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Abstract. Let K be a field of characteristic char(K) 6= 2, 3 and let E be an elliptic
curve defined over K. Let m be a positive integer, prime with char(K) if char(K) 6= 0;
we denote by E [m] the m-torsion subgroup of E and by Km := K(E [m]) the field obtained
by adding to K the coordinates of the points of E [m]. Let Pi := (xi, yi) (i = 1, 2) be a
Z-basis for E [m]; then Km = K(x1, y1, x2, y2). We look for small sets of generators for
Km inside {x1, y1, x2, y2, ζm} trying to emphasize the role of ζm (a primitive m-th root
of unity). In particular, we prove that Km = K(x1, ζm, y2), for any odd m > 5. When
m = p is prime and K is a number field we prove that the generating set {x1, ζp, y2} is
often minimal, while when the classical Galois representation Gal(Kp/K) → GL2(Z/pZ)
is not surjective we are sometimes able to further reduce the set of generators. We also
describe explicit generators, degree and Galois groups of the extensions Km/K for m = 3
and m = 4.

1. Introduction

Let K be a field of characteristic char(K) 6= 2, 3 and let E be an elliptic curve defined
over K. Let m be a positive integer, prime with char(K) if char(K) 6= 0. We denote
by E [m] the m-torsion subgroup of E and by Km := K(E [m]) the field generated by the
points of E [m], i.e. the field obtained by adding to K the coordinates of the m-torsion
points of E . As usual, for any point P ∈ E , we let x(P ), y(P ) be its coordinates and we
indicate its m-th multiple simply by mP . We denote by {P1 , P2} a Z-basis for E [m]; then
Km = K(x(P1), x(P2), y(P1), y(P2)). To ease notation, we put xi := x(Pi) and yi := y(Pi)
(i = 1, 2). By Artin’s primitive element theorem the extension Km/K is monogeneous and
one can find a single generator for Km/K by combining the above coordinates. On the
other hand, by the properties of the Weil pairing em, we have that em(P1, P2) ∈ Km is a
primitive m-th root of unity (we denote it by ζm). We want to emphasize the importance
of ζm as a generator of Km/K and look for minimal (i.e., with the smallest number of
elements) sets of generators contained in {x1, x2, y1, y2, ζm}. This kind of information is
useful for describing the fields in terms of degrees and Galois groups, as we shall explicitly
show for m = 3 and m = 4. Other applications are local-global problems (see, e.g., [5] or
the particular cases of [12] and [11]), descent problems (see, e.g., [14] and the references
there or, for a particular case, [2] and [3]), Galois representations, points on modular curves
(see Section 4.4) and points on Shimura curves.

It is easy to prove that Km = K(x1, x2, ζm, y1) (see Lemma 2.1) and we expected a close
similarity between the roles of the x-coordinates and y-coordinates; this turned out to be
true in relevant cases. Indeed in Section 3 (mainly by analysing the possible elements of the
Galois group Gal(Km/K) ) we prove that Km = K(x1, ζm, y1, y2) at least for odd m > 5.
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This leads to the following (for more precise and general statements see Theorems 2.8, 3.1
and 3.6)

Theorem 1.1. If m > 3, then Km = K(x1 + x2, x1x2, ζm, y1). Moreover if m > 4, then

Km = K(x1, ζm, y1, y2) =⇒ Km = K(x1, ζm, y2) .

In particular Km = K(x1, ζm, y2) for any odd integer m > 5.

Note that, by Theorem 1.1, we have Kp = K(x1, ζp, y2), for any prime p > 5. The set
{x1, ζp, y2} seems a good candidate (in general) for a minimal set of generators for Kp/K.
Indeed, when K is a number field and E has no complex multiplication, by Serre’s open
image theorem (see [15]), we expect that the natural representation

ρE,p : Gal(K/K)→ GL2(Z/pZ)

provides an isomorphism Gal(Kp/K) ' GL2(Z/pZ) for almost all primes p, and there are
hypotheses on x1, ζm and y2 (see Theorem 4.3) which guarantee that

[K(x1, ζm, y2) : K] = (p2 − 1)(p2 − p) = |GL2(Z/pZ)| .
For (almost all) the exceptional primes for which Gal(Kp/K) is smaller than GL2(Z/pZ)
(see Definition 4.5), we employ some well known results on Galois representations and on
subgroups of GL2(Z/pZ) to reduce further the set of generators. Joining the results of
Lemmas 4.7 and 4.9 and of Theorems 4.11, 4.12 and 4.13 we obtain

Theorem 1.2. Let K be a number field linearly disjoint from the cyclotomic field Q(ζp) and
assume that p > 53 is unramified in K/Q and exceptional for the curve E. If Gal(Kp/K) is
contained in a Borel subgroup or in the normalizer of a split Cartan subgroup of GL2(Z/pZ),
then

1. p ≡ 2 (mod 3) =⇒ Kp = K(ζp, y2);
2. p ≡ 1 (mod 3) =⇒ [Kp : K(ζp, y2)] is 1 or 3.

If Gal(Kp/K) is contained in the normalizer of a non-split Cartan subgroup of GL2(Z/pZ),
then

3. p ≡ 1 (mod 3) =⇒ Kp = K(ζp, y2);
4. p ≡ 2 (mod 3) =⇒ [Kp : K(ζp, y2)] is 1 or 3.

In Subsection 4.4 we give just a hint of the possible applications to points of modular
curves. Similar applications, even to Shimura curves, can be further developed in the
future. Modular curves might provide a different approach (and more insight) to problems
analogous to those treated here.

The final sections are dedicated to the cases m = 3 and m = 4. We use the explicit
formulas for the coordinates of the torsion points to give more information on the extensions
K3/K and K4/K, such as their degrees and their Galois groups.

Acknowledgement. The authors would like to express their gratitude to Antonella Pe-
rucca for suggesting the topic of a generalization of the results of [4] and for providing
several hints, comments and improvements on earlier drafts of this paper. The authors
thank the anonymous referee for pointing out an omission in Section 4 and for various
remarks which led to significant improvements in the exposition.
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2. The equality Km = K(x1 + x2, x1x2, ζm, y1)

As mentioned above, we consider a field K of characteristic char(K) 6= 2, 3 and an elliptic
curve E defined over K, with Weierstrass form y2 = x3 + Ax + B (actually most of our
results are valid in any characteristic as long as the curve has the form y2 = x3 +Ax+B).
Throughout the paper we always assume that m is an integer, m > 2 and, if char(K) 6= 0,
that m is prime with char(K). We choose two points P1 = (x1, y1) and P2 = (x2, y2) which
form a Z-basis of the m-torsion subgroup E [m] of E . We define Km := K(E [m]) and we
denote by Km,x the extension of K generated by the x-coordinates of the points in E [m].
So we have

K(x1, x2) ⊆ Km,x ⊆ Km = K(x1, x2, y1, y2) .

Let em : E [m] × E [m] −→ µm be the Weil Pairing, where µm is the group of m-th roots
of unity. By the properties of em, we know that µm ⊂ Km and, once P1 and P2 are fixed,
we put em(P1, P2) =: ζm (a primitive m-root of unity). We remark that the choice of P1

and P2 is arbitrary; we use this convention for ζm (which obviously has no effect on the
generated field since K(ζm) = K(µm) for any primitive m-th root of unity) to simplify
notations and computations. In particular for any σ ∈ Gal(Km/K), we have

σ(ζm) = σ(em(P1, P2)) = em(P σ
1 , P

σ
2 ) = ζdet(σ)

m ,

where we still use σ to denote the matrix ρE,m(σ) ∈ GL2(Z/mZ).
The next lemma is rather obvious, but it shows how ζm can play the role of one of the

y-coordinates in generating Km and it will be useful in the rest of the paper.

Lemma 2.1. We have Km = K(x1, x2, ζm, y1).

Proof. An endomorphism of E [m] fixing P1 and x2 is of type σ =

(
1 0
0 ±1

)
. If it also

fixes ζm, then det(σ) = 1 and eventually σ = Id. �

We now show that ζm and y1y2 are closely related over the field K(x1, x2). Let (x3, y3)
(resp. (x4, y4) ) be the coordinates of the point P3 := P1 + P2 (resp. P4 := P1 − P2). By
the group law of E , we may express x3 and x4 in terms of x1, x2, y1 and y2:

(2.1) x3 =
(y1 − y2)2

(x1 − x2)2
− x1 − x2 and x4 =

(y1 + y2)2

(x1 − x2)2
− x1 − x2

(note that x1 6= x2 because P1 and P2 are independent). By taking the difference of these
two equations we get

(2.2) y1y2 =
(x4 − x3)(x1 − x2)2

4
.

Lemma 2.2. We have

K(x1, x2, y1y2) = K(x1, x2, x3, x4) and Km = Km,x(y1) .

Proof. Since y2
i ∈ K(xi), equations (2.1) and (2.2) prove the first equality. For the final

statement just note that Km = Km,x(y1, y2) = Km,x(y1). �

More precisely, we have
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Lemma 2.3. Let L = K(x1, x2). Exactly one of the following cases holds:

1. [Km : L] = 1;
2. [Km : L] = 2 and L(y1y2) = Km;
3. [Km : L] = 2, L = L(y1y2) and L(y1) = L(y2) = Km;
4. [Km : L] = 4 and [L(y1y2) : L] = 2.

