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14 Abstract

15 The period corresponding to Marine Isotope Stages 9 (MIS 9) offers the opportunity to study orbital 

16 and sub-orbital scale climate variability under boundary conditions different from those of better 

17 studied intervals such as the Holocene and the Last Interglacial. Yet, it is poorly represented in 

18 independently-dated continental archives around the Mediterranean Region. Here, we present a 

19 speleothem stable isotope record (δ18O and δ13C) from the Former Yugoslavian Republic of Macedonia 

20 (F.Y.R.O.M., southern Balkans), which consists of two periods of growth broadly covering the ca. 332 

21 to 292 ka and the ca. 264 to 248 ka intervals (MIS 9e-b and late MIS 8). We interpret the speleothem 

22 δ18O as mostly related to regional hydrology, with variations that can be interpreted as due to changes 

23 in rainfall amount, with higher/lower values associated to drier/wetter condition. This interpretation is 

24 corroborated by a change in mineralogical composition between aragonite and calcite at ca. 328 ka, 

25 which marks increasing precipitation at the onset of MIS 9 and occurs within a trend of decreasing δ18O 



26 values. Also the comparison with the multiproxy climate record available from the nearby Lake Ohrid 

27 seems to support the proposed interpretation. The MIS 9e interglacial appears to be characterized by 

28 wettest conditions between ca. 326 and 321 ka, i.e. lasting ca. five kyr. Decreasing precipitation and 

29 enhanced millennial scale variability matches the glacial inception (MIS9 d to b), with drier events at 

30 ca. 319 ka (ca. 2 kyr long) and 310 ka (ca. 1 kyr long), and a major rainfall reduction between 306 and 

31 298 ka. The latter is followed by a prominent wetter period between 298 and 295 ka, for which carbon 

32 data values suggest high infiltration rate. Rainfall decreases again after 295 ka, and remain low until the 

33 growth interruption at ca. 292 ka. Resumption of the growth and progressive soil development, 

34 expressed by the carbon isotope record, occurred during the late part of MIS 8. Despite the rather high 

35 temporal uncertainty (average 6 ka), the speleothem hydrological record complements the 

36 environmental information provided by the Lake Ohrid record and also fits well to the framework of 

37 regional and extra-regional variability, showing similarities with pollen records from southern and 

38 western Europe, both at orbital and at sub-orbital time scale. 

39
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41

42 1-Introduction 

43 Past interglacial periods can be seen as a series of natural experiments characterized by different 

44 boundary conditions (e.g. seasonal and latitudinal distribution of insolation, atmospheric greenhouse 

45 gas concentrations, extent of continental ice sheets), with different consequent effects on the character 

46 of climate change (Tzedakis et al., 2009). The Marine isotope stage (MIS) 9 spans the 335-280 ka 

47 period (Railsback et al., 2015) and is a valuable complement to the better-studied interglacial intervals 

48 such as the Holocene and MIS 5e. It has high obliquity and is characterized by strong positive 

49 insolation anomalies centered over the poles in both summer hemispheres during substage 9e (Berger, 



50 1979). Based on the caloric summer half-year insolation, the early part of MIS 9 is the closest analog to 

51 the late Holocene throughout the last 450 ka (Ruddimann, 2007). MIS 9e has also the highest 

52 atmospheric CO2 concentration of the preindustrial period (nearly 300 ppm, Bazin et al., 2013). 

53 Conversely, in the latter stages of MIS 9, following the peak interglacial, summer insolation at high 

54 latitudes was not particularly strong and CO2 concentration decreased gradually. Thus, MIS 9 offers the 

55 opportunity to study interglacial climate evolution and sub-orbital scale variability under boundary 

56 conditions very different from the present and from more recent interglacial periods. Also the regional 

57 expression of interglacial warmth during MIS 9e is diverse: it is one of the most prominent interglacial 

58 in Southern hemisphere records (Petit et al. 1999; Hodell et al. 2000; King and Howard 2000), but at 

59 high latitudes of the North Atlantic region it is characterized by contrasting records of Sea Surface 

60 Temperature (SST) variations, ranging from relatively cool in records from the Nordic Seas (Koç et al. 

61 2001; Helmke and Bauch 2003), to mild interglacial conditions in the northeastern subpolar to mid-

62 latitude Atlantic Ocean (McManus et al. 1999; Mokkedem and McManus, 2017; Kandiano et al. 2004; 

63 Kostygov et al. 2010; Rodrigues et al. 2011). At mid-latitudes, coupled marine and terrestrial pollen 

64 records from the Iberian margin (Desprat et al., 2009; Roucoux et al., 2006; Tzedakis et al., 2004) and 

65 pollen records from long continental sequences in central-southern Europe and in the Mediterranean 

66 (Tzedakis et al., 2003; Reille and de Beaulieu, 1995; Reille et al., 2000, Sadori et al., 2016a) have 

67 revealed significant vegetation changes during the MIS 9e ice volume minimum and increasing 

68 variability during the following glacial inception and the early part of the following glaciation (MIS9-8 

69 transition), (Roucoux et al., 2006; Desprat et al., 2009; Fletcher et al., 2013, Tzedakis et al., 2004). 

