2$ because P_1 and P_2 are independent). By taking the difference of these two equations we get

(2.2)
$$y_1 y_2 = \frac{(x_4 - x_3)(x_1 - x_2)^2}{4} .$$

Lemma 2.2. We have

$$K(x_1, x_2, y_1y_2) = K(x_1, x_2, x_3, x_4)$$
 and $K_m = K_{m,x}(y_1)$.

Proof. Since $y_i^2 \in K(x_i)$, equations (2.1) and (2.2) prove the first equality. For the final statement just note that $K_m = K_{m,x}(y_1, y_2) = K_{m,x}(y_1)$.

More precisely, we have

Lemma 2.3. Let $L = K(x_1, x_2)$. Exactly one of the following cases holds:

- 1. $[K_m:L]=1$;
- **2.** $[K_m:L]=2$ and $L(y_1y_2)=K_m$;
- **3.** $[K_m:L] = 2$, $L = L(y_1y_2)$ and $L(y_1) = L(y_2) = K_m$;
- **4.** $[K_m:L]=4$ and $[L(y_1y_2):L]=2$.

Proof. Obviously the degree of K_m over L divides 4. If $[K_m:L]=1$, then we are in case 1. If $[K_m:L]=4$, then y_1 and y_2 must generate different quadratic extensions of L and so $[L(y_1y_2):L]=2$ and we are in case 4. If $[K_m:L]=2$ and $y_1y_2 \notin L$, then we are in case 2. Now suppose that $[K_m:L]=2$ and $y_1y_2 \in L$. Then y_1 and y_2 generate the same extension of L and this extension is nontrivial, so we are in case 3.

Lemma 2.4. If $y_1y_2 \notin K(x_1, x_2)$, then $\zeta_m \notin K(x_1, x_2)$.

Proof. We are in case **2** or case **4** of Lemma 2.3 and, in particular, m > 2 because of $K_2 = L$. We have $[L(y_1y_2) : L] = 2$ and there exists $\tau \in \operatorname{Gal}(K_m/L)$ such that $\tau(y_1y_2) = -y_1y_2$. Without loss of generality, we may suppose $\tau(y_1) = -y_1$ and $\tau(y_2) = y_2$ so that $\tau = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\tau(\zeta_m) = \zeta_m^{-1}$. Since $m \neq 2$, $\zeta_m^{-1} \neq \zeta_m$ and we get $\zeta_m \notin L$.

The connection between ζ_m and y_1y_2 is provided by the following statement.

Theorem 2.5. We have $K(x_1, x_2, \zeta_m) = K(x_1, x_2, y_1y_2)$.

Proof. We first prove that $\zeta_m \in K(x_1, x_2, y_1y_2)$ by considering the four cases of Lemma 2.3

Case 1 or 2: we have $K(x_1, x_2, y_1y_2) = K_m$ so the statement clearly holds.

Case 3: we have $K_m = L(y_1)$ and $y_1y_2 \in L$ so the nontrivial element $\tau \in \operatorname{Gal}(K_m/L)$ maps y_i to $-y_i$ for i = 1, 2. In particular, $\tau = -\operatorname{Id}$ and $\tau(\zeta_m) = \zeta_m$. Hence $\zeta_m \in L = K(x_1, x_2)$. Case 4: since $K_m = L(y_1, y_2)$ and $\operatorname{Gal}(K_m/L) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, there exists $\tau \in \operatorname{Gal}(K_m/L)$ such that $\tau(y_i) = -y_i$ for i = 1, 2. The field fixed by τ is $L(y_1y_2)$ and, as in the previous case, we get $\tau(\zeta_m) = \zeta_m$: so $\zeta_m \in L(y_1y_2) = K(x_1, x_2, y_1y_2)$.

Now the statement of the theorem is clear if we are in case **1** or in case **3** of Lemma 2.3. In cases **2** and **4** we have $[L(y_1y_2):L]=2,\ \zeta_m\notin L$ (Lemma 2.4) and $L(\zeta_m)\subseteq L(y_1y_2)$. These three facts yield $L(\zeta_m)=L(y_1y_2)$.

We conclude this section with the equality appearing in the title, which still focuses more on the x-coordinates. For that we shall need the following lemma.

Lemma 2.6. The extension $K(x_1, x_2)/K(x_1 + x_2, x_1x_2)$ has degree ≤ 2 . Its Galois group is either trivial or generated by σ with $\sigma(x_i) = x_j$ $(i \neq j)$.

Proof. Just note that x_1 and x_2 are the roots of $X^2 - (x_1 + x_2)X + x_1x_2$.

Corollary 2.7. We have $K(\zeta_m + \zeta_m^{-1}) \subseteq K(x_1 + x_2, x_1x_2)$.

Proof. This is obvious if $K(x_1, x_2) = K(x_1 + x_2, x_1x_2)$. If they are different, take the nontrivial element σ of $Gal(K(x_1, x_2)/K(x_1 + x_2, x_1x_2))$. By Lemma 2.6, we have $\sigma(P_i) = \pm P_j$ $(i \neq j)$, hence $det(\sigma) = \pm 1$.

Theorem 2.8. For $m \ge 3$ we have $K_m = K(x_1 + x_2, x_1x_2, \zeta_m, y_1)$.

Proof. We consider the tower of fields

$$K(x_1 + x_2, x_1x_2) \subseteq K(x_1, x_2) \subseteq K(x_1, x_2, \zeta_m, y_1) = K_m$$

and adopt the following notations:

$$G := \operatorname{Gal}(K_m/K(x_1 + x_2, x_1 x_2)) ,$$

$$H := \operatorname{Gal}(K_m/K(x_1, x_2)) \triangleleft G ,$$

$$G/H = \operatorname{Gal}(K(x_1, x_2)/K(x_1 + x_2, x_1 x_2)) .$$

If $K(x_1 + x_2, x_1x_2) = K(x_1, x_2)$, then the statement holds by Lemma 2.1.

By Lemma 2.6, we may now assume that G/H has order 2 and its nontrivial automorphism swaps x_1 and x_2 . Then there is at least one element $\tau \in G$ such that $\tau(x_i) = x_j$, with $i, j \in \{1, 2\}$ and $i \neq j$. Therefore $\tau(y_i) = \pm y_j$. The possibilities are:

$$\tau = \pm \tau_1 = \begin{pmatrix} 0 & \pm 1 \\ \pm 1 & 0 \end{pmatrix} \text{ and } \tau = \pm \tau_2 = \begin{pmatrix} 0 & \mp 1 \\ \pm 1 & 0 \end{pmatrix}$$

(of order 2 and 4 respectively). Note that $\tau_2^2 = -\operatorname{Id}$ fixes both x_1 and x_2 , i.e., the generators of the field L of Lemma 2.3. Moreover, if $y_2 = \pm y_1$, then we have

$$\tau_2^2(P_1) = \tau_2(P_2) = \tau_2(x_2, \pm y_1) = (x_1, \pm y_2) = P_1$$

a contradiction. The automorphisms τ_1 and τ_2 generate a non abelian group of order 8 with two elements of order 4, i.e., the dihedral group

$$D_4 = \langle \tau_1, \tau_2 : \tau_1^2 = \tau_2^4 = \text{Id and } \tau_1 \tau_2 \tau_1 = \tau_2^3 \rangle$$
.

So G is a subgroup of D_4 . Since G/H has order 2, H is isomorphic to either 1, $\mathbb{Z}/2\mathbb{Z}$ or $(\mathbb{Z}/2\mathbb{Z})^2$ (note that $\tau_2 \notin H$) and its nontrivial elements can at most be the following

$$\tau_1 \tau_2 = \tau_2^3 \tau_1 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \tau_2 \tau_1 = \tau_1 \tau_2^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ and } -\text{Id}.$$

We distinguish three cases according to the possible degrees $[K_m:K(x_1,x_2)]$ mentioned in Lemma 2.3.

The case $K_m = K(x_1, x_2)$. Since |H| = 1 and |G/H| = 2, then |G| = 2. The nontrivial automorphism of G has to be $\pm \tau_1$. In both cases G does not fix ζ_m : so $\zeta_m \in K(x_1, x_2) - K(x_1 + x_2, x_1x_2)$ and we deduce $K(x_1 + x_2, x_1x_2, \zeta_m) = K(x_1, x_2) = K_m$.

The case $[K_m:K(x_1,x_2)]=4$. Since |H|=4 and |G/H|=2, we have $G\simeq D_4$. The subgroup $\langle \tau_2 \rangle$ of D_4 is normal of index 2 and it does not contain τ_1 . Moreover, τ_2 fixes ζ_m and τ_1 does not. Then we have

$$Gal(K_m/K(x_1+x_2,x_1x_2,\zeta_m)) = \langle \tau_2 \rangle$$

and $[K(x_1+x_2,x_1x_2,\zeta_m):K(x_1+x_2,x_1x_2)]=2$. If $y_1^2\in K(x_1+x_2,x_1x_2,\zeta_m)$, then $y_1^2=\tau_2(y_1)^2=y_2^2$, giving $y_1=\pm y_2$ and we already ruled this out. Then the degree of the extensions

$$K(x_1 + x_2, x_1x_2) \subset K(x_1 + x_2, x_1x_2, \zeta_m) \subset K(x_1 + x_2, x_1x_2, \zeta_m, y_1)$$

are, respectively, 2 and at least 4. Since the extension $K_m/K(x_1+x_2,x_1x_2)$ has degree 8 the statement follows.

The case $[K_m: K(x_1, x_2)] = 2$. Since |H| = 2 and |G/H| = 2, then |G| = 4. We have to exclude $G = \langle \tau_2 \tau_1, -\operatorname{Id} \rangle$, because these automorphisms fix both x_1 and x_2 , so we would have G = H. We are left with $H = \langle -\operatorname{Id} \rangle$ and one the following two possibilities:

$$G = \langle \tau_2 \rangle$$
 or $G = \langle \tau_1, -\operatorname{Id} \rangle$.

We now consider each of the two subcases separately. Assume $G = \langle \tau_2 \rangle$ and recall that $y_1 \neq \pm y_2$. Then y_1 and y_1^2 are not fixed by any element in G, i.e.,

$$[K(x_1 + x_2, x_1x_2, y_1) : K(x_1 + x_2, x_1x_2)] = 4$$

and $K(x_1 + x_2, x_1x_2, y_1) = K_m$. Now assume $G = \langle \tau_1, -\operatorname{Id} \rangle$: since τ_1 does not fix ζ_m while $-\operatorname{Id}$ does, we have

$$K(x_1, x_2) = K(x_1 + x_2, x_1 x_2, \zeta_m)$$
.

Hence
$$K(x_1 + x_2, x_1x_2, \zeta_m, y_1) = K(x_1, x_2, \zeta_m, y_1) = K_m$$
.

Remark 2.9. The equality $K_2 = K(x_1 + x_2, x_1x_2, \zeta_2, y_1)$ does not hold in general. Indeed it is equivalent to $K_2 = K(x_1 + x_2, x_1x_2)$ and one can take $\mathcal{E}: y^2 = x^3 - 1$ (defined over \mathbb{Q}) and the points $\{P_1 = (\zeta_3, 0), P_2 = (\zeta_3^2, 0)\}$ (as a \mathbb{Z} -basis for $\mathcal{E}[2]$) to get $K_2 = \mathbb{Q}(\boldsymbol{\mu}_3)$ and $\mathbb{Q}(x_1 + x_2, x_1x_2) = \mathbb{Q}$. The equality would hold for any other basis, but the previous theorems allow total freedom in the choice of P_1 and P_2 .