Proof. Obviously the degree of Km over L divides 4. If [Km : L] = 1, then we are in case
1. If [Km : L] = 4, then y1 and y2 must generate different quadratic extensions of L and
so [L(y1y2) : L] = 2 and we are in case 4. If [Km : L] = 2 and y1y2 /∈ L, then we are in
case 2. Now suppose that [Km : L] = 2 and y1y2 ∈ L. Then y1 and y2 generate the same
extension of L and this extension is nontrivial, so we are in case 3. �

Lemma 2.4. If y1y2 /∈ K(x1, x2), then ζm /∈ K(x1, x2).

Proof. We are in case 2 or case 4 of Lemma 2.3 and, in particular, m > 2 because of
K2 = L. We have [L(y1y2) : L] = 2 and there exists τ ∈ Gal(Km/L) such that τ(y1y2) =
−y1y2. Without loss of generality, we may suppose τ(y1) = −y1 and τ(y2) = y2 so that

τ =

(
−1 0
0 1

)
and τ(ζm) = ζ−1

m . Since m 6= 2, ζ−1
m 6= ζm and we get ζm /∈ L. �

The connection between ζm and y1y2 is provided by the following statement.

Theorem 2.5. We have K(x1, x2, ζm) = K(x1, x2, y1y2).

Proof. We first prove that ζm ∈ K(x1, x2, y1y2) by considering the four cases of Lemma
2.3.
Case 1 or 2: we have K(x1, x2, y1y2) = Km so the statement clearly holds.
Case 3: we have Km = L(y1) and y1y2 ∈ L so the nontrivial element τ ∈ Gal(Km/L) maps
yi to −yi for i = 1, 2. In particular, τ = − Id and τ(ζm) = ζm. Hence ζm ∈ L = K(x1, x2).
Case 4: since Km = L(y1, y2) and Gal(Km/L) ' Z/2Z×Z/2Z, there exists τ ∈ Gal(Km/L)
such that τ(yi) = −yi for i = 1, 2. The field fixed by τ is L(y1y2) and, as in the previous
case, we get τ(ζm) = ζm: so ζm ∈ L(y1y2) = K(x1, x2, y1y2).
Now the statement of the theorem is clear if we are in case 1 or in case 3 of Lemma 2.3.
In cases 2 and 4 we have [L(y1y2) : L] = 2, ζm /∈ L (Lemma 2.4) and L(ζm) ⊆ L(y1y2).
These three facts yield L(ζm) = L(y1y2). �

We conclude this section with the equality appearing in the title, which still focuses more
on the x-coordinates. For that we shall need the following lemma.

Lemma 2.6. The extension K(x1, x2)/K(x1 + x2, x1x2) has degree 6 2. Its Galois group
is either trivial or generated by σ with σ(xi) = xj (i 6= j).

Proof. Just note that x1 and x2 are the roots of X2 − (x1 + x2)X + x1x2. �

Corollary 2.7. We have K(ζm + ζ−1
m ) ⊆ K(x1 + x2, x1x2).

Proof. This is obvious if K(x1, x2) = K(x1 + x2, x1x2). If they are different, take the
nontrivial element σ of Gal(K(x1, x2)/K(x1 + x2, x1x2)). By Lemma 2.6, we have σ(Pi) =
±Pj (i 6= j), hence det(σ) = ±1. �
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Theorem 2.8. For m > 3 we have Km = K(x1 + x2, x1x2, ζm, y1).

Proof. We consider the tower of fields

K(x1 + x2, x1x2) ⊆ K(x1, x2) ⊆ K(x1, x2, ζm, y1) = Km

and adopt the following notations:

G := Gal(Km/K(x1 + x2, x1x2)) ,

H := Gal(Km/K(x1, x2)) C G ,

G/H = Gal(K(x1, x2)/K(x1 + x2, x1x2)) .

If K(x1 + x2, x1x2) = K(x1, x2), then the statement holds by Lemma 2.1.
By Lemma 2.6, we may now assume that G/H has order 2 and its nontrivial automorphism
swaps x1 and x2. Then there is at least one element τ ∈ G such that τ(xi) = xj, with
i, j ∈ {1, 2} and i 6= j. Therefore τ(yi) = ±yj. The possibilities are:

τ = ±τ1 =

(
0 ±1
±1 0

)
and τ = ±τ2 =

(
0 ∓1
±1 0

)
(of order 2 and 4 respectively). Note that τ 2

2 = − Id fixes both x1 and x2, i.e., the generators
of the field L of Lemma 2.3. Moreover, if y2 = ±y1, then we have

τ 2
2 (P1) = τ2(P2) = τ2(x2,±y1) = (x1,±y2) = P1 ,

a contradiction. The automorphisms τ1 and τ2 generate a non abelian group of order 8
with two elements of order 4, i.e., the dihedral group

D4 = 〈τ1 , τ2 : τ 2
1 = τ 4

2 = Id and τ1τ2τ1 = τ 3
2 〉 .

So G is a subgroup of D4. Since G/H has order 2, H is isomorphic to either 1, Z/2Z or
(Z/2Z)2 (note that τ2 6∈ H) and its nontrivial elements can at most be the following

τ1τ2 = τ 3
2 τ1 =

(
−1 0
0 1

)
, τ2τ1 = τ1τ

3
2 =

(
1 0
0 −1

)
and − Id .

We distinguish three cases according to the possible degrees [Km : K(x1, x2)] mentioned in
Lemma 2.3.
The case Km = K(x1, x2). Since |H| = 1 and |G/H| = 2, then |G| = 2. The nontrivial
automorphism of G has to be ±τ1. In both cases G does not fix ζm: so ζm ∈ K(x1, x2)−
K(x1 + x2, x1x2) and we deduce K(x1 + x2, x1x2, ζm) = K(x1, x2) = Km.
The case [Km : K(x1, x2)] = 4. Since |H| = 4 and |G/H| = 2, we have G ' D4. The
subgroup 〈τ2〉 of D4 is normal of index 2 and it does not contain τ1. Moreover, τ2 fixes ζm
and τ1 does not. Then we have

Gal(Km/K(x1 + x2, x1x2, ζm)) = 〈τ2〉
and [K(x1 + x2, x1x2, ζm) : K(x1 + x2, x1x2)] = 2. If y2

1 ∈ K(x1 + x2, x1x2, ζm), then
y2

1 = τ2(y1)2 = y2
2, giving y1 = ±y2 and we already ruled this out. Then the degree of the

extensions

K(x1 + x2, x1x2) ⊂ K(x1 + x2, x1x2, ζm) ⊂ K(x1 + x2, x1x2, ζm, y1)
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are, respectively, 2 and at least 4. Since the extension Km/K(x1 + x2, x1x2) has degree 8
the statement follows.
The case [Km : K(x1, x2)] = 2. Since |H| = 2 and |G/H| = 2, then |G| = 4. We have to
exclude G = 〈τ2τ1,− Id〉, because these automorphisms fix both x1 and x2, so we would
have G = H. We are left with H = 〈− Id〉 and one the following two possibilities:

G = 〈τ2〉 or G = 〈τ1,− Id〉 .
We now consider each of the two subcases separately. Assume G = 〈τ2〉 and recall that
y1 6= ±y2. Then y1 and y2

1 are not fixed by any element in G, i.e.,

[K(x1 + x2, x1x2, y1) : K(x1 + x2, x1x2)] = 4

and K(x1 + x2, x1x2, y1) = Km. Now assume G = 〈τ1,− Id〉: since τ1 does not fix ζm while
− Id does, we have

K(x1, x2) = K(x1 + x2, x1x2, ζm) .

Hence K(x1 + x2, x1x2, ζm, y1) = K(x1, x2, ζm, y1) = Km. �

Remark 2.9. The equality K2 = K(x1 + x2, x1x2, ζ2, y1) does not hold in general. Indeed
it is equivalent to K2 = K(x1 + x2, x1x2) and one can take E : y2 = x3 − 1 (defined over
Q) and the points {P1 = (ζ3, 0), P2 = (ζ2

3 , 0)} (as a Z-basis for E [2] ) to get K2 = Q(µ3)
and Q(x1 + x2, x1x2) = Q. The equality would hold for any other basis, but the previous
theorems allow total freedom in the choice of P1 and P2.

3. The equality Km = K(x1, ζm, y2)

We start by proving the equality Km = K(x1, ζm, y1, y2) for every odd m > 5. The cases
m = 2, 3 and 4 are treated in Remark 3.3, Section 5 and Section 6 respectively.

Theorem 3.1. If m > 5 is an odd number, then Km = K(x1, ζm, y1, y2). If m > 4 is an
even number, then Km is larger than K(x1, ζm, y1, y2) if and only if [Km : K(x1, ζm, y1, y2)] =
2 and its Galois group is generated by the element sending P2 to m

2
P1 + P2. In particular,

if m is even then Km
2
⊆ K(x1, ζm, y1, y2).