70 Speleothems are highly sensitive recorders of climate and environmental properties (e.g. McDermott et 

71 al., 2004; Fairchild and Baker, 2012; Lachniet et al., 2009) and can be accurately dated by means of 

72 U/Th and U/Pb methods (e.g. Richards and Dorale, 2003; Woodhead et al., 2006). Past speleothem 

73 research focusing on the Mediterranean region has provided valuable insights into regional climate 



74 history (e.g. Bar-Matthews et al., 1999, 2000, 2003; Drysdale et al., 2005, 2006, 2007, 2009; Fleitmann 

75 et al., 2009; Jex et al., 2011; Göktürk et al., 2011; Regattieri et al., 2014a, 2014b, 2016a; Zanchetta et 

76 al., 2007, 2014, 2016; Zhornyak et al., 2011). However, beyond the Last Interglacial, high-resolution 

77 speleothem records from the Mediterranean are scarce (Ayalon et al., 2002; Bard et al., 2002; Bar-

78 Matthews et al., 2003; Drysdale et al., 2004). In this study, we investigate the stable isotope 

79 geochemistry, the mineralogy and the growth history of a stalagmite (OH2) covering the MIS9-MIS8 

80 interval, that originates from a cave in the south-western part of the Former Yugoslavian Republic of 

81 Macedonia (F.Y.R.O.M., Fig. 1). The cave is located within the watershed of Lake Ohrid, from which a 

82 detailed multiproxy record of climate history is available for the last ca. 633 ka (see Wagner et al., 

83 2017 and references therein). The comparison of the OH2 speleothem record with the local climatic 

84 framework provided by the lake record allows a better understanding of regional 

85 environmental/climatic drivers of speleothem stable isotope composition and of the progression of 

86 events from the interglacial MIS9e to the following glacial inception. We then compare our 

87 reconstruction to the wider climate history available from Mediterranean and North Atlantic archives, 

88 to unravel how regional environment change is linked to extra-regional climate variability at orbital and 

89 at millennial time scale.

90

91 2-Study site 

92 2.1 Cave description

93 Stalagmite OH2 (Fig. 2) was collected already broken from an unsurveyed cave located on a slope in 

94 the hills ca.16 km to the North-East of Lake Ohrid (Fig. 1). The cave opens at ca. 1130 m above sea 

95 level (a.s.l.) and is developed in Triassic to Early Jurassic platform carbonates of the Korabi Zone 

96 (Robertson and Shallo, 2000; Kilias et al., 2001), which consist mainly of intensively folded limestones 

97 and local dolostone (Hoffmann et al., 2010). Specifically, the cave is developed mainly within 



98 dolomitic rocks (Fig. 1). The cave is now fossil, sub-horizontal, ca. 150 m long and mostly composed 

99 of narrow passages developed in vadose regime, and is partly to completely filled by abundant 

100 concretions. Reconnaissance dating of other stalagmites yielded Middle to Late Pleistocene ages (our 

101 unpublished data). Today, the catchment is covered by a relatively deep soil that sustains a well-

102 developed forest of mesophilus and montane trees including deciduous oaks (Quercus spp) and 

103 beeches, hornbeams, hazels and maples (Fagus sylvatica, Carpinus betulus, Corylus colurna and Acer 

104 obtusatum; Matevski et al., 2011).

105

106 2.2 Local climate

107 The climate of the area is sub-Mediterranean with continental influences (Panagiotopoulos et al. 2013). 

108 Moisture availability is linked to the penetration of westerly storm tracks across southern Europe, and 

109 to Mediterranean cyclogenesis, both occurring predominantly during winter (Dünkeloh and Jacobeit, 

110 2003; Ulbrich et al., 2012). The amount of winter precipitation is inversely correlated to the North 

111 Atlantic oscillation (NAO) index (Ulbrich et al., 2012) because during negative NAO phases westerly 

112 storm tracks are shifted southward and bring more humidity from the Atlantic to the Mediterranean 

113 region, and because negative NAO phases in turn enhanced local cyclogenesis (Ulbrich et al., 2012). 

114 Mediterranean cyclogenesis is influenced also by others large-scale atmospheric patterns: it shows a 

115 positive correlation with the strength of the Scandinavian Pattern (characterized by an anticyclonic 

116 anomaly over Fennoscandia and western Russia, and by a negative pressure anomalies around the 

117 Iberian Peninsula), (Xoplaki, 2002); and a negative correlation with the East Atlantic-West Russian 

118 pattern (a dipole with high pressure over Fennoscandia and low pressure north of the Caspian Sea), 

119 (Xoplaki, 2002).