3. The equality
$$K_m = K(x_1, \zeta_m, y_2)$$

We start by proving the equality $K_m = K(x_1, \zeta_m, y_1, y_2)$ for every odd $m \ge 5$. The cases m = 2, 3 and 4 are treated in Remark 3.3, Section 5 and Section 6 respectively.

Theorem 3.1. If $m \ge 5$ is an odd number, then $K_m = K(x_1, \zeta_m, y_1, y_2)$. If $m \ge 4$ is an even number, then K_m is larger than $K(x_1, \zeta_m, y_1, y_2)$ if and only if $[K_m : K(x_1, \zeta_m, y_1, y_2)] = 2$ and its Galois group is generated by the element sending P_2 to $\frac{m}{2}P_1 + P_2$. In particular, if m is even then $K_{\frac{m}{2}} \subseteq K(x_1, \zeta_m, y_1, y_2)$.

Proof. Let $\sigma \in \text{Gal}(K_m/K(x_1, \zeta_m, y_1, y_2))$ and write $\sigma(P_2) = \alpha P_1 + \beta P_2$ for some integers $0 \le \alpha, \beta \le m - 1$. Since P_1 and ζ_m are σ -invariant we get

$$\zeta_m = \sigma(\zeta_m) = \sigma(e_m(P_1, P_2)) = \zeta_m^{\beta}$$
,

yielding $\beta = 1$ and $\sigma(P_2) = \alpha P_1 + P_2$. Since $K_m = K(x_1, \zeta_m, y_1, y_2, x_2)$ and x_2 is a root of $X^3 + AX + B - y_2^2$, the order of σ is at most 3. Assume now that $\sigma \neq \text{Id}$. If the order of σ is 3: we have

$$P_2 = \sigma^3(P_2) = 3\alpha P_1 + P_2$$

hence $3\alpha \equiv 0 \pmod{m}$. Moreover, the three distinct points P_2 , $\sigma(P_2)$ and $\sigma^2(P_2)$ are on the line $y = y_2$. Thus their sum is zero, i.e.,

$$O = P_2 + \sigma(P_2) + \sigma^2(P_2) = 3\alpha P_1 + 3P_2.$$

Since $3\alpha \equiv 0 \pmod{m}$, we deduce $3P_2 = O$, contradicting $m \geqslant 4$.

If the order of σ is 2: as above $P_2 = \sigma^2(P_2)$ yields $2\alpha \equiv 0 \pmod{m}$. If m is odd this

implies $\alpha \equiv 0 \pmod{m}$, i.e., σ is the identity on $\mathcal{E}[m]$, a contradiction. If m is even the only possibility is $\alpha = \frac{m}{2}$.

The last statement for m even follows from the fact that σ acts trivially on $2P_1$ and $2P_2$.

Corollary 3.2. Let $p \ge 5$ be prime, then $[K_p : K(\zeta_p, y_1, y_2)]$ is odd.

Proof. Assume there is a $\sigma \in \operatorname{Gal}(K_p/K(\zeta_p, y_1, y_2))$ of order 2. For $i \in \{1, 2\}$, since $y_i \neq 0$ (because $p \neq 2$), one has $\sigma(P_i) \neq -P_i$ and $\sigma(P_i) + P_i$ is a nontrivial p-torsion point lying on the line $y = -y_i$. If $\sigma(P_i) + P_i$ is not a multiple of P_j $(i \neq j)$; then the set $\{P_j, \sigma(P_i) + P_i\}$ is a basis of $\mathcal{E}[p]$. Let $\sigma(P_i) + P_i =: (\tilde{x}_i, -y_i)$; then by Theorem 3.1, we have $K(\zeta_p, \tilde{x}_i, y_1, y_2) = K_p$. But σ acts trivially on ζ_p , y_1 and y_2 by definition and on \tilde{x}_i as well (because $\sigma(\sigma(P_i) + P_i) = P_i + \sigma(P_i)$). Hence σ fixes K_p which contradicts $\sigma \neq \operatorname{Id}$. Therefore $\sigma(P_1) = -P_1 + \beta_1 P_2$ and $\sigma(P_2) = \beta_2 P_1 - P_2$ which, together with $\sigma^2 = \operatorname{Id}$, yield $\beta_1 = \beta_2 = 0$. Hence both P_1 and P_2 are mapped to their opposite: a contradiction to $\sigma(y_i) = y_i$.

Remark 3.3. The equality $K_2 = K(x_1, \zeta_2, y_1, y_2)$ does not hold in general. A counterexample is again provided by the curve $\mathcal{E}: y^2 = x^3 - 1$ with $P_1 = (1,0)$ (as in Remark 2.9 any other choice would yield the equality $K_2 = K(x_1)$).

Before going to the main theorem we show a little application for primes $p \equiv 2 \pmod{3}$.

Theorem 3.4. Let $p \equiv 2 \pmod{3}$ be an odd prime, then $K_p = K(x_1, y_1, y_2)$ or $K_p = K(x_1, y_1, \zeta_p)$.

Proof. The degree of x_2 over $K(y_2)$ is at most 3, hence $[K_p:K(x_1,y_1,y_2)]\leqslant 3$. By Theorem 3.1 we have the equality $K_p=K(x_1,\zeta_p,y_1,y_2)$ and the hypothesis ensures that $[\mathbb{Q}(\zeta_p):\mathbb{Q}]$ is not divisible by 3, so the same holds for $[K_p:K(x_1,y_1,y_2)]$. Thus either $K_p=K(x_1,y_1,y_2)$ or $[K_p:K(x_1,y_1,y_2)]=2$. If the second case occurs, then let $\sigma\in \mathrm{Gal}(K_p/K(x_1,y_1,y_2))$ be nontrivial. Since σ fixes x_1,y_1 and y_2 , it can be written as

$$\sigma = \begin{pmatrix} 1 & b \\ 0 & d \end{pmatrix}$$
 with $\sigma^2 = \begin{pmatrix} 1 & b(1+d) \\ 0 & d^2 \end{pmatrix}$.

Since p is an odd prime, then $\sigma^2 = \text{Id}$ leads either to d = 1 (hence b = 0 and $\sigma = \text{Id}$, a contradiction) or to d = -1. Hence $\sigma(P_2) = bP_1 - P_2$ (with $b \neq 0$ otherwise σ would fix x_2 as well), i.e., bP_1 lies on the line $y = -y_2$. Thus $K(y_2) \subseteq K(x_1, y_1)$ and so $K_p = K(x_1, y_1, \zeta_p)$.

Corollary 3.5. Let $p \equiv 2 \pmod{3}$ be an odd prime. Assume that \mathcal{E} has a K-rational torsion point P_1 of order p. Then either $K_p = K(\zeta_p)$ or $K_p = K(y_2)$.

We are now ready to prove the equality appearing in the title of this section.

Theorem 3.6. If $m \ge 4$ and $K_m = K(x_1, \zeta_m, y_1, y_2)$, then we have $K_m = K(x_1, \zeta_m, y_2)$ (in particular this holds for any odd $m \ge 5$, by Theorem 3.1).

Proof. By hypotheses $K_m = K(x_1, \zeta_m, y_2)(y_1)$, so $[K_m : K(x_1, \zeta_m, y_2)] \leq 2$. Take $\sigma \in \operatorname{Gal}(K_m/K(x_1, \zeta_m, y_2))$, then $\sigma(x_1) = x_1$ yields $\sigma(P_1) = \pm P_1$. If $\sigma(P_1) = P_1$, then $y_1 \in \operatorname{Gal}(K_m/K(x_1, \zeta_m, y_2))$

 $K(x_1, \zeta_m, y_2)$ and $K_m = K(x_1, \zeta_m, y_2)$. Assume that $\sigma(P_1) = -P_1$ and let $\sigma = \begin{pmatrix} -1 & a \\ 0 & b \end{pmatrix}$. Using the Weil pairing (recall $\zeta_m := e_m(P_1, P_2)$), we have $\zeta_m = \sigma(\zeta_m) = \zeta_m^{-b}$, which yields

$$\sigma^2 = \left(\begin{array}{cc} 1 & -2a \\ 0 & 1 \end{array}\right) = \operatorname{Id}$$

leads to $2a \equiv 0 \pmod{m}$.

 $b \equiv -1 \pmod{m}$, while

Case $a \equiv 0 \pmod{m}$: we have $\sigma = -\operatorname{Id}$. Then $\sigma(P_2) = -P_2$, i.e., $\sigma(x_2) = x_2 \in K(x_1, \zeta_m, y_2)$. By Theorem 2.5, this yields $K_m = K(x_1, \zeta_m, y_2)$ and contradicts $\sigma \neq \operatorname{Id}$. Case $a \equiv \frac{m}{2} \pmod{m}$: we have $\sigma(P_2) = \frac{m}{2}P_1 - P_2$, i.e., $\sigma(P_2) + P_2 - \frac{m}{2}P_1 = O$. Since P_2 and $\sigma(P_2)$ lie on the line $y = y_2$ and are distinct, then $-\frac{m}{2}P_1$ must be the third point of \mathcal{E} on that line. Since $-\frac{m}{2}P_1$ has order 2 this yields $y_2 = 0$, contradicting $m \geqslant 4$.

To provide generators for a more general m one can also use the following lemma.

Lemma 3.7.

1. Assume that $P \in E(K)$ is not a 2-torsion point and that $\phi : E \to E$ is a K-rational isogeny with $\phi(R) = P$. Then K(x(R), y(R)) = K(x(R)).

2. If R is a point in $\mathcal{E}(\overline{K})$ and $n \ge 1$, then we have $x(nR) \in K(x(R))$.

Proof. Part 1 is [13, Lemma 2.2] and part 2 is well known.

Proposition 3.8. Let m be divisible by $d \ge 3$ and let R be a point of order m. Then

$$K(x(R), y(R)) = K\left(x(R), y\left(\frac{m}{d}R\right)\right)$$
.

In particular, if $K = K(\mathcal{E}[d])$ and R has order m, then K(x(R), y(R)) = K(x(R)).

Proof. We apply the previous lemma to the field K(P), with $P = \frac{m}{d}R$ and $\phi = \left[\frac{m}{d}\right]$. Then $K\left(x(R), y\left(\frac{m}{d}R\right), y(R)\right) = K\left(x(R), y\left(\frac{m}{d}R\right)\right)$. The conclusion follows from the fact that $y\left(\frac{m}{d}R\right) \in K(x(R), y(R))$ (because of the explicit expressions of the group-law of \mathcal{E}).

Corollary 3.9. Let m be divisible by an odd number $d \ge 5$. Then

$$K_m = K\left(x(P_1), x(P_2), \zeta_d, y\left(\frac{m}{d}P_2\right)\right)$$
.

Proof. By Proposition 3.8, $K_m = K_d(x(P_1), x(P_2))$. Obviously $\left\{\frac{m}{d}P_1, \frac{m}{d}P_2\right\}$ is a \mathbb{Z} -basis for $\mathcal{E}[d]$, hence Theorem 3.1 and Theorem 3.6 (applied with m=d) yield

$$K_d = K\left(x\left(\frac{m}{d}P_1\right), \zeta_d, y\left(\frac{m}{d}P_2\right)\right)$$
.