Proof. Let σ ∈ Gal(Km/K(x1, ζm, y1, y2)) and write σ(P2) = αP1 + βP2 for some integers
0 6 α, β 6 m− 1. Since P1 and ζm are σ-invariant we get

ζm = σ(ζm) = σ(em(P1, P2)) = ζβm ,

yielding β = 1 and σ(P2) = αP1 + P2. Since Km = K(x1, ζm, y1, y2, x2) and x2 is a root of
X3 + AX +B − y2

2, the order of σ is at most 3. Assume now that σ 6= Id.
If the order of σ is 3: we have

P2 = σ3(P2) = 3αP1 + P2

hence 3α ≡ 0 (mod m). Moreover, the three distinct points P2, σ(P2) and σ2(P2) are on
the line y = y2. Thus their sum is zero, i.e.,

O = P2 + σ(P2) + σ2(P2) = 3αP1 + 3P2 .

Since 3α ≡ 0 (mod m), we deduce 3P2 = O, contradicting m > 4.
If the order of σ is 2: as above P2 = σ2(P2) yields 2α ≡ 0 (mod m). If m is odd this
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implies α ≡ 0 (mod m), i.e., σ is the identity on E [m], a contradiction. If m is even the
only possibility is α = m

2
.

The last statement for m even follows from the fact that σ acts trivially on 2P1 and 2P2. �

Corollary 3.2. Let p > 5 be prime, then [Kp : K(ζp, y1, y2)] is odd.

Proof. Assume there is a σ ∈ Gal(Kp/K(ζp, y1, y2)) of order 2. For i ∈ {1, 2}, since yi 6= 0
(because p 6= 2), one has σ(Pi) 6= −Pi and σ(Pi) + Pi is a nontrivial p-torsion point
lying on the line y = −yi. If σ(Pi) + Pi is not a multiple of Pj (i 6= j); then the set
{Pj, σ(Pi) + Pi} is a basis of E [p]. Let σ(Pi) + Pi =: (x̃i,−yi); then by Theorem 3.1, we
have K(ζp, x̃i, y1, y2) = Kp. But σ acts trivially on ζp, y1 and y2 by definition and on x̃i as
well (because σ(σ(Pi) + Pi) = Pi + σ(Pi) ). Hence σ fixes Kp which contradicts σ 6= Id.
Therefore σ(P1) = −P1 + β1P2 and σ(P2) = β2P1 − P2 which, together with σ2 = Id, yield
β1 = β2 = 0. Hence both P1 and P2 are mapped to their opposite: a contradiction to
σ(yi) = yi. �

Remark 3.3. The equality K2 = K(x1, ζ2, y1, y2) does not hold in general. A counterex-
ample is again provided by the curve E : y2 = x3 − 1 with P1 = (1, 0) (as in Remark 2.9
any other choice would yield the equality K2 = K(x1) ).

Before going to the main theorem we show a little application for primes p ≡ 2 (mod 3).

Theorem 3.4. Let p ≡ 2 (mod 3) be an odd prime, then Kp = K(x1, y1, y2) or Kp =
K(x1, y1, ζp).

Proof. The degree of x2 over K(y2) is at most 3, hence [Kp : K(x1, y1, y2)] 6 3. By Theorem
3.1 we have the equality Kp = K(x1, ζp, y1, y2) and the hypothesis ensures that [Q(ζp) : Q] is
not divisible by 3, so the same holds for [Kp : K(x1, y1, y2)]. Thus either Kp = K(x1, y1, y2)
or [Kp : K(x1, y1, y2)] = 2. If the second case occurs, then let σ ∈ Gal(Kp/K(x1, y1, y2))
be nontrivial. Since σ fixes x1, y1 and y2, it can be written as

σ =

(
1 b
0 d

)
with σ2 =

(
1 b(1 + d)
0 d2

)
.

Since p is an odd prime, then σ2 = Id leads either to d = 1 (hence b = 0 and σ = Id,
a contradiction) or to d = −1. Hence σ(P2) = bP1 − P2 (with b 6= 0 otherwise σ would
fix x2 as well), i.e., bP1 lies on the line y = −y2. Thus K(y2) ⊆ K(x1, y1) and so Kp =
K(x1, y1, ζp). �

Corollary 3.5. Let p ≡ 2 (mod 3) be an odd prime. Assume that E has a K-rational
torsion point P1 of order p. Then either Kp = K(ζp) or Kp = K(y2).

We are now ready to prove the equality appearing in the title of this section.

Theorem 3.6. If m > 4 and Km = K(x1, ζm, y1, y2), then we have Km = K(x1, ζm, y2)
(in particular this holds for any odd m > 5, by Theorem 3.1).

Proof. By hypotheses Km = K(x1, ζm, y2)(y1), so [Km : K(x1, ζm, y2)] 6 2. Take σ ∈
Gal(Km/K(x1, ζm, y2)), then σ(x1) = x1 yields σ(P1) = ±P1. If σ(P1) = P1, then y1 ∈
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K(x1, ζm, y2) and Km = K(x1, ζm, y2). Assume that σ(P1) = −P1 and let σ =

(
−1 a
0 b

)
.

Using the Weil pairing (recall ζm := em(P1, P2)), we have ζm = σ(ζm) = ζ−bm , which yields
b ≡ −1 (mod m), while

σ2 =

(
1 −2a
0 1

)
= Id

leads to 2a ≡ 0 (mod m).
Case a ≡ 0 (mod m): we have σ = − Id. Then σ(P2) = −P2, i.e., σ(x2) = x2 ∈
K(x1, ζm, y2). By Theorem 2.5, this yields Km = K(x1, ζm, y2) and contradicts σ 6= Id.
Case a ≡ m

2
(mod m): we have σ(P2) = m

2
P1 − P2, i.e., σ(P2) + P2 − m

2
P1 = O. Since P2

and σ(P2) lie on the line y = y2 and are distinct, then −m
2
P1 must be the third point of E

on that line. Since −m
2
P1 has order 2 this yields y2 = 0, contradicting m > 4. �

To provide generators for a more general m one can also use the following lemma.

Lemma 3.7.

1. Assume that P ∈ E(K) is not a 2-torsion point and that φ : E → E is a K-rational
isogeny with φ(R) = P . Then K(x(R), y(R)) = K(x(R)).

2. If R is a point in E(K) and n > 1, then we have x(nR) ∈ K(x(R)).

Proof. Part 1 is [13, Lemma 2.2] and part 2 is well known. �

Proposition 3.8. Let m be divisible by d > 3 and let R be a point of order m. Then

K(x(R), y(R)) = K
(
x(R), y

(m
d
R
))

.

In particular, if K = K(E [d]) and R has order m, then K(x(R), y(R)) = K(x(R)).

Proof. We apply the previous lemma to the field K(P ), with P = m
d
R and φ =

[
m
d

]
. Then

K
(
x(R), y

(
m
d
R
)
, y(R)

)
= K

(
x(R), y

(
m
d
R
))

. The conclusion follows from the fact that

y
(
m
d
R
)
∈ K(x(R), y(R)) (because of the explicit expressions of the group-law of E). �

Corollary 3.9. Let m be divisible by an odd number d > 5. Then

Km = K
(
x(P1), x(P2), ζd, y

(m
d
P2

))
.

Proof. By Proposition 3.8, Km = Kd(x(P1), x(P2)). Obviously
{
m
d
P1,

m
d
P2

}
is a Z-basis

for E [d], hence Theorem 3.1 and Theorem 3.6 (applied with m = d) yield

Kd = K
(
x
(m
d
P1

)
, ζd, y

(m
d
P2

))
.

By Lemma 3.7, we have x
(
m
d
P1

)
∈ K(x(P1)) and the corollary follows. �

The previous result leaves out only integers m of the type 2s3t. For the case t = 1 we
mention the following

Proposition 3.10. The coordinates of the points of order dividing 3 · 2n can be explicitly
computed by radicals out of the coefficients of the Weierstrass equation.
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Proof. By the Weierstrass equation (recall we are assuming char(K) 6= 2, 3), we can com-
pute the y-coordinates out of the x-coordinate. Then by the addition formula, it suffices to
compute the x-coordinate of two Z-independent points of order 3 (done in Section 5), and
the x-coordinate of two Z-independent points of order 2n (done in Section 6 for n = 1, 2).
The coordinate x(P ) of a point P of order 2n (with n > 3) can be computed from x(2P ).
Indeed, we have y(P ) 6= 0 (because the order of P is not 2) and so, by the duplication
formula,

x(2P ) =
x(P )4 − 2Ax(P )2 − 8Bx(P ) + A2

4x(P )3 + 4Ax(P ) + 4B

(a polynomial equation of degree 4 with coefficients coming from the Weierstrass equation).
�

Proposition 3.11. If m is divisible by 3 (resp. 4), then

Km = Km,x ·K(y(Q1), y(Q2))

where {Q1, Q2} is a Z-basis for E [3] (resp. E [4]).

Proof. Just apply Proposition 3.8 with d = 3 (resp. d = 4). �

4. Galois representations and exceptional primes

We begin with some remarks on the Galois group Gal(Kp/K) for a prime p > 5, which
led us to believe that the generating set {x1, ζp, y2} is often minimal.

Lemma 4.1. For any prime p > 5 one has [Kp : K(x1, ζp)] 6 2p. Moreover the Galois

group Gal(Kp/K(x1, ζp)) is cyclic, generated by η =

(
−1 1
0 −1

)
.

Proof. By Theorem 3.6, we haveKp = K(x1, ζp, y2). Let σ be an element of Gal(Kp/K(x1, ζp)),

then σ(P1) = ±P1 and det(σ) = 1 yield σ =

(
±1 α
0 ±1

)
(for some 0 6 α 6 p− 1). The

powers of η are

ηn =



(
1 −n
0 1

)
if n is even

(
−1 n
0 −1

)
if n is odd

and its order is obviously 2p; clearly any such σ is a power of η. �

Remark 4.2. The group generated by η in GL2(Z/pZ) is not normal; hence, in general,
the extension K(x1, ζp)/K is not Galois.

Since the p-th division polynomial has degree p2−1
2

and, obviously, [K(x1, ζp) : K(x1)] 6
p− 1 one immediately finds

[K(x1, ζp, y2) : K] 6
p2 − 1

2
· (p− 1) · 2p = |GL2(Z/pZ)|

and can provide conditions for the equality to hold.
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Theorem 4.3. Let p > 5 be a prime, then Gal(Kp/K) ' GL2(Z/pZ) if and only if the
following hold:

1. ζp 6∈ K;
2. the p-th division polynomial ϕp is irreducible in K(ζp)[X];
3. y1 6∈ K(ζp, x1) and the generator of Gal(K(ζp, x1, y1)/K(ζp, x1)) does not send P2

to −P2 (i.e., it is not represented by − Id).

Proof. Let σ be a generator of Gal(K(ζp, x1, y1)/K(ζp, x1)). Then σ(P1) = −P1 (because of

hypothesis 3) and det(σ) = 1. Hence it is of type σ =

(
−1 α
0 −1

)
with α 6= 0 (again by

hypothesis 3). Therefore σ has order 2p in Gal(Kp/K(ζp, x1)) and the hypotheses lead to
the equality [Kp : K] = |GL2(Z/pZ)|. Vice versa it is obvious that if any of the conditions
does not hold we get [Kp : K] < |GL2(Z/pZ)|. �

Remark 4.4. As mentioned in the Introduction, if K is a number field and E has no com-
plex multiplication, then one expects the equality to hold for almost all primes p (for a recent
bound on exceptional primes for which ρE,p is not surjective see [9]). Hence for a general
number field K (which, of course, can contain ζp or some coordinates of generators of E [p]
only for finitely many p) one expects {x1, ζp, y2} to be a minimal set of generators for Kp

over K (among those contained in {x1, x2, y1, y2, ζp}). We have encountered an exceptional
case in Theorem 3.4, where for p ≡ 2 (mod 3) (p 6= 2) one could have Kp = K(x1, y1, ζp).

If this is the case, the maximum degree for [Kp : K] is p2−1
2
·2·(p−1). Therefore for infinitely

many primes p ≡ 2 (mod 3) we have Kp = K(x1, y1, y2) = K(x1, ζp, y2) 6= K(x1, y1, ζp)
(which emphasizes the need for coordinates of P2 in our generating set).

Definition 4.5. For an elliptic curve E defined over a number field K and a prime p we
say that p is exceptional for E if ρE,p is not surjective, i.e., if [Kp : K] < |GL2(Z/pZ)|. In
particular, if E has complex multiplication, then all primes are exceptional for E, because
Kp/K is an abelian extension (see, e.g., [18, Chapter II, §5]).

In the rest of this Section 4 we will investigate the case of exceptional primes, assuming
that K is a number field. For exceptional primes the Galois group Gal(Kp/K) is a proper
subgroup of GL2(Z/pZ). Hence it falls in one of the following cases (see [15, Section 2] for
a complete proof or [9, Lemma 4] for a similar statement).

Lemma 4.6. Let G be a proper subgroup of GL2(Z/pZ), then one of the following holds:

1. G is contained in a Borel subgroup;
2. G is contained in the normalizer of a Cartan subgroup;
3. G contains the special linear group SL2(Z/pZ);
4. the image of G under the projection π : GL2(Z/pZ) → PGL2(Z/pZ) is contained

in a subgroup which is isomorphic to one of the alternating groups A4 and A5 or to
the symmetric group S4.

Regarding cases 3 and 4 we have the following statements.

Lemma 4.7. If K is linearly disjoint from Q(ζp), then Gal(Kp/K) does not satisfy 3 of
Lemma 4.6.
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Proof. This readily follows from the fact that K(ζp) is the fixed field of SL2(Z/pZ). �

Remark 4.8. Obviously Gal(Kp/K) ' SL2(Z/pZ) immediately yields Kp = K(x1, y2). If
Gal(Kp/K) is larger than SL2(Z/pZ) we have [K(ζp) : K] < p − 1 (i.e., K ∩ Q(ζp) 6= Q)
but this does not alter our set of generators.

Lemma 4.9. If p > 53 is unramified in K/Q and exceptional for E, then Gal(Kp/K) does
not satisfy 4 of Lemma 4.6.

Proof. See [9, Lemma 8], depending on [16, Lemma 18]. �

We shall provide some information on the generating sets for Kp when p is exceptional for
E and Gal(Kp/K) falls in cases 1 or 2 of Lemma 4.6. We start with the already mentioned
exceptional case appearing in Theorem 3.4 and recall that we are always assuming p > 5.

Proposition 4.10. If Kp = K(x1, y1, ζp), then [Kp : K] < (p2 − 1)(p − 1) unless p = 5
and π(Gal(Kp/K)) ' S4.

Proof. We already noticed that [Kp : K] 6 (p2 − 1)(p − 1) < p(p2 − 1) = |SL2(Z/pZ)|,
so the prime p is exceptional and case 3 is not possible. The order of a Borel subgroup
is p(p − 1)2, the order of a split Cartan subgroup is at most (p − 1)2 and the order of a
non-split Cartan subgroup is at most p2−1 (both have index 2 in their normalizer). So the
statement holds when Gal(Kp/K) falls in cases 1 or 2 of Lemma 4.6. Assume we are in
case 4 and note that if |Gal(Kp/K)| = (p2−1)(p−1), then |π(Gal(Kp/K))| > p2−1. Thus
case 4 cannot happen for p > 11. Moreover, if p = 7, then p2 − 1 > |S4| and PGL2(Z/pZ)
does not contain |A5| (see [15, Section 2.5]). We are left with p = 5, [K5 : K] = 96 and
|π(Gal(Kp/K))| > 24 = |S4|, which completes the proof. �

4.1. Exceptional primes I: Borel subgroup. Assume that p > 5 is exceptional for E
and Gal(Kp/K) is contained in a Borel subgroup. We can write elements of Gal(Kp/K)

as upper triangular matrices σ =

(
a b
0 c

)
with ac 6= 0 (this is not restrictive, since the

results of the previous sections were completely independent of the chosen basis {P1, P2}).

Theorem 4.11. Let p > 5 and assume that Gal(Kp/K) is contained in a Borel subgroup.

1. If p 6≡ 1 (mod 3), then Kp = K(ζp, y2);
2. if p ≡ 1 (mod 3), then [Kp : K(ζp, y2)] is 1 or 3.

Proof. We know Kp = K(x1, ζp, y2). Take an element σ ∈ Gal(Kp/K(ζp, y2)) so that

σ =

(
a−1 b
0 a

)
. Let P2, R2 and S2 be the three points of the curve E on the line y = y2,

so that P2 + R2 + S2 = O. We have that σ(P2) = bP1 + aP2 must be P2 or R2 or S2 (the
cases R2 and S2 are obviously symmetric).
Case 1: σ(P2) = P2. Then b = 0, a = 1 and σ = Id.
Case 2: σ(P2) = R2. Then σ2(P2) = a−1bP1 + abP1 + a2P2.

• If σ2(P2) = P2, then a2 = 1 and a+ a−1 6= 0 yields b = 0. Hence σ(P1) = ±P1 and
σ fixes x1. Since Kp = K(x1, ζp, y2), this implies σ = Id.
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• If σ2(P2) = R2, then one gets a2 = a (i.e., a = 1) and 2b = b (i.e., b = 0), leading
to σ = Id.
• If σ2(P2) = S2, then P2 +R2 + S2 = O yields

P2 + bP1 + aP2 + a−1bP1 + abP1 + a2P2 = (1 + a+ a2)(ba−1P1 + P2) = O

Thus 1 + a+ a2 = 0 and this is possible if and only if p ≡ 1 (mod 3).

Therefore, if p 6≡ 1 (mod 3), we have σ = Id and Kp = K(ζp, y2). If p ≡ 1 (mod 3) and
1 + a+ a2 = 0, then the above σ has order 3 and the proof is complete. �

4.2. Exceptional primes II: split Cartan subgroup. Assume that p > 5 is exceptional
for E and Gal(Kp/K) is contained in a split Cartan subgroup (resp. in the normalizer of
a split Cartan subgroup). Then we can write elements of Gal(Kp/K) as matrices σ =(
a 0
0 c

)
(resp. σ =

(
a 0
0 c

)
or σ =

(
0 a
c 0

)
) with a, c ∈ Z/pZ and ac 6= 0.