By Lemma 3.7, we have $x\left(\frac{m}{d}P_1\right) \in K(x(P_1))$ and the corollary follows.

The previous result leaves out only integers m of the type $2^{s}3^{t}$. For the case t=1 we mention the following

Proposition 3.10. The coordinates of the points of order dividing $3 \cdot 2^n$ can be explicitly computed by radicals out of the coefficients of the Weierstrass equation.

Proof. By the Weierstrass equation (recall we are assuming $\operatorname{char}(K) \neq 2, 3$), we can compute the y-coordinates out of the x-coordinate. Then by the addition formula, it suffices to compute the x-coordinate of two \mathbb{Z} -independent points of order 3 (done in Section 5), and the x-coordinate of two \mathbb{Z} -independent points of order 2^n (done in Section 6 for n=1,2). The coordinate x(P) of a point P of order 2^n (with $n \geq 3$) can be computed from x(2P). Indeed, we have $y(P) \neq 0$ (because the order of P is not 2) and so, by the duplication formula,

$$x(2P) = \frac{x(P)^4 - 2Ax(P)^2 - 8Bx(P) + A^2}{4x(P)^3 + 4Ax(P) + 4B}$$

(a polynomial equation of degree 4 with coefficients coming from the Weierstrass equation).

Proposition 3.11. If m is divisible by 3 (resp. 4), then

$$K_m = K_{m,x} \cdot K(y(Q_1), y(Q_2))$$

where $\{Q_1, Q_2\}$ is a \mathbb{Z} -basis for $\mathcal{E}[3]$ (resp. $\mathcal{E}[4]$).

Proof. Just apply Proposition 3.8 with d = 3 (resp. d = 4).

4. Galois representations and exceptional primes

We begin with some remarks on the Galois group $Gal(K_p/K)$ for a prime $p \ge 5$, which led us to believe that the generating set $\{x_1, \zeta_p, y_2\}$ is often minimal.

Lemma 4.1. For any prime $p \ge 5$ one has $[K_p : K(x_1, \zeta_p)] \le 2p$. Moreover the Galois group $Gal(K_p/K(x_1, \zeta_p))$ is cyclic, generated by $\eta = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$.

Proof. By Theorem 3.6, we have $K_p = K(x_1, \zeta_p, y_2)$. Let σ be an element of $\operatorname{Gal}(K_p/K(x_1, \zeta_p))$, then $\sigma(P_1) = \pm P_1$ and $\det(\sigma) = 1$ yield $\sigma = \begin{pmatrix} \pm 1 & \alpha \\ 0 & \pm 1 \end{pmatrix}$ (for some $0 \leqslant \alpha \leqslant p-1$). The powers of η are

$$\eta^{n} = \begin{cases} \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix} & \text{if } n \text{ is even} \\ \begin{pmatrix} -1 & n \\ 0 & -1 \end{pmatrix} & \text{if } n \text{ is odd} \end{cases}$$

and its order is obviously 2p; clearly any such σ is a power of η .

Remark 4.2. The group generated by η in $GL_2(\mathbb{Z}/p\mathbb{Z})$ is not normal; hence, in general, the extension $K(x_1, \zeta_p)/K$ is not Galois.

Since the p-th division polynomial has degree $\frac{p^2-1}{2}$ and, obviously, $[K(x_1,\zeta_p):K(x_1)] \leq p-1$ one immediately finds

$$[K(x_1, \zeta_p, y_2) : K] \le \frac{p^2 - 1}{2} \cdot (p - 1) \cdot 2p = |\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})|$$

and can provide conditions for the equality to hold.

Theorem 4.3. Let $p \ge 5$ be a prime, then $Gal(K_p/K) \simeq GL_2(\mathbb{Z}/p\mathbb{Z})$ if and only if the following hold:

- 1. $\zeta_p \notin K$;
- **2.** the p-th division polynomial φ_p is irreducible in $K(\zeta_p)[X]$;
- **3.** $y_1 \notin K(\zeta_p, x_1)$ and the generator of $Gal(K(\zeta_p, x_1, y_1)/K(\zeta_p, x_1))$ does not send P_2 to $-P_2$ (i.e., it is not represented by -Id).

Proof. Let σ be a generator of $\operatorname{Gal}(K(\zeta_p, x_1, y_1)/K(\zeta_p, x_1))$. Then $\sigma(P_1) = -P_1$ (because of hypothesis 3) and $\det(\sigma) = 1$. Hence it is of type $\sigma = \begin{pmatrix} -1 & \alpha \\ 0 & -1 \end{pmatrix}$ with $\alpha \neq 0$ (again by hypothesis 3). Therefore σ has order 2p in $\operatorname{Gal}(K_p/K(\zeta_p, x_1))$ and the hypotheses lead to the equality $[K_p : K] = |\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})|$. Vice versa it is obvious that if any of the conditions does not hold we get $[K_p : K] < |\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})|$.

Remark 4.4. As mentioned in the Introduction, if K is a number field and \mathcal{E} has no complex multiplication, then one expects the equality to hold for almost all primes p (for a recent bound on exceptional primes for which $\rho_{\mathcal{E},p}$ is not surjective see [9]). Hence for a general number field K (which, of course, can contain ζ_p or some coordinates of generators of $\mathcal{E}[p]$ only for finitely many p) one expects $\{x_1, \zeta_p, y_2\}$ to be a minimal set of generators for K_p over K (among those contained in $\{x_1, x_2, y_1, y_2, \zeta_p\}$). We have encountered an exceptional case in Theorem 3.4, where for $p \equiv 2 \pmod{3}$ ($p \neq 2$) one could have $K_p = K(x_1, y_1, \zeta_p)$. If this is the case, the maximum degree for $[K_p : K]$ is $\frac{p^2-1}{2} \cdot 2 \cdot (p-1)$. Therefore for infinitely many primes $p \equiv 2 \pmod{3}$ we have $K_p = K(x_1, y_1, y_2) = K(x_1, \zeta_p, y_2) \neq K(x_1, y_1, \zeta_p)$ (which emphasizes the need for coordinates of P_2 in our generating set).

Definition 4.5. For an elliptic curve \mathcal{E} defined over a number field K and a prime p we say that p is exceptional for \mathcal{E} if $\rho_{\mathcal{E},p}$ is not surjective, i.e., if $[K_p:K] < |\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})|$. In particular, if \mathcal{E} has complex multiplication, then all primes are exceptional for \mathcal{E} , because K_p/K is an abelian extension (see, e.g., [18, Chapter II, §5]).

In the rest of this Section 4 we will investigate the case of exceptional primes, assuming that K is a number field. For exceptional primes the Galois group $Gal(K_p/K)$ is a proper subgroup of $GL_2(\mathbb{Z}/p\mathbb{Z})$. Hence it falls in one of the following cases (see [15, Section 2] for a complete proof or [9, Lemma 4] for a similar statement).

Lemma 4.6. Let G be a proper subgroup of $GL_2(\mathbb{Z}/p\mathbb{Z})$, then one of the following holds:

- **1.** G is contained in a Borel subgroup;
- **2.** G is contained in the normalizer of a Cartan subgroup;
- **3.** G contains the special linear group $SL_2(\mathbb{Z}/p\mathbb{Z})$;
- **4.** the image of G under the projection $\pi: \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z}) \to \operatorname{PGL}_2(\mathbb{Z}/p\mathbb{Z})$ is contained in a subgroup which is isomorphic to one of the alternating groups A_4 and A_5 or to the symmetric group S_4 .

Regarding cases 3 and 4 we have the following statements.

Lemma 4.7. If K is linearly disjoint from $\mathbb{Q}(\zeta_p)$, then $\operatorname{Gal}(K_p/K)$ does not satisfy **3** of Lemma 4.6.

Proof. This readily follows from the fact that $K(\zeta_p)$ is the fixed field of $SL_2(\mathbb{Z}/p\mathbb{Z})$.

Remark 4.8. Obviously $Gal(K_p/K) \simeq SL_2(\mathbb{Z}/p\mathbb{Z})$ immediately yields $K_p = K(x_1, y_2)$. If $Gal(K_p/K)$ is larger than $SL_2(\mathbb{Z}/p\mathbb{Z})$ we have $[K(\zeta_p) : K] < p-1$ (i.e., $K \cap \mathbb{Q}(\zeta_p) \neq \mathbb{Q}$) but this does not alter our set of generators.

Lemma 4.9. If $p \ge 53$ is unramified in K/\mathbb{Q} and exceptional for \mathcal{E} , then $Gal(K_p/K)$ does not satisfy **4** of Lemma 4.6.

Proof. See [9, Lemma 8], depending on [16, Lemma 18].

We shall provide some information on the generating sets for K_p when p is exceptional for \mathcal{E} and $Gal(K_p/K)$ falls in cases 1 or 2 of Lemma 4.6. We start with the already mentioned exceptional case appearing in Theorem 3.4 and recall that we are always assuming $p \geq 5$.

Proposition 4.10. If $K_p = K(x_1, y_1, \zeta_p)$, then $[K_p : K] < (p^2 - 1)(p - 1)$ unless p = 5 and $\pi(\text{Gal}(K_p/K)) \simeq S_4$.

Proof. We already noticed that $[K_p:K] \leq (p^2-1)(p-1) < p(p^2-1) = |\mathrm{SL}_2(\mathbb{Z}/p\mathbb{Z})|$, so the prime p is exceptional and case $\mathbf{3}$ is not possible. The order of a Borel subgroup is $p(p-1)^2$, the order of a split Cartan subgroup is at most $(p-1)^2$ and the order of a non-split Cartan subgroup is at most p^2-1 (both have index 2 in their normalizer). So the statement holds when $\mathrm{Gal}(K_p/K)$ falls in cases $\mathbf{1}$ or $\mathbf{2}$ of Lemma 4.6. Assume we are in case $\mathbf{4}$ and note that if $|\mathrm{Gal}(K_p/K)| = (p^2-1)(p-1)$, then $|\pi(\mathrm{Gal}(K_p/K))| \geq p^2-1$. Thus case $\mathbf{4}$ cannot happen for $p \geq 11$. Moreover, if p = 7, then $p^2 - 1 > |S_4|$ and $\mathrm{PGL}_2(\mathbb{Z}/p\mathbb{Z})$ does not contain $|A_5|$ (see [15, Section 2.5]). We are left with p = 5, $[K_5:K] = 96$ and $|\pi(\mathrm{Gal}(K_p/K))| \geq 24 = |S_4|$, which completes the proof.

4.1. Exceptional primes I: Borel subgroup. Assume that $p \ge 5$ is exceptional for \mathcal{E} and $\operatorname{Gal}(K_p/K)$ is contained in a Borel subgroup. We can write elements of $\operatorname{Gal}(K_p/K)$ as upper triangular matrices $\sigma = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ with $ac \ne 0$ (this is not restrictive, since the results of the previous sections were completely independent of the chosen basis $\{P_1, P_2\}$).

Theorem 4.11. Let $p \ge 5$ and assume that $Gal(K_p/K)$ is contained in a Borel subgroup.

- **1.** If $p \not\equiv 1 \pmod{3}$, then $K_p = K(\zeta_p, y_2)$;
- **2.** if $p \equiv 1 \pmod{3}$, then $[K_p : K(\zeta_p, y_2)]$ is 1 or 3.