Theorem 4.12. Let p > 5 and assume that Gal(Kp/K) is contained in the normalizer of
a split Cartan subgroup. We have Kp = K(x1, ζp) or K(x1, y1, ζp). Moreover

1. if p 6≡ 1 (mod 3), then Kp = K(ζp, y2);
2. if p ≡ 1 (mod 3), then [Kp : K(ζp, y2)] is 1 or 3.

Proof. Note that the only elements of the normalizer of a split Cartan subgroup which
fix x1 and ζp are ± Id. In particular, this holds for the elements of a Cartan subgroup
itself. Then the first statement follows immediately. Now consider σ ∈ Gal(Kp/K(ζp, y2))

and let R2 and S2 be the points defined in Theorem 4.11. If σ =

(
0 a
−a−1 0

)
, then

σ2(P2) = σ(aP1) = −P2. Since σ fixes y2, this implies y2 = 0 which contradicts p 6= 2.

Therefore we can restrict to Cartan subgroups and consider only σ =

(
a−1 0
0 a

)
.

Case 1: σ(P2) = P2. Then a = 1 and σ = Id.
Case 2: σ(P2) = R2. Then σ2(P2) = a2P2.

• If σ2(P2) = P2, then a2 = 1 and σ(P1) = ±P1. As in Theorem 4.11, this implies
σ = Id.
• If σ2(P2) = R2, then a2 = a yields a = 1 and σ = Id.
• If σ2(P2) = S2, then P2 +R2 + S2 = O yields

P2 + aP2 + a2P2 = (1 + a+ a2)P2 = O .

Thus 1 + a+ a2 = 0 and this is possible if and only if p ≡ 1 (mod 3).

Therefore, if p 6≡ 1 (mod 3), we have σ = Id and Kp = K(ζp, y2). If p ≡ 1 (mod 3) and
1 + a+ a2 = 0, then σ has order 3. �

4.3. Exceptional primes III: non-split Cartan subgroup. Assume now that p > 5 is
exceptional for E and Gal(Kp/K) is contained in a non-split Cartan subgroup (resp. in the
normalizer of a non-split Cartan subgroup), then we can write elements of Gal(Kp/K) as
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matrices σ =

(
a εb
b a

)
(resp. σ =

(
a εb
b a

)
or σ =

(
a εb
−b −a

)
) where a, b ∈ Z/pZ,

(a, b) 6= (0, 0) and ε is fixed and not a square modulo p (see for instance [10]).

Theorem 4.13. Let p > 5 and assume that Gal(Kp/K) is contained in the normalizer
of a non-split Cartan subgroup. We have Kp = K(x1, y1) or K(x1, ζp) or K(x1, y1, ζp).
Moreover

1. if p ≡ 1 (mod 3), then Kp = K(ζp, y2);
2. if p 6≡ 1 (mod 3), then [Kp : K(ζp, y2)] is 1 or 3.

Proof. The argument of the proof is very similar to the one used in the split Cartan case.
Observe that the only elements of the normalizer of a non-split Cartan subgroup which fix

x1 are ± Id and ±
(

1 0
0 −1

)
. Hence, if Gal(Kp/K) is contained in a non-split Cartan

subgroup, then Kp = K(x1, y1) and, if Gal(Kp/K) is larger, then Kp = K(x1, ζp) or
Kp = K(x1, y1, ζp).
Let σ ∈ Gal(Kp/K(ζp, y2)) and let R2 and S2 be the points defined in Theorem 4.11. We

get rid of the normalizer first: assume that σ =

(
a εb
−b −a

)
(recall σ(ζp) = ζp yields

det(σ) = −a2 + εb2 = 1). Note that σ2(P2) = (a2 − εb2)P2 = − det(σ)P2 = −P2. Since σ
fixes y2, this yields y2 = 0 which contradicts p 6= 2. Therefore we only consider elements

in the non-split Cartan subgroup: σ =

(
a εb
b a

)
(with det(σ) = a2 − εb2 = 1).

Case 1: σ(P2) = P2. Then a = 1, b = 0 and σ = Id.
Case 2: σ(P2) = R2. Then σ2(P2) = 2εabP1 + (a2 + εb2)P2.

• If σ2(P2) = P2, then {
2εab = 0
a2 + εb2 = 1

.

Since ε is not a square modulo p, then a 6= 0. We have b = 0 and a2 = 1, hence
σ(P1) = ±P1. As in Theorem 4.11, this implies σ = Id.
• If σ2(P2) = R2, then {

(2a− 1)εb = 0
a = a2 + εb2 .

If b 6= 0, then 2a = 1 and 4εb2 = 1. Since ε is not a square modulo p, this is not
possible and it has to be b = 0 and a = a2, yielding σ = Id.
• If σ2(P2) = S2, then P2 +R2 + S2 = O implies

(1 + 2a)εbP1 + (1 + a+ a2 + εb2)P2 = O .

If b = 0, then 1+a+a2 = 0. But det(σ) = 1 yields a2 = 1 so a = −2 a contradiction
(since p 6= 3). If b 6= 0, then 2a = −1 implies 4εb2 = −3. Since ε is not a square
modulo p and p > 5, this could hold if and only if −3 is not a square modulo p,
i.e., p ≡ 2 (mod 3). It is easy to check that in this case σ has order 3.

Therefore, if p ≡ 1 (mod 3), we have σ = Id and Kp = K(ζp, y2). If p ≡ 2 (mod 3),
2a = −1 and 4εb2 = −3, then σ has order 3. �



14 FIELDS GENERATED BY TORSION POINTS OF ELLIPTIC CURVES

Remark 4.14. In the (Borel or Cartan) exceptional case, the information carried by
ζp seems more relevant than that by the coordinate x1. Indeed if one considers a σ ∈

Gal(Kp/K(x1, y2)), there is always room for elements like σ =

(
−1 0
0 1

)
of order 2. A

proof similar to the previous ones leads to

1. p 6≡ 1 (mod 3) =⇒ [Kp : K(x1, y2)] divides 4 (in the Borel or split Cartan case) or
divides 12 (in the non-split Cartan case);

2. p ≡ 1 (mod 3) =⇒ [Kp : K(x1, y2)] divides 12 (in the Borel or split Cartan case)
or divides 4 (in the non-split Cartan case).

4.4. Remarks on modular curves. We give just an application of the results of the
previous sections to the classical modular curves X(p) and X1(p), associated to the action
of the congruence subgroups

Γ(p) =

{
A =

(
a b
c d

)
∈ SL2(Z) : A ≡

(
1 0
0 1

)
(mod p)

}
and

Γ1(p) =

{
A =

(
a b
c d

)
∈ SL2(Z) : A ≡

(
1 ∗
0 1

)
(mod p)

}
on the complex upper half plane H = {z ∈ C : Im z > 0} via Möbius trasformations (for
detailed definitions and properties see, e.g., [8] or [17]). We recall that X(p) and X1(p)
parametrize families of elliptic curves with some extra level p structure via their moduli
interpretation. Namely

• non cuspidal points in X(p) correspond to triples (E , P1, P2) where E is an elliptic
curve (defined over C) and P1, P2 are points of order p generating the whole group
E [p];
• non cuspidal points in X1(p) correspond to couples (E , Q) where E is an elliptic

curve (defined over C) and Q is a point of order p

(all these correspondences have to be considered modulo the natural isomorphisms).
Let K be a number field. The points of X(p) or X1(p) which are rational over K will
be denoted by X(p)(K) or X1(p)(K). Obviously a point is K-rational if and only if it is
Gal(Q/K)-invariant (in particular, with the representation provided above one needs an
elliptic curve E defined over K).

Definition 4.15. A point (E , P1, P2) ∈ X(p) (resp. (E , P1) ∈ X1(p) ) is said to be excep-
tional if p is exceptional for E. In particular, if E is defined over K, we call such a point
Borel exceptional (resp. Cartan exceptional) if Gal(K(E [p])/K) is contained in a Borel
subgroup (resp. in the normalizer of a split or non-split Cartan subgroup).

The following is an easy consequence of Theorem 3.6.

Corollary 4.16. Assume p > 5; let E be an elliptic curve defined over a number field
K and let P ∈ E [p] be of order p. For any field L containing K(x(P ), ζp) or containing
K(y(P ), ζp) and for any point Q ∈ E [p] independent from P , we have

(E , Q) ∈ X1(p)(L) ⇐⇒ (E , P,Q) ∈ X(p)(L) .
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Proof. The arrow ⇐ is obvious. Now assume (E , Q) ∈ X1(p)(L), then

L ⊇ K(x(P ), ζp, y(Q)) = Kp or L ⊇ K(y(P ), ζp, x(Q)) = Kp

(both final equalities hold because of Theorem 3.6). Hence (E , P,Q) ∈ X(p)(L). �

It would be interesting to describe the families of elliptic curves for which the previ-
ous corollary becomes trivial, i.e., curves for which K(x(P ), ζp) or K(y(P ), ζp) contain
K(x(P ), y(P )). Some examples are provided by the exceptional primes for whichK(ζp, y(P )) =
Kp.
On exceptional points we have the following

Corollary 4.17. Assume p > 53 is unramified in K/Q and K is linearly disjoint from
Q(ζp). If p 6≡ 1 (mod 3), then, for any field L ⊇ K(ζp), the L-rational Borel exceptional
points of X(p) and X1(p) are associated to the same elliptic curves. The same statement
holds for any prime if we consider Cartan exceptional points.