Proof. We know $K_p = K(x_1, \zeta_p, y_2)$. Take an element $\sigma \in \operatorname{Gal}(K_p/K(\zeta_p, y_2))$ so that $\sigma = \begin{pmatrix} a^{-1} & b \\ 0 & a \end{pmatrix}$. Let P_2 , R_2 and S_2 be the three points of the curve \mathcal{E} on the line $y = y_2$, so that $P_2 + R_2 + S_2 = O$. We have that $\sigma(P_2) = bP_1 + aP_2$ must be P_2 or R_2 or S_2 (the cases R_2 and S_2 are obviously symmetric).

Case 1: $\sigma(P_2) = P_2$. Then b = 0, a = 1 and $\sigma = \text{Id}$. Case 2: $\sigma(P_2) = R_2$. Then $\sigma^2(P_2) = a^{-1}bP_1 + abP_1 + a^2P_2$.

• If $\sigma^2(P_2) = P_2$, then $a^2 = 1$ and $a + a^{-1} \neq 0$ yields b = 0. Hence $\sigma(P_1) = \pm P_1$ and σ fixes x_1 . Since $K_p = K(x_1, \zeta_p, y_2)$, this implies $\sigma = \text{Id}$.

- If $\sigma^2(P_2) = R_2$, then one gets $a^2 = a$ (i.e., a = 1) and 2b = b (i.e., b = 0), leading to $\sigma = \text{Id}$.
- If $\sigma^2(P_2) = S_2$, then $P_2 + R_2 + S_2 = O$ yields

$$P_2 + bP_1 + aP_2 + a^{-1}bP_1 + abP_1 + a^2P_2 = (1 + a + a^2)(ba^{-1}P_1 + P_2) = O$$

Thus $1 + a + a^2 = 0$ and this is possible if and only if $p \equiv 1 \pmod{3}$.

Therefore, if $p \not\equiv 1 \pmod 3$, we have $\sigma = \operatorname{Id}$ and $K_p = K(\zeta_p, y_2)$. If $p \equiv 1 \pmod 3$ and $1 + a + a^2 = 0$, then the above σ has order 3 and the proof is complete.

4.2. Exceptional primes II: split Cartan subgroup. Assume that $p \ge 5$ is exceptional for \mathcal{E} and $\operatorname{Gal}(K_p/K)$ is contained in a split Cartan subgroup (resp. in the normalizer of a split Cartan subgroup). Then we can write elements of $\operatorname{Gal}(K_p/K)$ as matrices $\sigma = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}$ (resp. $\sigma = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}$ or $\sigma = \begin{pmatrix} 0 & a \\ c & 0 \end{pmatrix}$) with $a, c \in \mathbb{Z}/p\mathbb{Z}$ and $ac \ne 0$.

Theorem 4.12. Let $p \ge 5$ and assume that $\operatorname{Gal}(K_p/K)$ is contained in the normalizer of a split Cartan subgroup. We have $K_p = K(x_1, \zeta_p)$ or $K(x_1, y_1, \zeta_p)$. Moreover

- **1.** if $p \not\equiv 1 \pmod{3}$, then $K_p = K(\zeta_p, y_2)$;
- **2.** if $p \equiv 1 \pmod{3}$, then $[K_p : K(\zeta_p, y_2)]$ is 1 or 3.

Proof. Note that the only elements of the normalizer of a split Cartan subgroup which fix x_1 and ζ_p are $\pm \operatorname{Id}$. In particular, this holds for the elements of a Cartan subgroup itself. Then the first statement follows immediately. Now consider $\sigma \in \operatorname{Gal}(K_p/K(\zeta_p, y_2))$

and let R_2 and S_2 be the points defined in Theorem 4.11. If $\sigma = \begin{pmatrix} 0 & a \\ -a^{-1} & 0 \end{pmatrix}$, then $\sigma^2(P_2) = \sigma(aP_1) = -P_2$. Since σ fixes y_2 , this implies $y_2 = 0$ which contradicts $p \neq 2$.

Therefore we can restrict to Cartan subgroups and consider only $\sigma = \begin{pmatrix} a^{-1} & 0 \\ 0 & a \end{pmatrix}$.

Case 1: $\sigma(P_2) = P_2$. Then a = 1 and $\sigma = \text{Id}$. Case 2: $\sigma(P_2) = R_2$. Then $\sigma^2(P_2) = a^2 P_2$.

- If $\sigma^2(P_2) = P_2$, then $a^2 = 1$ and $\sigma(P_1) = \pm P_1$. As in Theorem 4.11, this implies $\sigma = \mathrm{Id}$.
- If $\sigma^2(P_2) = R_2$, then $a^2 = a$ yields a = 1 and $\sigma = \text{Id}$.
- If $\sigma^2(P_2) = S_2$, then $P_2 + R_2 + S_2 = O$ yields

$$P_2 + aP_2 + a^2P_2 = (1 + a + a^2)P_2 = O$$
.

Thus $1 + a + a^2 = 0$ and this is possible if and only if $p \equiv 1 \pmod{3}$.

Therefore, if $p \not\equiv 1 \pmod{3}$, we have $\sigma = \operatorname{Id}$ and $K_p = K(\zeta_p, y_2)$. If $p \equiv 1 \pmod{3}$ and $1 + a + a^2 = 0$, then σ has order 3.

4.3. Exceptional primes III: non-split Cartan subgroup. Assume now that $p \ge 5$ is exceptional for \mathcal{E} and $\operatorname{Gal}(K_p/K)$ is contained in a non-split Cartan subgroup (resp. in the normalizer of a non-split Cartan subgroup), then we can write elements of $\operatorname{Gal}(K_p/K)$ as

matrices $\sigma = \begin{pmatrix} a & \varepsilon b \\ b & a \end{pmatrix}$ (resp. $\sigma = \begin{pmatrix} a & \varepsilon b \\ b & a \end{pmatrix}$ or $\sigma = \begin{pmatrix} a & \varepsilon b \\ -b & -a \end{pmatrix}$) where $a, b \in \mathbb{Z}/p\mathbb{Z}$, $(a, b) \neq (0, 0)$ and ε is fixed and not a square modulo p (see for instance [10]).

Theorem 4.13. Let $p \ge 5$ and assume that $Gal(K_p/K)$ is contained in the normalizer of a non-split Cartan subgroup. We have $K_p = K(x_1, y_1)$ or $K(x_1, \zeta_p)$ or $K(x_1, y_1, \zeta_p)$. Moreover

- **1.** if $p \equiv 1 \pmod{3}$, then $K_p = K(\zeta_p, y_2)$;
- **2.** if $p \not\equiv 1 \pmod{3}$, then $[K_p : K(\zeta_p, y_2)]$ is 1 or 3.

Proof. The argument of the proof is very similar to the one used in the split Cartan case. Observe that the only elements of the normalizer of a non-split Cartan subgroup which fix x_1 are $\pm \operatorname{Id}$ and $\pm \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Hence, if $\operatorname{Gal}(K_p/K)$ is contained in a non-split Cartan subgroup, then $K_p = K(x_1, y_1)$ and, if $\operatorname{Gal}(K_p/K)$ is larger, then $K_p = K(x_1, \zeta_p)$ or $K_p = K(x_1, y_1, \zeta_p)$.

Let $\sigma \in \operatorname{Gal}(K_p/K(\zeta_p, y_2))$ and let R_2 and S_2 be the points defined in Theorem 4.11. We get rid of the normalizer first: assume that $\sigma = \begin{pmatrix} a & \varepsilon b \\ -b & -a \end{pmatrix}$ (recall $\sigma(\zeta_p) = \zeta_p$ yields $\det(\sigma) = -a^2 + \varepsilon b^2 = 1$). Note that $\sigma^2(P_2) = (a^2 - \varepsilon b^2)P_2 = -\det(\sigma)P_2 = -P_2$. Since σ fixes y_2 , this yields $y_2 = 0$ which contradicts $p \neq 2$. Therefore we only consider elements in the non-split Cartan subgroup: $\sigma = \begin{pmatrix} a & \varepsilon b \\ b & a \end{pmatrix}$ (with $\det(\sigma) = a^2 - \varepsilon b^2 = 1$).

Case 1: $\sigma(P_2) = P_2$. Then a = 1, b = 0 and $\sigma = Id$. Case 2: $\sigma(P_2) = R_2$. Then $\sigma^2(P_2) = 2\varepsilon abP_1 + (a^2 + \varepsilon b^2)P_2$.

• If $\sigma^2(P_2) = P_2$, then

$$\begin{cases} 2\varepsilon ab = 0 \\ a^2 + \varepsilon b^2 = 1 \end{cases}.$$

Since ε is not a square modulo p, then $a \neq 0$. We have b = 0 and $a^2 = 1$, hence $\sigma(P_1) = \pm P_1$. As in Theorem 4.11, this implies $\sigma = \mathrm{Id}$.

• If $\sigma^2(P_2) = R_2$, then

$$\begin{cases} (2a-1)\varepsilon b = 0\\ a = a^2 + \varepsilon b^2 \end{cases}$$

If $b \neq 0$, then 2a = 1 and $4\varepsilon b^2 = 1$. Since ε is not a square modulo p, this is not possible and it has to be b = 0 and $a = a^2$, yielding $\sigma = \text{Id}$.

• If $\sigma^2(P_2) = S_2$, then $P_2 + R_2 + S_2 = O$ implies

$$(1+2a)\varepsilon bP_1 + (1+a+a^2+\varepsilon b^2)P_2 = O$$
.

If b=0, then $1+a+a^2=0$. But $\det(\sigma)=1$ yields $a^2=1$ so a=-2 a contradiction (since $p\neq 3$). If $b\neq 0$, then 2a=-1 implies $4\varepsilon b^2=-3$. Since ε is not a square modulo p and $p\geqslant 5$, this could hold if and only if -3 is not a square modulo p, i.e., $p\equiv 2\pmod 3$. It is easy to check that in this case σ has order 3.

Therefore, if $p \equiv 1 \pmod{3}$, we have $\sigma = \text{Id}$ and $K_p = K(\zeta_p, y_2)$. If $p \equiv 2 \pmod{3}$, 2a = -1 and $4\varepsilon b^2 = -3$, then σ has order 3.

Remark 4.14. In the (Borel or Cartan) exceptional case, the information carried by ζ_p seems more relevant than that by the coordinate x_1 . Indeed if one considers a $\sigma \in \operatorname{Gal}(K_p/K(x_1,y_2))$, there is always room for elements like $\sigma = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ of order 2. A proof similar to the previous ones leads to

- **1.** $p \not\equiv 1 \pmod{3} \Longrightarrow [K_p : K(x_1, y_2)]$ divides 4 (in the Borel or split Cartan case) or divides 12 (in the non-split Cartan case);
- **2.** $p \equiv 1 \pmod{3} \Longrightarrow [K_p : K(x_1, y_2)]$ divides 12 (in the Borel or split Cartan case) or divides 4 (in the non-split Cartan case).
- 4.4. Remarks on modular curves. We give just an application of the results of the previous sections to the classical modular curves X(p) and $X_1(p)$, associated to the action of the congruence subgroups

$$\Gamma(p) = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : A \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{p} \right\}$$

and

$$\Gamma_1(p) = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : A \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \pmod{p} \right\}$$

on the complex upper half plane $\mathcal{H}=\{z\in\mathbb{C}:Im\,z>0\}$ via Möbius trasformations (for detailed definitions and properties see, e.g., [8] or [17]). We recall that X(p) and $X_1(p)$ parametrize families of elliptic curves with some extra level p structure via their moduli interpretation. Namely

- non cuspidal points in X(p) correspond to triples (\mathcal{E}, P_1, P_2) where \mathcal{E} is an elliptic curve (defined over \mathbb{C}) and P_1 , P_2 are points of order p generating the whole group $\mathcal{E}[p]$;
- non cuspidal points in $X_1(p)$ correspond to couples (\mathcal{E}, Q) where \mathcal{E} is an elliptic curve (defined over \mathbb{C}) and Q is a point of order p

(all these correspondences have to be considered modulo the natural isomorphisms). Let K be a number field. The points of X(p) or $X_1(p)$ which are rational over K will be denoted by X(p)(K) or $X_1(p)(K)$. Obviously a point is K-rational if and only if it is $\operatorname{Gal}(\overline{\mathbb{Q}}/K)$ -invariant (in particular, with the representation provided above one needs an elliptic curve \mathcal{E} defined over K).