Proof. We only need to check that if (E , Q) ∈ X1(p)(L) is exceptional, then (E , Q,R) ∈
X(p)(L), for any R completing Q to a Z-basis of E [p]. For Borel exceptional points and
p 6≡ 1 (mod 3), this immediately follows from

L ⊇ K(ζp, y(Q)) = Kp ,

by Theorem 4.11. If we consider a Cartan exceptional point (E , Q), then Theorems 4.12
and 4.13 show that

L ⊇ K(ζp, x(Q), y(Q)) = Kp . �

5. Fields K(E [3])

In this section we generalize the classification of the number fields Q(E [3]), appearing
in [4], to the case of a general base field K, whose characteristic is different from 2 and
3 (or, more in general, in which the elliptic curve E can be written in Weierstrass form
y2 = x3 + Ax + B). We recall that the four x-coordinates of the 3-torsion points of E
are the roots of the polynomial ϕ3 := x4 + 2Ax2 + 4Bx− A2/3. Solving ϕ3 with radicals,
we get explicit expressions for the x-coordinates and we recall that for m = 3 being Z-
independent is equivalent to having different x-coordinates. Let ∆ := −432B2 − 64A3 be
the discriminant of the elliptic curve. If B 6= 0, the roots of ϕ3 are

x1 = −1

2

√
3
√

∆− 8A

3
− 8B

√
3√

− 3
√

∆− 4A
+

√
− 3
√

∆− 4A

2
√

3
,

x2 =
1

2

√
3
√

∆− 8A

3
− 8B

√
3√

− 3
√

∆− 4A
+

√
− 3
√

∆− 4A

2
√

3
,

x3 = −1

2

√
3
√

∆− 8A

3
+

8B
√

3√
− 3
√

∆− 4A
−
√
− 3
√

∆− 4A

2
√

3
,

x4 =
1

2

√
3
√

∆− 8A

3
+

8B
√

3√
− 3
√

∆− 4A
−
√
− 3
√

∆− 4A

2
√

3
,
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where we have chosen one square root of −
3√∆−4A

3
and one cubic root for ∆; since ζ3 ∈ K3

the degree [K3 : K] will not depend on this choice.
To ease notation, we define

γ :=
− 3
√

∆− 4A

3
, δ :=

(−γ − 4A)
√
γ − 8B

√
γ

, δ′ :=
(−γ − 4A)

√
γ + 8B

√
γ

.

Thus, when B 6= 0, the roots of ϕ3 are

x1 =
1

2
(−
√
δ +
√
γ) , x2 =

1

2
(
√
δ +
√
γ) ,

x3 =
1

2
(−
√
δ′ −√γ) and x4 =

1

2
(
√
δ′ −√γ) .

The corresponding points Pi := (xi,
√
x3
i + Axi +B) have order 3 and are pairwise Z-in-

dependent (this would hold with any choice for the sign of the square root providing the
y-coordinate). For completeness, we show the expressions of y1, y2, y3 and y4 in terms of
A, B, γ, δ and δ′:

y1 =

√
(−γ√γ + 4B)

√
δ + γδ

4
√
γ

, y2 :=

√
(γ
√
γ − 4B)

√
δ + γδ

4
√
γ

,

y3 =

√
(−γ√γ − 4B)

√
δ′ − γδ′

4
√
γ

, y4 =

√
(γ
√
γ + 4B)

√
δ′ − γδ′

4
√
γ

.

If B = 0, then γ = 0 too and the formulas provided above do not hold anymore. The
x-coordinates are now the roots of ϕ3 = x4 + 2Ax2 − A2/3. Let

β := −

(
2
√

3

3
+ 1

)
A and η :=

(
2
√

3

3
− 1

)
A ,

then the roots of ϕ3 are x1 =
√
β, x2 = −

√
β, x3 =

√
η and x4 = −√η. Furthermore

y1 =

√
−2A

√
β√

3
=

√
−2A

3

√
−2A

√
3− 3A .

Using the results of the previous sections and the explicit formulas, we can now give the
following description of K3.

Proposition 5.1. We have K3 = K(x1 + x2, ζ3, y1). Moreover

1. if B 6= 0, then K3 = K(
√
γ, ζ3, y1),

2. if B = 0, then K3 = K(ζ3, y1).

Proof. By Theorem 2.8, K3 = K(x1 + x2, x1x2, ζ3, y1). If B 6= 0, since x1 + x2 =
√
γ and

x1x2 =
γ

2
+ A+

2B
√
γ
∈ K(

√
γ) ,

one has K3 = K(x1 + x2, ζ3, y1) = K(
√
γ, ζ3, y1). If B = 0, the statement follows from

x1 + x2 = 0 and K(x1x2) = K(
√

3) ⊆ K(y1). �
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5.1. The degree [K3 : K]. Because of the embedding

Gal(Kn/K) ↪→ GL2(Z/nZ)

one has that d := [K3 : K] is a divisor of |GL2(Z/3Z)| = 48 (in particular, if B = 0, then
K3 = K(ζ3, y1) and y1 has degree at most 8 over K so [K3 : K] divides 16). Therefore
d ∈ Ω := {1, 2, 3, 4, 6, 8, 12, 16, 24, 48}. In [4], we proved that the minimal set for [Q(E [3]) :

Q] is Ω̃ := {2, 4, 6, 8, 12, 16, 48} and showed also explicit examples for any degree d ∈ Ω̃.
When K is a number field we can get also examples of degree 1, 3 and 24: it suffices to take
the curves in [4] with degree d ∈ {2, 6, 48} and choose K = Q(ζ3) as base field. In general,
once we have a curve E defined over Q with [Q(E [3]) : Q] = 48, we produce examples of any
degree d ∈ Ω by simply considering the same curve over subfields K of Q(E [3]) (obviously
for those K one has K3 = Q(E [3]) ).

Theorem 5.2. With notations as above let d = [K3 : K]. For B 6= 0, put K ′ := K(ζ3,
3
√

∆)
with d′ := [K ′ : K] and consider the following conditions

A1.
√
γ 6∈ K ′ ; A2.

√
δ 6∈ K ′(√γ) ; A3. y1 6∈ K ′(

√
δ) .

For B = 0, put K ′′ := K(ζ3) with d′′ := [K ′′ : K] and consider the following conditions

B1.
√

3 6∈ K ′′ ; B2.
√
β 6∈ K ′′(

√
3) ; B3. y1 6∈ K ′′(

√
β) .

Then the degrees are the following

B d holding conditions B d holding conditions
6= 0 8d′ A1, A2, A3 = 0 8d′′ B1, B2, B3
6= 0 4d′ 2 of A1, A2, A3 = 0 4d′′ 2 of B1, B2, B3
6= 0 2d′ 1 of A1, A2, A3 = 0 2d′′ 1 of B1, B2, B3
6= 0 d′ none = 0 d′′ none

Proof. We use Proposition 5.1, the explicit description of the generators of K3 given at the
beginning of this section and the towers of fields

K ⊆ K ′ ⊆ K ′(
√
γ) ⊆ K ′(

√
γ,
√
δ) ⊆ K ′(

√
γ, y1) = K3

(for B 6= 0) and

K ⊆ K ′′ ⊆ K ′′(
√

3) ⊆ K ′′(
√
β) ⊆ K ′′(y1) = K3

(for B = 0).

Looking at the explicit expressions of γ in terms of 3
√

∆, of δ in terms of
√
γ, etc... one sees

that all inclusions provide (at most) quadratic extensions: the computation of the degrees
follows easily. �

5.2. Galois groups. We now list all possible Galois groups Gal(K3/K) via a case by case
analysis (one can easily connect a Galois group to the conditions in Theorem 5.2, so we do
not write down a summarizing statement here).
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5.2.1. B 6= 0. The degree is a divisor of 48. Looking at the subgroups of GL2(Z/3Z) one
sees that certain orders do not leave any choice: indeed d = 1, 2, 3, 12, 16, 24 and 48 give
Gal(K3/K) ' Id, Z/2Z, Z/3Z, D6, SD8, SL2(Z/3Z) and GL2(Z/3Z) respectively 1. The
remaining orders are d = 4, 6 and 8.
If d = 4: then d′ = 1 or 2. In any case there is at least a cube root of ∆ in K and we can
pick that as our 3

√
∆.