Definition 4.15. A point $(\mathcal{E}, P_1, P_2) \in X(p)$ (resp. $(\mathcal{E}, P_1) \in X_1(p)$) is said to be exceptional if p is exceptional for \mathcal{E} . In particular, if \mathcal{E} is defined over K, we call such a point Borel exceptional (resp. Cartan exceptional) if $Gal(K(\mathcal{E}[p])/K)$ is contained in a Borel subgroup (resp. in the normalizer of a split or non-split Cartan subgroup).

The following is an easy consequence of Theorem 3.6.

Corollary 4.16. Assume $p \ge 5$; let \mathcal{E} be an elliptic curve defined over a number field K and let $P \in \mathcal{E}[p]$ be of order p. For any field L containing $K(x(P), \zeta_p)$ or containing $K(y(P), \zeta_p)$ and for any point $Q \in \mathcal{E}[p]$ independent from P, we have

$$(\mathcal{E}, Q) \in X_1(p)(L) \iff (\mathcal{E}, P, Q) \in X(p)(L)$$
.

Proof. The arrow \Leftarrow is obvious. Now assume $(\mathcal{E}, Q) \in X_1(p)(L)$, then

$$L \supseteq K(x(P), \zeta_p, y(Q)) = K_p$$
 or $L \supseteq K(y(P), \zeta_p, x(Q)) = K_p$

(both final equalities hold because of Theorem 3.6). Hence $(\mathcal{E}, P, Q) \in X(p)(L)$.

It would be interesting to describe the families of elliptic curves for which the previous corollary becomes trivial, i.e., curves for which $K(x(P), \zeta_p)$ or $K(y(P), \zeta_p)$ contain K(x(P), y(P)). Some examples are provided by the exceptional primes for which $K(\zeta_p, y(P)) = K_p$.

On exceptional points we have the following

Corollary 4.17. Assume $p \ge 53$ is unramified in K/\mathbb{Q} and K is linearly disjoint from $\mathbb{Q}(\zeta_p)$. If $p \not\equiv 1 \pmod{3}$, then, for any field $L \supseteq K(\zeta_p)$, the L-rational Borel exceptional points of X(p) and $X_1(p)$ are associated to the same elliptic curves. The same statement holds for any prime if we consider Cartan exceptional points.

Proof. We only need to check that if $(\mathcal{E}, Q) \in X_1(p)(L)$ is exceptional, then $(\mathcal{E}, Q, R) \in X(p)(L)$, for any R completing Q to a \mathbb{Z} -basis of $\mathcal{E}[p]$. For Borel exceptional points and $p \not\equiv 1 \pmod{3}$, this immediately follows from

$$L \supseteq K(\zeta_p, y(Q)) = K_p$$
,

by Theorem 4.11. If we consider a Cartan exceptional point (\mathcal{E}, Q) , then Theorems 4.12 and 4.13 show that

$$L \supseteq K(\zeta_p, x(Q), y(Q)) = K_p$$
. \square
5. FIELDS $K(\mathcal{E}[3])$

In this section we generalize the classification of the number fields $\mathbb{Q}(\mathcal{E}[3])$, appearing in [4], to the case of a general base field K, whose characteristic is different from 2 and 3 (or, more in general, in which the elliptic curve \mathcal{E} can be written in Weierstrass form $y^2 = x^3 + Ax + B$). We recall that the four x-coordinates of the 3-torsion points of \mathcal{E} are the roots of the polynomial $\varphi_3 := x^4 + 2Ax^2 + 4Bx - A^2/3$. Solving φ_3 with radicals, we get explicit expressions for the x-coordinates and we recall that for m = 3 being \mathbb{Z} -independent is equivalent to having different x-coordinates. Let $\Delta := -432B^2 - 64A^3$ be the discriminant of the elliptic curve. If $B \neq 0$, the roots of φ_3 are

$$x_{1} = -\frac{1}{2}\sqrt{\frac{\sqrt[3]{\Delta} - 8A}{3} - \frac{8B\sqrt{3}}{\sqrt{-\sqrt[3]{\Delta} - 4A}}} + \frac{\sqrt{-\sqrt[3]{\Delta} - 4A}}{2\sqrt{3}},$$

$$x_{2} = \frac{1}{2}\sqrt{\frac{\sqrt[3]{\Delta} - 8A}{3} - \frac{8B\sqrt{3}}{\sqrt{-\sqrt[3]{\Delta} - 4A}}} + \frac{\sqrt{-\sqrt[3]{\Delta} - 4A}}{2\sqrt{3}},$$

$$x_{3} = -\frac{1}{2}\sqrt{\frac{\sqrt[3]{\Delta} - 8A}{3} + \frac{8B\sqrt{3}}{\sqrt{-\sqrt[3]{\Delta} - 4A}}} - \frac{\sqrt{-\sqrt[3]{\Delta} - 4A}}{2\sqrt{3}},$$

$$x_{4} = \frac{1}{2}\sqrt{\frac{\sqrt[3]{\Delta} - 8A}{3} + \frac{8B\sqrt{3}}{\sqrt{-\sqrt[3]{\Delta} - 4A}}} - \frac{\sqrt{-\sqrt[3]{\Delta} - 4A}}{2\sqrt{3}},$$

where we have chosen one square root of $\frac{-\sqrt[3]{\Delta}-4A}{3}$ and one cubic root for Δ ; since $\zeta_3 \in K_3$ the degree $[K_3:K]$ will not depend on this choice.

To ease notation, we define

$$\gamma := \frac{-\sqrt[3]{\Delta} - 4A}{3} \ , \ \delta := \frac{(-\gamma - 4A)\sqrt{\gamma} - 8B}{\sqrt{\gamma}} \ , \ \delta' := \frac{(-\gamma - 4A)\sqrt{\gamma} + 8B}{\sqrt{\gamma}} \ .$$

Thus, when $B \neq 0$, the roots of φ_3 are

$$x_1 = \frac{1}{2}(-\sqrt{\delta} + \sqrt{\gamma}) , \ x_2 = \frac{1}{2}(\sqrt{\delta} + \sqrt{\gamma}) ,$$
$$x_3 = \frac{1}{2}(-\sqrt{\delta'} - \sqrt{\gamma}) \text{ and } x_4 = \frac{1}{2}(\sqrt{\delta'} - \sqrt{\gamma}) .$$

The corresponding points $P_i := (x_i, \sqrt{x_i^3 + Ax_i + B})$ have order 3 and are pairwise \mathbb{Z} -independent (this would hold with any choice for the sign of the square root providing the y-coordinate). For completeness, we show the expressions of y_1, y_2, y_3 and y_4 in terms of A, B, γ, δ and δ' :

$$y_1 = \sqrt{\frac{(-\gamma\sqrt{\gamma} + 4B)\sqrt{\delta} + \gamma\delta}{4\sqrt{\gamma}}} , \quad y_2 := \sqrt{\frac{(\gamma\sqrt{\gamma} - 4B)\sqrt{\delta} + \gamma\delta}{4\sqrt{\gamma}}} ,$$
$$y_3 = \sqrt{\frac{(-\gamma\sqrt{\gamma} - 4B)\sqrt{\delta'} - \gamma\delta'}{4\sqrt{\gamma}}} , \quad y_4 = \sqrt{\frac{(\gamma\sqrt{\gamma} + 4B)\sqrt{\delta'} - \gamma\delta'}{4\sqrt{\gamma}}} .$$

If B=0, then $\gamma=0$ too and the formulas provided above do not hold anymore. The x-coordinates are now the roots of $\varphi_3=x^4+2Ax^2-A^2/3$. Let

$$\beta := -\left(\frac{2\sqrt{3}}{3} + 1\right)A$$
 and $\eta := \left(\frac{2\sqrt{3}}{3} - 1\right)A$,

then the roots of φ_3 are $x_1 = \sqrt{\beta}$, $x_2 = -\sqrt{\beta}$, $x_3 = \sqrt{\eta}$ and $x_4 = -\sqrt{\eta}$. Furthermore

$$y_1 = \sqrt{\frac{-2A\sqrt{\beta}}{\sqrt{3}}} = \sqrt{\frac{-2A}{3}\sqrt{-2A\sqrt{3} - 3A}}$$
.

Using the results of the previous sections and the explicit formulas, we can now give the following description of K_3 .

Proposition 5.1. We have $K_3 = K(x_1 + x_2, \zeta_3, y_1)$. Moreover

- **1.** if $B \neq 0$, then $K_3 = K(\sqrt{\gamma}, \zeta_3, y_1)$,
- **2.** if B = 0, then $K_3 = K(\dot{\zeta}_3, y_1)$.

Proof. By Theorem 2.8, $K_3 = K(x_1 + x_2, x_1 x_2, \zeta_3, y_1)$. If $B \neq 0$, since $x_1 + x_2 = \sqrt{\gamma}$ and

$$x_1x_2 = \frac{\gamma}{2} + A + \frac{2B}{\sqrt{\gamma}} \in K(\sqrt{\gamma})$$
,

one has $K_3 = K(x_1 + x_2, \zeta_3, y_1) = K(\sqrt{\gamma}, \zeta_3, y_1)$. If B = 0, the statement follows from $x_1 + x_2 = 0$ and $K(x_1 x_2) = K(\sqrt{3}) \subseteq K(y_1)$.

5.1. The degree $[K_3:K]$. Because of the embedding

$$\operatorname{Gal}(K_n/K) \hookrightarrow \operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z})$$

one has that $d:=[K_3:K]$ is a divisor of $|\operatorname{GL}_2(\mathbb{Z}/3\mathbb{Z})|=48$ (in particular, if B=0, then $K_3=K(\zeta_3,y_1)$ and y_1 has degree at most 8 over K so $[K_3:K]$ divides 16). Therefore $d\in\Omega:=\{1,2,3,4,6,8,12,16,24,48\}$. In [4], we proved that the minimal set for $[\mathbb{Q}(\mathcal{E}[3]):\mathbb{Q}]$ is $\widetilde{\Omega}:=\{2,4,6,8,12,16,48\}$ and showed also explicit examples for any degree $d\in\widetilde{\Omega}$. When K is a number field we can get also examples of degree 1, 3 and 24: it suffices to take the curves in [4] with degree $d\in\{2,6,48\}$ and choose $K=\mathbb{Q}(\zeta_3)$ as base field. In general, once we have a curve \mathcal{E} defined over \mathbb{Q} with $[\mathbb{Q}(\mathcal{E}[3]):\mathbb{Q}]=48$, we produce examples of any degree $d\in\Omega$ by simply considering the same curve over subfields K of $\mathbb{Q}(\mathcal{E}[3])$ (obviously for those K one has $K_3=\mathbb{Q}(\mathcal{E}[3])$).