• If d′ = 2 and A1 holds, then
√
γ provides another quadratic extension of K disjoint

from K ′: hence Gal(K3/K) ' Z/2Z× Z/2Z.
• If d′ = 2 and A2 holds, then there are two possibilities:

a) if
√
γ ∈ K, then

√
δ provides another quadratic extension of K disjoint from

K ′ and Gal(K3/K) ' Z/2Z× Z/2Z;
b) if

√
γ ∈ K ′ − K, then K ′ is the unique quadratic subextension of K3 and

Gal(K3/K) ' Z/4Z.
• If d′ = 2 and A3 holds, then there are two possibilities:

c) if
√
δ ∈ K, then y1 provides another quadratic extension of K disjoint from

K ′ and Gal(K3/K) ' Z/2Z× Z/2Z;

d) if
√
δ ∈ K ′ − K, then K ′ is the unique quadratic subextension of K3 and

Gal(K3/K) ' Z/4Z.

• If d′ = 1, then K(
√
γ) (if A1 holds) or K(

√
δ) (if A1 does not hold) is the unique

quadratic subextension of K3 and Gal(K3/K) ' Z/4Z.

If d = 6: then d′ = 3 or 6.

• If d′ = 6, then K3 = K ′ and Gal(K3/K) ' S3.
• If d′ = 3, then Gal(K3/K) is a group of order 6 with a normal subgroup Gal(K3/K

′)
of order 2, i.e., Gal(K3/K) ' Z/6Z.

If d = 8: then d′ = 1 or 2 (and again we can pick a cube root of ∆ in K).

• If d′ = 1, then for a ϕ ∈ Gal(K3/K) one can have ϕ(δ) = δ or δ′ and both cases
occur. Therefore ϕ(y1) can be any of the other yi and this provides 6 elements of
order 4 (namely the morphisms sending y1 to ±y2, ±y3 and ±y4, see for example
those denoted by ϕi,j for i = 3, 5, 7 and j = 1, 2 in [4, Appendix]: even if that paper
is written for K = Q the formulas are valid in general). We have that Gal(K3/K)
is the quaternion group Q8 with generators of order 4

ϕ2

 y1 7→ y2

√
γ 7→ √

γ
, ϕ3

 y1 7→ y3

√
γ 7→ −√γ

, ϕ4

 y1 7→ y4

√
γ 7→ −√γ

and the element of order 2

ϕ1

 y1 7→ −y1

√
γ 7→ √

γ
.

1One can also note that the unique normal subgroup of order 8 is the quaternion group Q8; hence,
whenever [K3 : K ′] = 8, one has Gal(K3/K

′) ' Q8.
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• If d′ = 2 and A1 holds, then K(
√
γ, y1) and K ′ are disjoint over K and there are

(at most) 2 elements of order 4 (and none of order 8). Therefore, since (Z/2Z)3 is
not a subgroup of GL2(Z/3Z), Gal(K3/K) is the dihedral group D4.
• If d′ = 2 and A1 does not hold, then there are two possibilities:

a) if
√
γ ∈ K, then K(

√
δ, y1) is an extension of K disjoint from K ′, there are

(at most) 2 elements of order 4 and Gal(K3/K) is the dihedral group D4;
b) if

√
γ ∈ K ′ −K, then ϕ(y1) can again be any of the yi. As seen above for the

case d = 8 with d′ = 1, there are 6 elements of order 4 and Gal(K3/K) ' Q8.

5.2.2. B = 0. The degree [K3 : K] divides 16. Hence Gal(K3/K) is a subgroup of the
2-Sylow subgroup of GL2(Z/3Z) which is isomorphic to SD8 (the semidihedral group of
order 16). Obviously if d = 16, 2 or 1, then Gal(K3/K) ' SD8 or Z/2Z or Id. Hence we
are left with d = 4 and 8.
If d = 4: then d′′ = 1 or 2.

• If d′′ = 2 and B1 holds, then K ′′ and K(
√

3) are disjoint over K and Gal(K3/K) '
Z/2Z× Z/2Z (note that this happens if i 6∈ K).
• If d′′ = 2 and B2 holds, then there are two possibilities:

a) if
√

3 ∈ K (note that, for this case, this is equivalent to i 6∈ K), then K(
√
β)

provides another quadratic extension of K disjoint from K ′′ and Gal(K3/K) '
Z/2Z× Z/2Z;

b) if
√

3 ∈ K ′′ −K (equivalently i ∈ K), then K ′′ is the unique quadratic subex-
tension of K3 and Gal(K3/K) ' Z/4Z.

• If d′′ = 2 and B3 holds, then there are two possibilities:
c) if

√
β ∈ K, then K(y1) provides another quadratic extension of K disjoint

from K ′′ and Gal(K3/K) ' Z/2Z× Z/2Z;
d) if

√
β ∈ K ′′ − K, then K ′′ is the unique quadratic subextension of K3 and

Gal(K3/K) ' Z/4Z.
• If d′′ = 1, then K(

√
3) (if B1 holds) or K(

√
β) (if B1 does not hold) is the unique

quadratic subextension of K3 and Gal(K3/K) ' Z/4Z.

If d = 8: then d′′ = 1 or 2.

• If d′′ = 1, then there are elements ϕ of Gal(K3/K) such that ϕ(
√

3) =
√
−3 and

ϕ(
√
β) = −

√
β. Therefore the image of x1 can be any of the other xi and the image

of y1 can be any of the other yi. As in the case B 6= 0 with d = 8 and d′ = 1, one
sees that the elements sending y1 to ±yi (2 6 i 6 4) are of order 4 in the Galois
group and Gal(K3/K) ' Q8.
• If d′′ = 2 and B1 holds, then K ′′ and K(y1) are disjoint over K, there are 2 elements

of order 4 and Gal(K3/K) ' D4.
• If d′′ = 2 and B1 does not hold, then there are two possibilities:

a) if
√

3 ∈ K, then K(y1) is an extension of K disjoint from K ′′, there are 2
elements of order 4 and Gal(K3/K) is the dihedral group D4;

b) if
√

3 ∈ K ′′−K, then ϕ(y1) can be any of the yi, there are 6 elements of order
4 and Gal(K3/K) ' Q8.



20 FIELDS GENERATED BY TORSION POINTS OF ELLIPTIC CURVES

6. Fields K(E [4])

This section focuses on the case m = 4 (we remark that the γ and δ here have no relation
with the same symbols appearing in Section 5). Let K be a field, with char(K) 6= 2, 3, and
let E be an elliptic curve defined over K, with Weierstrass form y2 = x3 + Ax + B. The
roots α, β and γ of x3 + Ax + B = 0 are the x-coordinates of the points of order 2 of E .
In particular α + β + γ = 0. The points of exact order 4 of E are ±P1, ±P2, ±P3, ±P4,
±P5, ±P6, where

P1 = (α +
√

(α− β)(α− γ), (α− β)
√
α− γ + (α− γ)

√
α− β),

P2 = (β +
√

(β − α)(β − γ), (β − γ)
√
β − α + (β − α)

√
β − γ),

P3 = (α−
√

(α− β)(α− γ), (α− β)
√
α− γ − (α− γ)

√
α− β),

P4 = (β −
√

(β − α)(β − γ), (β − α)
√
β − γ − (β − γ)

√
β − α),

P5 =

(
γ +

√
(α− γ)(β − γ),

(α− γ)(β − γ)√
γ − α

+
(α− γ)(β − γ)√

γ − β

)
,

P6 =

(
γ −

√
(α− γ)(β − γ),

(α− γ)(β − γ)√
γ − α

− (α− γ)(β − γ)√
γ − β

)
.

We take P1 and P2 as basis of the 4-torsion subgroup of E . With the explicit formulas for
the coordinates of the 4-torsion points its easy to check that (see, for example, [6])

K4 = K(
√
−1,

√
α− β,

√
β − γ,

√
γ − α) .

Another quick way to find this extension is by applying the results of Section 2.

6.1. The degree [K4 : K]. By definition K(α, β) is the splitting field of x3 +Ax+B, i.e.,
the field generated by the 2-torsion points. Hence [K(α, β) : K] = [K2 : K] 6 6. Then
K4 = K(

√
α− β,

√
α− γ,

√
β − γ,

√
−1) has degree at most 16 · [K(α, β) : K] 6 96 which

is, as expected, the cardinality of GL2(Z/4Z). As mentioned at the beginning of Section
5.1, once we find a curve E defined over Q with [Q(E [4]) : Q] = 96 (see Proposition 6.2
below), we know that any degree d dividing 96 is obtainable over some number field K.

Theorem 6.1. With notations as above, put d′ := [K2 : K] and d := [K4 : K]. Consider
the conditions

A1.
√
α− β /∈ K2 , A3.

√
β − γ /∈ K2(

√
α− β,

√
α− γ) ,

A2.
√
α− γ /∈ K2(

√
α− β) , A4.

√
−1 /∈ K(

√
α− β,

√
α− γ,

√
β − γ) .

Then the degrees are the following

d holding conditions
16d′ A1, A2, A3, A4
8d′ 3 of A1, A2, A3, A4
4d′ 2 of A1, A2, A3, A4
2d′ 1 of A1, A2, A3, A4
d′ none
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Proof. Computations are straightforward (every condition provides a degree 2 extension).
�

We show that any degree d is obtainable by providing a rather general case over Q with
d = 96. To stay coherent with our previous notations we set Q(E [4]) =: Q4 and Q(E [2]) =:
Q2 (not to be confused with the 2-adic field).