Theorem 5.2. With notations as above let $d = [K_3 : K]$. For $B \neq 0$, put $K' := K(\zeta_3, \sqrt[3]{\Delta})$ with d' := [K' : K] and consider the following conditions

A1.
$$\sqrt{\gamma} \notin K'$$
; **A2**. $\sqrt{\delta} \notin K'(\sqrt{\gamma})$; **A3**. $y_1 \notin K'(\sqrt{\delta})$.

For B = 0, put $K'' := K(\zeta_3)$ with d'' := [K'' : K] and consider the following conditions

B1.
$$\sqrt{3} \notin K''$$
; **B2.** $\sqrt{\beta} \notin K''(\sqrt{3})$; **B3.** $y_1 \notin K''(\sqrt{\beta})$.

Then the degrees are the following

B	d	holding conditions	l		holding conditions
$\neq 0$	8d'	A1, A2, A3	=0	8 <i>d</i> "	B1, B2, B3
$\neq 0$	4d'	2 of A1, A2, A3	=0	4d''	2 of B1 , B2 , B3
$\neq 0$	2d'	1 of A1 , A2 , A3	=0	2d''	1 of B1 , B2 , B3
$\neq 0$	d'	none	=0	d''	none

Proof. We use Proposition 5.1, the explicit description of the generators of K_3 given at the beginning of this section and the towers of fields

$$K \subseteq K' \subseteq K'(\sqrt{\gamma}) \subseteq K'(\sqrt{\gamma}, \sqrt{\delta}) \subseteq K'(\sqrt{\gamma}, y_1) = K_3$$

(for $B \neq 0$) and

$$K \subseteq K'' \subseteq K''(\sqrt{3}) \subseteq K''(\sqrt{\beta}) \subseteq K''(y_1) = K_3$$

(for B=0).

Looking at the explicit expressions of γ in terms of $\sqrt[3]{\Delta}$, of δ in terms of $\sqrt{\gamma}$, etc... one sees that all inclusions provide (at most) quadratic extensions: the computation of the degrees follows easily.

5.2. Galois groups. We now list all possible Galois groups $Gal(K_3/K)$ via a case by case analysis (one can easily connect a Galois group to the conditions in Theorem 5.2, so we do not write down a summarizing statement here).

5.2.1. $\mathbf{B} \neq \mathbf{0}$. The degree is a divisor of 48. Looking at the subgroups of $\mathrm{GL}_2(\mathbb{Z}/3\mathbb{Z})$ one sees that certain orders do not leave any choice: indeed d=1, 2, 3, 12, 16, 24 and 48 give $\mathrm{Gal}(K_3/K) \simeq \mathrm{Id}, \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/3\mathbb{Z}, D_6, SD_8, \mathrm{SL}_2(\mathbb{Z}/3\mathbb{Z})$ and $\mathrm{GL}_2(\mathbb{Z}/3\mathbb{Z})$ respectively ¹. The remaining orders are d=4, 6 and 8.

If d=4: then d'=1 or 2. In any case there is at least a cube root of Δ in K and we can pick that as our $\sqrt[3]{\Delta}$.

- If d' = 2 and **A1** holds, then $\sqrt{\gamma}$ provides another quadratic extension of K disjoint from K': hence $Gal(K_3/K) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- If d'=2 and **A2** holds, then there are two possibilities:
 - a) if $\sqrt{\gamma} \in K$, then $\sqrt{\delta}$ provides another quadratic extension of K disjoint from K' and $Gal(K_3/K) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$;
 - b) if $\sqrt{\gamma} \in K' K$, then K' is the unique quadratic subextension of K_3 and $Gal(K_3/K) \simeq \mathbb{Z}/4\mathbb{Z}$.
- If d'=2 and A3 holds, then there are two possibilities:
 - c) if $\sqrt{\delta} \in K$, then y_1 provides another quadratic extension of K disjoint from K' and $Gal(K_3/K) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$;
 - d) if $\sqrt{\delta} \in K' K$, then K' is the unique quadratic subextension of K_3 and $\operatorname{Gal}(K_3/K) \simeq \mathbb{Z}/4\mathbb{Z}$.
- If d' = 1, then $K(\sqrt{\gamma})$ (if **A1** holds) or $K(\sqrt{\delta})$ (if **A1** does not hold) is the unique quadratic subextension of K_3 and $Gal(K_3/K) \simeq \mathbb{Z}/4\mathbb{Z}$.

If d = 6: then d' = 3 or 6.

- If d' = 6, then $K_3 = K'$ and $Gal(K_3/K) \simeq S_3$.
- If d'=3, then $\operatorname{Gal}(K_3/K)$ is a group of order 6 with a normal subgroup $\operatorname{Gal}(K_3/K')$ of order 2, i.e., $\operatorname{Gal}(K_3/K) \simeq \mathbb{Z}/6\mathbb{Z}$.

If d=8: then d'=1 or 2 (and again we can pick a cube root of Δ in K).

• If d' = 1, then for a $\varphi \in \operatorname{Gal}(K_3/K)$ one can have $\varphi(\delta) = \delta$ or δ' and both cases occur. Therefore $\varphi(y_1)$ can be any of the other y_i and this provides 6 elements of order 4 (namely the morphisms sending y_1 to $\pm y_2$, $\pm y_3$ and $\pm y_4$, see for example those denoted by $\varphi_{i,j}$ for i = 3, 5, 7 and j = 1, 2 in [4, Appendix]: even if that paper is written for $K = \mathbb{Q}$ the formulas are valid in general). We have that $\operatorname{Gal}(K_3/K)$ is the quaternion group Q_8 with generators of order 4

$$\varphi_2 \left\{ \begin{array}{ccc} y_1 & \mapsto & y_2 \\ \\ \sqrt{\gamma} & \mapsto & \sqrt{\gamma} \end{array} \right. , \ \varphi_3 \left\{ \begin{array}{ccc} y_1 & \mapsto & y_3 \\ \\ \sqrt{\gamma} & \mapsto & -\sqrt{\gamma} \end{array} \right. , \ \varphi_4 \left\{ \begin{array}{ccc} y_1 & \mapsto & y_4 \\ \\ \sqrt{\gamma} & \mapsto & -\sqrt{\gamma} \end{array} \right.$$

and the element of order 2

$$\varphi_1 \left\{ \begin{array}{ccc} y_1 & \mapsto & -y_1 \\ \\ \sqrt{\gamma} & \mapsto & \sqrt{\gamma} \end{array} \right. .$$

¹One can also note that the unique normal subgroup of order 8 is the quaternion group Q_8 ; hence, whenever $[K_3:K']=8$, one has $\operatorname{Gal}(K_3/K')\simeq Q_8$.

- If d' = 2 and **A1** holds, then $K(\sqrt{\gamma}, y_1)$ and K' are disjoint over K and there are (at most) 2 elements of order 4 (and none of order 8). Therefore, since $(\mathbb{Z}/2\mathbb{Z})^3$ is not a subgroup of $GL_2(\mathbb{Z}/3\mathbb{Z})$, $Gal(K_3/K)$ is the dihedral group D_4 .
- If d'=2 and A1 does not hold, then there are two possibilities:
 - a) if $\sqrt{\gamma} \in K$, then $K(\sqrt{\delta}, y_1)$ is an extension of K disjoint from K', there are (at most) 2 elements of order 4 and $Gal(K_3/K)$ is the dihedral group D_4 ;
 - b) if $\sqrt{\gamma} \in K' K$, then $\varphi(y_1)$ can again be any of the y_i . As seen above for the case d = 8 with d' = 1, there are 6 elements of order 4 and $Gal(K_3/K) \simeq Q_8$.
- 5.2.2. **B** = **0**. The degree $[K_3 : K]$ divides 16. Hence $Gal(K_3/K)$ is a subgroup of the 2-Sylow subgroup of $GL_2(\mathbb{Z}/3\mathbb{Z})$ which is isomorphic to SD_8 (the semidihedral group of order 16). Obviously if d = 16, 2 or 1, then $Gal(K_3/K) \simeq SD_8$ or $\mathbb{Z}/2\mathbb{Z}$ or Id. Hence we are left with d = 4 and 8.

If d = 4: then d'' = 1 or 2.

- If d'' = 2 and **B1** holds, then K'' and $K(\sqrt{3})$ are disjoint over K and $Gal(K_3/K) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (note that this happens if $i \notin K$).
- If d'' = 2 and **B2** holds, then there are two possibilities:
 - a) if $\sqrt{3} \in K$ (note that, for this case, this is equivalent to $i \notin K$), then $K(\sqrt{\beta})$ provides another quadratic extension of K disjoint from K'' and $Gal(K_3/K) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$;
 - b) if $\sqrt{3} \in K'' K$ (equivalently $i \in K$), then K'' is the unique quadratic subextension of K_3 and $\operatorname{Gal}(K_3/K) \simeq \mathbb{Z}/4\mathbb{Z}$.
- If d'' = 2 and **B3** holds, then there are two possibilities:
 - c) if $\sqrt{\beta} \in K$, then $K(y_1)$ provides another quadratic extension of K disjoint from K'' and $Gal(K_3/K) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$;
 - d) if $\sqrt{\beta} \in K'' K$, then K'' is the unique quadratic subextension of K_3 and $Gal(K_3/K) \simeq \mathbb{Z}/4\mathbb{Z}$.
- If d'' = 1, then $K(\sqrt{3})$ (if **B1** holds) or $K(\sqrt{\beta})$ (if **B1** does not hold) is the unique quadratic subextension of K_3 and $Gal(K_3/K) \simeq \mathbb{Z}/4\mathbb{Z}$.

If d = 8: then d'' = 1 or 2.

- If d''=1, then there are elements φ of $\operatorname{Gal}(K_3/K)$ such that $\varphi(\sqrt{3})=\sqrt{-3}$ and $\varphi(\sqrt{\beta})=-\sqrt{\beta}$. Therefore the image of x_1 can be any of the other x_i and the image of y_1 can be any of the other y_i . As in the case $B\neq 0$ with d=8 and d'=1, one sees that the elements sending y_1 to $\pm y_i$ ($2\leqslant i\leqslant 4$) are of order 4 in the Galois group and $\operatorname{Gal}(K_3/K)\simeq Q_8$.
- If d'' = 2 and **B1** holds, then K'' and $K(y_1)$ are disjoint over K, there are 2 elements of order 4 and $Gal(K_3/K) \simeq D_4$.
- If d'' = 2 and **B1** does not hold, then there are two possibilities:
 - a) if $\sqrt{3} \in K$, then $K(y_1)$ is an extension of K disjoint from K'', there are 2 elements of order 4 and $Gal(K_3/K)$ is the dihedral group D_4 ;
 - b) if $\sqrt{3} \in K'' K$, then $\varphi(y_1)$ can be any of the y_i , there are 6 elements of order 4 and $Gal(K_3/K) \simeq Q_8$.

6. Fields
$$K(\mathcal{E}[4])$$

This section focuses on the case m=4 (we remark that the γ and δ here have no relation with the same symbols appearing in Section 5). Let K be a field, with $\operatorname{char}(K) \neq 2, 3$, and let \mathcal{E} be an elliptic curve defined over K, with Weierstrass form $y^2 = x^3 + Ax + B$. The roots α , β and γ of $x^3 + Ax + B = 0$ are the x-coordinates of the points of order 2 of \mathcal{E} . In particular $\alpha + \beta + \gamma = 0$. The points of exact order 4 of \mathcal{E} are $\pm P_1$, $\pm P_2$, $\pm P_3$, $\pm P_4$, $\pm P_5$, $\pm P_6$, where

$$P_{1} = (\alpha + \sqrt{(\alpha - \beta)(\alpha - \gamma)}, (\alpha - \beta)\sqrt{\alpha - \gamma} + (\alpha - \gamma)\sqrt{\alpha - \beta}),$$

$$P_{2} = (\beta + \sqrt{(\beta - \alpha)(\beta - \gamma)}, (\beta - \gamma)\sqrt{\beta - \alpha} + (\beta - \alpha)\sqrt{\beta - \gamma}),$$

$$P_{3} = (\alpha - \sqrt{(\alpha - \beta)(\alpha - \gamma)}, (\alpha - \beta)\sqrt{\alpha - \gamma} - (\alpha - \gamma)\sqrt{\alpha - \beta}),$$

$$P_{4} = (\beta - \sqrt{(\beta - \alpha)(\beta - \gamma)}, (\beta - \alpha)\sqrt{\beta - \gamma} - (\beta - \gamma)\sqrt{\beta - \alpha}),$$

$$P_{5} = \left(\gamma + \sqrt{(\alpha - \gamma)(\beta - \gamma)}, \frac{(\alpha - \gamma)(\beta - \gamma)}{\sqrt{\gamma - \alpha}} + \frac{(\alpha - \gamma)(\beta - \gamma)}{\sqrt{\gamma - \beta}}\right),$$

$$P_{6} = \left(\gamma - \sqrt{(\alpha - \gamma)(\beta - \gamma)}, \frac{(\alpha - \gamma)(\beta - \gamma)}{\sqrt{\gamma - \alpha}} - \frac{(\alpha - \gamma)(\beta - \gamma)}{\sqrt{\gamma - \beta}}\right).$$

We take P_1 and P_2 as basis of the 4-torsion subgroup of \mathcal{E} . With the explicit formulas for the coordinates of the 4-torsion points its easy to check that (see, for example, [6])

$$K_4 = K(\sqrt{-1}, \sqrt{\alpha - \beta}, \sqrt{\beta - \gamma}, \sqrt{\gamma - \alpha})$$
.

Another quick way to find this extension is by applying the results of Section 2.

6.1. The degree $[K_4:K]$. By definition $K(\alpha,\beta)$ is the splitting field of $x^3 + Ax + B$, i.e., the field generated by the 2-torsion points. Hence $[K(\alpha,\beta):K] = [K_2:K] \le 6$. Then $K_4 = K(\sqrt{\alpha - \beta}, \sqrt{\alpha - \gamma}, \sqrt{\beta - \gamma}, \sqrt{-1})$ has degree at most $16 \cdot [K(\alpha,\beta):K] \le 96$ which is, as expected, the cardinality of $GL_2(\mathbb{Z}/4\mathbb{Z})$. As mentioned at the beginning of Section 5.1, once we find a curve \mathcal{E} defined over \mathbb{Q} with $[\mathbb{Q}(\mathcal{E}[4]):\mathbb{Q}] = 96$ (see Proposition 6.2 below), we know that any degree d dividing 96 is obtainable over some number field K.

Theorem 6.1. With notations as above, put $d' := [K_2 : K]$ and $d := [K_4 : K]$. Consider the conditions

A1.
$$\sqrt{\alpha - \beta} \notin K_2$$
, A3. $\sqrt{\beta - \gamma} \notin K_2(\sqrt{\alpha - \beta}, \sqrt{\alpha - \gamma})$, A2. $\sqrt{\alpha - \gamma} \notin K_2(\sqrt{\alpha - \beta})$, A4. $\sqrt{-1} \notin K(\sqrt{\alpha - \beta}, \sqrt{\alpha - \gamma}, \sqrt{\beta - \gamma})$.

Then the degrees are the following

d	holding conditions		
16d'	A1, A2, A3, A4		
8d'	3 of A1, A2, A3, A4		
4d'	2 of A1, A2, A3, A4		
2d'	1 of A1, A2, A3, A4		
d'	none		

Proof. Computations are straightforward (every condition provides a degree 2 extension).

We show that any degree d is obtainable by providing a rather general case over \mathbb{Q} with d = 96. To stay coherent with our previous notations we set $\mathbb{Q}(\mathcal{E}[4]) =: \mathbb{Q}_4$ and $\mathbb{Q}(\mathcal{E}[2]) =: \mathbb{Q}_2$ (not to be confused with the 2-adic field).

Proposition 6.2. Assume that $x^3 + Ax + B \in \mathbb{Q}[x]$ is irreducible, that $\Delta = -16(27B^2 + 4A^3)$ is positive and not a square in \mathbb{Q} and that α , β and γ are pairwise distinct real numbers. Then $[\mathbb{Q}_4 : \mathbb{Q}] = 96$.

Proof. Put $\delta = -3\alpha^2 - 4A$ and note that, once α is fixed the other two roots are $\frac{-\alpha \pm \sqrt{\delta}}{2}$. By renaming the three roots (if necessary), we may assume that $\alpha > \beta > \gamma$, so that all the generators except $\sqrt{-1}$ are real and

$$[\mathbb{Q}_4:\mathbb{Q}] = 2[\mathbb{Q}(\sqrt{\alpha-\beta},\sqrt{\alpha-\gamma},\sqrt{\beta-\gamma}):\mathbb{Q}]$$

$$= 2[\mathbb{Q}\left(\sqrt{\frac{3\alpha+\sqrt{\delta}}{2}},\sqrt{\frac{3\alpha-\sqrt{\delta}}{2}},\sqrt[4]{\delta}\right):\mathbb{Q}].$$

By the choice of α , we have that A < 0 and the polynomial $x^3 + Ax + B$ has a minimum in $x = \sqrt{-\frac{A}{3}}$. Hence $\alpha > \sqrt{-\frac{A}{3}}$ and in particular $3\alpha^2 + A > 0$.

By the hypotheses, we have that $[\mathbb{Q}_2:\mathbb{Q}]=[\mathbb{Q}(\alpha,\sqrt{\delta}):\mathbb{Q}]=6$ and $\delta>0$ is not a square in $\mathbb{Q}(\alpha)$. Obviously $[\mathbb{Q}_2(\sqrt[4]{\delta}):\mathbb{Q}_2]=2$; moreover $\frac{3\alpha+\sqrt{\delta}}{2}$ is a square in \mathbb{Q}_2 if and only if $\frac{3\alpha-\sqrt{\delta}}{2}$ has the same property. Assume $\frac{3\alpha+\sqrt{\delta}}{2}\in(\mathbb{Q}_2^*)^2$, i.e., $\frac{3\alpha+\sqrt{\delta}}{2}=(a+b\sqrt{\delta})^2$, for some $a,b\in\mathbb{Q}_2$. Then

$$\begin{cases} a^2 + b^2 \delta = \frac{3\alpha}{2} \\ 2ab = \frac{1}{2} \end{cases} \implies \begin{cases} a^2 + \frac{\delta}{16a^2} = \frac{3\alpha}{2} \\ b = \frac{1}{4a} \end{cases},$$

leading to

$$a^2 = \frac{12\alpha \pm \sqrt{144\alpha^2 - 16\delta}}{16} = \frac{3\alpha \pm \sqrt{9\alpha^2 - \delta}}{4} \in \mathbb{Q}(\alpha) .$$

Hence $9\alpha^2 - \delta = 12\alpha^2 + 4A$ must be a square in $\mathbb{Q}(\alpha)$, i.e., $3\alpha^2 + A \in (\mathbb{Q}(\alpha)^*)^2$. Let N denote the norm map from $\mathbb{Q}(\alpha)$ to \mathbb{Q} . Then $N(3\alpha^2 + A) = 27B^2 + 4A^3$ is not a square in \mathbb{Q} by hypothesis and this contradicts $3\alpha^2 + A \in (\mathbb{Q}(\alpha)^*)^2$. Therefore

$$\left[\mathbb{Q}_2\left(\sqrt{\frac{3\alpha+\sqrt{\delta}}{2}}\right):\mathbb{Q}_2\right] = \left[\mathbb{Q}_2\left(\sqrt{\frac{3\alpha-\sqrt{\delta}}{2}}\right):\mathbb{Q}_2\right] = 2$$

and we have to prove that the three quadratic extensions of \mathbb{Q}_2 we found are independent.

The elements $\sqrt{\frac{3\alpha+\sqrt{\delta}}{2}}$ and $\sqrt{\frac{3\alpha-\sqrt{\delta}}{2}}$ generate the same quadratic extension over \mathbb{Q}_2 if and only if

$$\frac{3\alpha + \sqrt{\delta}}{2} \cdot \frac{2}{3\alpha - \sqrt{\delta}} = \frac{9\alpha^2 - \delta}{(3\alpha - \sqrt{\delta})^2} \in (\mathbb{Q}_2^*)^2,$$

i.e., if and only if $3\alpha^2 + A \in (\mathbb{Q}_2^*)^2$. We have already seen that $3\alpha^2 + A \notin (\mathbb{Q}(\alpha)^*)^2$, so we must have $3\alpha^2 + A = (a + b\sqrt{\delta})^2$ with $a, b \in \mathbb{Q}(\alpha)$ and $b \neq 0$. A little computation gives

$$b^{2} = -\frac{3\alpha^{2} + A}{3\alpha^{2} + 4A} \in (\mathbb{Q}(\alpha)^{*})^{2},$$

but

$$N\left(-\frac{3\alpha^2 + A}{3\alpha^2 + 4A}\right) = -1 \notin (\mathbb{Q}^*)^2$$

and this is a contradiction. Hence

$$\left[\mathbb{Q}_2\left(\sqrt{\frac{3\alpha+\sqrt{\delta}}{2}},\sqrt{\frac{3\alpha-\sqrt{\delta}}{2}}\right):\mathbb{Q}_2\right]=4$$
.

Now $\sqrt[4]{\delta}$ and $\sqrt{\frac{3\alpha \pm \sqrt{\delta}}{2}}$ generate the same quadratic extension of \mathbb{Q}_2 if and only if

$$\frac{3\alpha \pm \sqrt{\delta}}{2} \cdot \frac{1}{\sqrt{\delta}} = \frac{6\alpha\sqrt{\delta} \pm 2\delta}{4\delta} \in (\mathbb{Q}_2^*)^2,$$

i.e., if and only if $6\alpha\sqrt{\delta} \pm 2\delta = (a+b\sqrt{\delta})^2$ for some $a,b\in\mathbb{Q}(\alpha)$. This leads to

1. $a^2 + b^2 \delta = 2\delta$ and $2ab = 6\alpha$: solving for a we get

$$a^2 = \delta \pm \sqrt{\delta^2 - 9\alpha^2 \delta} \in \mathbb{Q}(\alpha)$$
.

Hence

$$\delta^{2} - 9\alpha^{2}\delta = (-3\alpha^{2} - 4A)(-12\alpha^{2} - 4A) \in (\mathbb{Q}(\alpha)^{*})^{2},$$

i.e., $(3\alpha^2 + 4A)(3\alpha^2 + A) \in (\mathbb{Q}(\alpha)^*)^2$. But by hypothesis $3\alpha^2 + 4A = -\delta < 0$ and we recall that $3\alpha^2 + A > 0$; thus $(3\alpha^2 + 4A)(3\alpha^2 + A) < 0$ cannot be a square in the real field $\mathbb{Q}(\alpha)$.