Proposition 6.2. Assume that x3 + Ax+ B ∈ Q[x] is irreducible, that ∆ = −16(27B2 +
4A3) is positive and not a square in Q and that α, β and γ are pairwise distinct real
numbers. Then [Q4 : Q] = 96.

Proof. Put δ = −3α2−4A and note that, once α is fixed the other two roots are
−α±

√
δ

2
.

By renaming the three roots (if necessary), we may assume that α > β > γ, so that all the
generators except

√
−1 are real and

(6.1)

[Q4 : Q] = 2[Q(
√
α− β,

√
α− γ,

√
β − γ) : Q]

= 2[Q

(√
3α +

√
δ

2
,

√
3α−

√
δ

2
, 4
√
δ

)
: Q] .

By the choice of α, we have that A < 0 and the polynomial x3 + Ax + B has a minimum

in x =

√
−A

3
. Hence α >

√
−A

3
and in particular 3α2 + A > 0.

By the hypotheses, we have that [Q2 : Q] = [Q(α,
√
δ) : Q] = 6 and δ > 0 is not a square

in Q(α). Obviously [Q2( 4
√
δ) : Q2] = 2; moreover

3α +
√
δ

2
is a square in Q2 if and only if

3α−
√
δ

2
has the same property. Assume

3α +
√
δ

2
∈ (Q∗2)2, i.e.,

3α +
√
δ

2
= (a + b

√
δ)2,

for some a, b ∈ Q2. Then
a2 + b2δ =

3α

2

2ab =
1

2

=⇒

 a2 +
δ

16a2
=

3α

2

b =
1

4a

,

leading to

a2 =
12α±

√
144α2 − 16δ

16
=

3α±
√

9α2 − δ
4

∈ Q(α) .

Hence 9α2 − δ = 12α2 + 4A must be a square in Q(α), i.e., 3α2 + A ∈ (Q(α)∗)2. Let N
denote the norm map from Q(α) to Q. Then N(3α2 +A) = 27B2 + 4A3 is not a square in
Q by hypothesis and this contradicts 3α2 + A ∈ (Q(α)∗)2. Therefore

[Q2

√3α +
√
δ

2

 : Q2] = [Q2

√3α−
√
δ

2

 : Q2] = 2

and we have to prove that the three quadratic extensions of Q2 we found are independent.
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The elements

√
3α +

√
δ

2
and

√
3α−

√
δ

2
generate the same quadratic extension over Q2

if and only if

3α +
√
δ

2
· 2

3α−
√
δ

=
9α2 − δ

(3α−
√
δ)2
∈ (Q∗2)2 ,

i.e., if and only if 3α2 + A ∈ (Q∗2)2. We have already seen that 3α2 + A 6∈ (Q(α)∗)2, so we

must have 3α2 + A = (a+ b
√
δ)2 with a, b ∈ Q(α) and b 6= 0. A little computation gives

b2 = − 3α2 + A

3α2 + 4A
∈ (Q(α)∗)2 ,

but

N

(
− 3α2 + A

3α2 + 4A

)
= −1 6∈ (Q∗)2

and this is a contradiction. Hence

[Q2

√3α +
√
δ

2
,

√
3α−

√
δ

2

 : Q2] = 4 .

Now 4
√
δ and

√
3α±

√
δ

2
generate the same quadratic extension of Q2 if and only if

3α±
√
δ

2
· 1√

δ
=

6α
√
δ ± 2δ

4δ
∈ (Q∗2)2 ,

i.e., if and only if 6α
√
δ ± 2δ = (a+ b

√
δ)2 for some a, b ∈ Q(α). This leads to

1. a2 + b2δ = 2δ and 2ab = 6α: solving for a we get

a2 = δ ±
√
δ2 − 9α2δ ∈ Q(α) .

Hence

δ2 − 9α2δ = (−3α2 − 4A)(−12α2 − 4A) ∈ (Q(α)∗)2 ,

i.e., (3α2 + 4A)(3α2 + A) ∈ (Q(α)∗)2. But by hypothesis 3α2 + 4A = −δ < 0 and
we recall that 3α2 + A > 0; thus (3α2 + 4A)(3α2 + A) < 0 cannot be a square in
the real field Q(α).

2. a2 + b2δ = −2δ and 2ab = 6α: this is impossible because a2 + b2δ > 0, while
−2δ < 0.

Then

[Q2

 4
√
δ,

√
3α +

√
δ

2

 : Q2] = [Q2

 4
√
δ,

√
3α−

√
δ

2

 : Q2] = 4 .

With similar computations one checks that the extension generated by 4
√
δ is also indepen-

dent from Q2(
√

3α2 + A) (the third quadratic extension contained in Q2

(√
3α+
√
δ

2
,
√

3α−
√
δ

2

)
).
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Hence

[Q2

√3α +
√
δ

2
,

√
3α−

√
δ

2
,

4
√
δ

 : Q] = 48

and, by (6.1), we have [Q4 : Q] = 96. �

With reducible polynomials x3 +Ax+B we can easily obtain examples of smaller degrees,
in particular when A = 0 or B = 0 (obviously, since

√
−1 ∈ Q4, we cannot obtain extension

of degree 1 or 3 over Q).

Example 6.3. The curve

y2 = x3 − 481

3
x+

9658

27
=

(
x− 34

3

)(
x− 7

3

)(
x+

41

3

)
provides

√
α− β = 3,

√
α− γ = 5 and

√
β − γ = 4. Then Q4 = Q(

√
−1) has degree 2

over Q.
The curve

y2 = x3 − 22x− 15 = (x− 5)(x2 + 5x+ 3)

yields

Q2 = Q(
√

13) and Q4 = Q

√5 +
√

13

2
,

√
5−
√

13

2
,

4
√

5,
√
−1


which has degree 32 over Q.

Proposition 6.4. If A = 0, then Q4 = Q
(
ζ12,

√
3
√
B(1− ζ3)

)
and

[Q4 : Q] =

{
8 if B ∈ (Q∗)3 ,
24 otherwise .

If B = 0, then Q4 = Q(
√

2,
√
−1, 4
√
−A) and

[Q4 : Q] =


16 if A 6= ±2a2,±a2 with a ∈ Q ,
8 if A = ±2a2 with a ∈ Q ,
4 if A = a4,±4a4 with a ∈ Q ,
8 otherwise .

Proof. For A = 0 just take α = 3
√
B, β = ζ3

3
√
B and γ = ζ2

3
3
√
B to get

Q4 = Q
(
ζ3,
√
−1,

√
3
√
B(1− ζ3),

√
3
√
B(1− ζ2

3 ),

√
3
√
B(ζ3 − ζ2

3 )

)
.

Obviously Q(ζ3,
√
−1) = Q(ζ12), moreover

√
3
√
B(1− ζ3),

√
3
√
B(1− ζ2

3 ) and
√

3
√
B(ζ3 − ζ2

3 )

generate the same extension of Q(ζ12). Therefore

Q4 = Q
(
ζ12,

√
3
√
B(1− ζ3)

)
and the first statement follows.



24 FIELDS GENERATED BY TORSION POINTS OF ELLIPTIC CURVES

For B = 0 let α = 0, β =
√
−A and γ = −β to get Q4 = Q( 4

√
−A,
√

2,
√
−1). The unique

quadratic subfield of Q( 4
√
−A) is Q(

√
−A), hence, if Q(

√
−A) 6= Q(

√
±2), Q(

√
−1), Q,

i.e., if A 6= ±2a2,±a2 for some a ∈ Q, we have [Q4 : Q] = 16. The remaining cases are
straightforward. �

6.2. Galois groups. One can find descriptions for GL2(Z/4Z) in [1, Section 5.1] or [7,
Section 3]: the most suitable for our goals is the exact sequence coming from the canonical
projection GL2(Z/4Z)→ GL2(Z/2Z), whose kernel we denote by H4

2 . Obviously

H4
2 =

{(
1 + 2a 2b

2c 1 + 2d

)
∈ GL2(Z/4Z)

}
and it is easy to check that it is an abelian group of order 16 and exponent 2, i.e., isomorphic
to (Z/2Z)4. By sending the row (1 1) to (3 3) and leaving rows (1 0) and (0 1) fixed, we
see that there exists a section GL2(Z/2Z)→ GL2(Z/4Z) which splits the sequence

H4
2 ↪→ GL2(Z/4Z)� GL2(Z/2Z)

as a semi-direct product. For any K, we have a commutative diagram

H4
2
� � //

����

GL2(Z/4Z) // //

����

GL2(Z/2Z)

����
Gal(K4/K2) �

� // Gal(K4/K) // // Gal(K2/K) .

The structure of Gal(K4/K) can be derived from the lower sequence (which splits as well),
checking the conditions of Theorem 6.1 to compute d′ (which identifies Gal(K2/K) as one
among Id, Z/2Z, Z/3Z or S3) and the i ∈ {0, . . . , 4} for which Gal(K4/K2) ' (Z/2Z)i.
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