2. $a^2 + b^2 \delta = -2\delta$ and $2ab = 6\alpha$: this is impossible because $a^2 + b^2 \delta > 0$, while $-2\delta < 0$.

Then

$$\left[\mathbb{Q}_2\left(\sqrt[4]{\delta},\sqrt{\frac{3\alpha+\sqrt{\delta}}{2}}\right):\mathbb{Q}_2\right] = \left[\mathbb{Q}_2\left(\sqrt[4]{\delta},\sqrt{\frac{3\alpha-\sqrt{\delta}}{2}}\right):\mathbb{Q}_2\right] = 4.$$

With similar computations one checks that the extension generated by $\sqrt[4]{\delta}$ is also independent from $\mathbb{Q}_2(\sqrt{3\alpha^2+A})$ (the third quadratic extension contained in $\mathbb{Q}_2\left(\sqrt{\frac{3\alpha+\sqrt{\delta}}{2}},\sqrt{\frac{3\alpha-\sqrt{\delta}}{2}}\right)$).

Hence

$$\left[\mathbb{Q}_2\left(\sqrt{\frac{3\alpha+\sqrt{\delta}}{2}},\sqrt{\frac{3\alpha-\sqrt{\delta}}{2}},\sqrt[4]{\delta}\right):\mathbb{Q}\right]=48$$

and, by (6.1), we have $[\mathbb{Q}_4 : \mathbb{Q}] = 96$.

With reducible polynomials $x^3 + Ax + B$ we can easily obtain examples of smaller degrees, in particular when A = 0 or B = 0 (obviously, since $\sqrt{-1} \in \mathbb{Q}_4$, we cannot obtain extension of degree 1 or 3 over \mathbb{Q}).

Example 6.3. The curve

$$y^{2} = x^{3} - \frac{481}{3}x + \frac{9658}{27} = \left(x - \frac{34}{3}\right)\left(x - \frac{7}{3}\right)\left(x + \frac{41}{3}\right)$$

provides $\sqrt{\alpha - \beta} = 3$, $\sqrt{\alpha - \gamma} = 5$ and $\sqrt{\beta - \gamma} = 4$. Then $\mathbb{Q}_4 = \mathbb{Q}(\sqrt{-1})$ has degree 2 over \mathbb{Q} .

The curve

$$y^2 = x^3 - 22x - 15 = (x - 5)(x^2 + 5x + 3)$$

yields

$$\mathbb{Q}_2 = \mathbb{Q}(\sqrt{13})$$
 and $\mathbb{Q}_4 = \mathbb{Q}\left(\sqrt{\frac{5+\sqrt{13}}{2}}, \sqrt{\frac{5-\sqrt{13}}{2}}, \sqrt[4]{5}, \sqrt{-1}\right)$

which has degree 32 over \mathbb{Q} .

Proposition 6.4. If A = 0, then $\mathbb{Q}_4 = \mathbb{Q}\left(\zeta_{12}, \sqrt{\sqrt[3]{B}(1-\zeta_3)}\right)$ and

$$[\mathbb{Q}_4:\mathbb{Q}] = \begin{cases} 8 & \text{if } B \in (\mathbb{Q}^*)^3 \\ 24 & \text{otherwise} \end{cases},$$

If B = 0, then $\mathbb{Q}_4 = \mathbb{Q}(\sqrt{2}, \sqrt{-1}, \sqrt[4]{-A})$ and

$$[\mathbb{Q}_4:\mathbb{Q}] = \begin{cases} 16 & \text{if } A \neq \pm 2a^2, \pm a^2 \text{ with } a \in \mathbb{Q} ,\\ 8 & \text{if } A = \pm 2a^2 \text{ with } a \in \mathbb{Q} ,\\ 4 & \text{if } A = a^4, \pm 4a^4 \text{ with } a \in \mathbb{Q} ,\\ 8 & \text{otherwise } . \end{cases}$$

Proof. For A=0 just take $\alpha=\sqrt[3]{B}$, $\beta=\zeta_3\sqrt[3]{B}$ and $\gamma=\zeta_3^2\sqrt[3]{B}$ to get

$$\mathbb{Q}_4 = \mathbb{Q}\left(\zeta_3, \sqrt{-1}, \sqrt{\sqrt[3]{B}(1-\zeta_3)}, \sqrt{\sqrt[3]{B}(1-\zeta_3^2)}, \sqrt{\sqrt[3]{B}(\zeta_3-\zeta_3^2)}\right) .$$

Obviously $\mathbb{Q}(\zeta_3, \sqrt{-1}) = \mathbb{Q}(\zeta_{12})$, moreover $\sqrt{\sqrt[3]{B}(1-\zeta_3)}$, $\sqrt{\sqrt[3]{B}(1-\zeta_3^2)}$ and $\sqrt{\sqrt[3]{B}(\zeta_3-\zeta_3^2)}$ generate the same extension of $\mathbb{Q}(\zeta_{12})$. Therefore

$$\mathbb{Q}_4 = \mathbb{Q}\left(\zeta_{12}, \sqrt{\sqrt[3]{B}(1-\zeta_3)}\right)$$

and the first statement follows.

For B=0 let $\alpha=0$, $\beta=\sqrt{-A}$ and $\gamma=-\beta$ to get $\mathbb{Q}_4=\mathbb{Q}(\sqrt[4]{-A},\sqrt{2},\sqrt{-1})$. The unique quadratic subfield of $\mathbb{Q}(\sqrt[4]{-A})$ is $\mathbb{Q}(\sqrt{-A})$, hence, if $\mathbb{Q}(\sqrt{-A})\neq\mathbb{Q}(\sqrt{\pm 2})$, $\mathbb{Q}(\sqrt{-1})$, \mathbb{Q} , i.e., if $A\neq\pm 2a^2,\pm a^2$ for some $a\in\mathbb{Q}$, we have $[\mathbb{Q}_4:\mathbb{Q}]=16$. The remaining cases are straightforward.

6.2. Galois groups. One can find descriptions for $GL_2(\mathbb{Z}/4\mathbb{Z})$ in [1, Section 5.1] or [7, Section 3]: the most suitable for our goals is the exact sequence coming from the canonical projection $GL_2(\mathbb{Z}/4\mathbb{Z}) \to GL_2(\mathbb{Z}/2\mathbb{Z})$, whose kernel we denote by H_2^4 . Obviously

$$H_2^4 = \left\{ \left(\begin{array}{cc} 1 + 2a & 2b \\ 2c & 1 + 2d \end{array} \right) \in \operatorname{GL}_2(\mathbb{Z}/4\mathbb{Z}) \right\}$$

and it is easy to check that it is an abelian group of order 16 and exponent 2, i.e., isomorphic to $(\mathbb{Z}/2\mathbb{Z})^4$. By sending the row (1 1) to (3 3) and leaving rows (1 0) and (0 1) fixed, we see that there exists a section $GL_2(\mathbb{Z}/2\mathbb{Z}) \to GL_2(\mathbb{Z}/4\mathbb{Z})$ which splits the sequence

$$H_2^4 \hookrightarrow \mathrm{GL}_2(\mathbb{Z}/4\mathbb{Z}) \twoheadrightarrow \mathrm{GL}_2(\mathbb{Z}/2\mathbb{Z})$$

as a semi-direct product. For any K, we have a commutative diagram

$$H_2^4 \xrightarrow{} \operatorname{GL}_2(\mathbb{Z}/4\mathbb{Z}) \xrightarrow{\longrightarrow} \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Gal}(K_4/K_2) \xrightarrow{\longleftarrow} \operatorname{Gal}(K_4/K) \xrightarrow{\longrightarrow} \operatorname{Gal}(K_2/K) .$$

The structure of $Gal(K_4/K)$ can be derived from the lower sequence (which splits as well), checking the conditions of Theorem 6.1 to compute d' (which identifies $Gal(K_2/K)$ as one among Id, $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z}$ or S_3) and the $i \in \{0, \ldots, 4\}$ for which $Gal(K_4/K_2) \simeq (\mathbb{Z}/2\mathbb{Z})^i$.

References

- [1] C. Adelmann, The decomposition of primes in torsion point fields, Lecture Notes in Mathematics 1761, Springer-Verlag, Berlin, 2001.
- [2] A. Bandini, Three-descent and the Birch and Swinnerton-Dyer conjecture, *Rocky Mount. J. of Math.* **34** (2004), 13–27.
- [3] A. BANDINI, 3-Selmer groups for curves $y^2 = x^3 + a$, Czechoslovak Math. J. 58 (2008), 429–445.
- [4] A. BANDINI AND L. PALADINO, Number fields generated by the 3-torsion poins of an elliptic curve, *Monatsh. Math.* **168**, no. 2 (2012), 157–181.
- [5] R. DVORNICICH AND U. ZANNIER, Local-global divisibility of rational points in some commutative algebraic groups, *Bull. Soc. Math. France* **129**, no. 3 (2001), 317–338.
- [6] R. DVORNICICH R. AND U. ZANNIER, An analogue for elliptic curves of the Grunwald-Wang example, C. R. Acad. Sci. Paris, Ser. I 338 (2004), 47–50.
- [7] C. HOLDEN, Mod 4 Galois representations and elliptic curves, Proc. Amer. Math. Soc. 136, no. 1 (2008), 31–39.
- [8] N.M. Katz B. Mazur, Arithmetic moduli of elliptic curves, Annals of Math. Studies 108, Princeton Univ. Press, Princeton, 1985.
- [9] E. LARSON AND D. VAINTROB, On the surjectivity of Galois representations associated to elliptic curves over number fields, *Bull. Lond. Math. Soc.* 46, no. 1 (2014), 197–209.
- [10] Á. LOZANO-ROBLEDO, On the field of definition of p-torsion points of elliptic curves over the rationals, Math. Ann. **357**, no. 1 (2013), 279–305.

- [11] L. PALADINO, Local-global divisibility by 4 in elliptic curves defined over \mathbb{Q} , Annali di Matematica Pura e Applicata 189, no. 1 (2010), 17-23.
- [12] L. PALADINO, Elliptic curves with $\mathbb{Q}(\mathcal{E}[3]) = \mathbb{Q}(\zeta_3)$ and counterexamples to local-global divisibility by 9, J. Théor. Nombres Bordeaux 22 (2010), no. 1, 138–160.
- [13] J. REYNOLDS, On the pre-image of a point under an isogeny and Siegel's theorem, New York J. Math. 17 (2011), 163–172.
- [14] E.F. Schaefer and M. Stoll, How to do a p-descent on an elliptic curve, Trans. Amer. Math. Soc. 356 (2004), 1209–1231.
- [15] J.-P. Serre, Proprietés Galoisiennes des points d'ordre fini des courbes elliptiques, *Invent. Math.* **15** (1972), 259–331.
- [16] J.-P. SERRE, Quelques applications du théorèm de densité de Chebotarev, *Ist. Hautes Études Sci. Publ. Math.* **54** (1981), 323–401.
- [17] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, Princeton, 1971.
- [18] J.H. Silverman, Advanced topics in the arithmetic of elliptic curves, **GTM 151** Springer-Verlag, New York, 1994.