120 The warm, dry summers are related to the expansion of the Azores High (Xoplaki et al., 2003). 

121 Summer conditions are influenced also by the Asian and the African monsoon systems, with a negative 



122 correlation between monsoon strength and Mediterranean summer rainfall (see Ulbrich et al., 2012 and 

123 references therein). Local meteorology is influenced by the site’s proximity to the Adriatic Sea, the 

124 surrounding mountains, and the thermal capacity of Lake Ohrid itself (Watzin et al. 2002; Wagner et 

125 al., 2009; 2012; Panagiotopoulos et al., 2013). Mean July and January temperatures in the lowlands are 

126 21 °C and 1 °C respectively, with a mean annual temperature of 11 °C (Popovska and Bonacci, 2007). 

127 The mean annual precipitation at the lake altitude is ca. 750 mm/yr, and increases with elevation, with a 

128 measured value of 1194 mm/yr at 975 m a.s.l. (Popovska and Bonacci, 2007). Higher precipitation 

129 occurs during winter, when snowfalls are frequent (Wagner et al., 2009). 

130 The stable isotope composition of local precipitation water has an average d-excess of ca. 14‰ 

131 (Anovsky et al., 1991; Eftimi and Zoto, 1997), suggesting a component of meteoric water evaporated 

132 from the eastern Mediterranean (e.g. Dotsika et al., 2010). Rainfall δ18O values in the Ohrid watershed 

133 range from ca. -10.2‰ and -8.2‰, with a mean value of -8.8‰, whereas precipitation δD values 

134 average -57‰ (Anovsky et al., 2000; Leng et al., 2010). δ18O from springs around the lake range from 

135 −4.9‰ to −11.2‰ (including non-karstic springs). The range in spring/river δ18O and δD overlaps with 

136 the calculated isotope composition of monthly precipitation (see Leng et al., 2010 for calculation), 

137 although most of the measured spring water isotope data concentrate in the lower isotope range. This 

138 suggest both that these springs are recharged at higher altitude and that they are supplied mainly by 

139 isotopically depleted winter rainfall and snowfall, given the seasonal distribution of precipitation in the 

140 region (Leng et al., 2010, 2013).

141

142 3- Material and methods

143 3.1- Sample description and subsampling

144 Stalagmite OH2 is 145 mm long and 105 mm wide at the base, with a pronounced conical shape (Fig. 

145 2). It shows slight changes in the direction of the growth axis, perhaps due to earthquakes, which are 



146 common in the region (e.g. Hoffmann et al., 2010; Wagner et al., 2012). The basal section (145-132 

147 mm depth from top, dft) of OH2 is mostly composed of aragonite. Above 132 mm dft OH2 is 

148 composed of calcite and shows several marked color changes (Fig. 2). The stalagmite was cut 

149 longitudinally and one of the halves was hand-polished and subsampled along the growth axis for 

150 stable isotope (δ13C and δ18O) analyses. Subsampling was performed at 1-mm increments using a 

151 milling machine with a 1 mm-diameter drilling bit at the INGV laboratory of Pisa, producing 152 

152 samples. For U/Th dating, 25 solid prisms of ca. 50 mg (ca. 2 mm wide along the lamina and 1 mm 

153 thick on growth axis) were taken from the calcite portion with a hand dental drill. In the aragonite 

154 portion of the stalagmite, due to the higher U content, 8 powder samples of ca. 15 mg were retrieved 

155 for the analyses. From the other half of OH2, on the face opposite the stable isotope subsampling, four 

156 overlapping thin sections were cut for mineralogical analyses. The thin sections were analyzed with a 

157 transmitted-light microscope (Zeiss Laboval 4 ausJena) and photographed with a digital camera (Canon 

158 EOS). 

159 3.2 Stable isotope analyses

160 Stable isotope analyses were performed using a GasBench II (Thermo Scientific) coupled to a Delta XP 

161 Isotope Ratio Mass Spectrometer (Delta XP IRMS, Finnigan) at the Institute of Geosciences and Earth 

162 Resources of the Italian National Research Council (IGG-CNR) of Pisa (Italy). About 0.12 mg of 

163 CaCO3 were dissolved in H3PO4 (100%) and reacted at 70°C for one hour. All the results were reported 

164 relative to the V-PDB international standard.

165 Sample results were corrected using the international standard NBS-18 and a set of three internal 

166 standards, previously calibrated using the international standards NBS-18 and NBS-19 and by inter-

167 laboratory comparisons. Analytical uncertainties (1SD) are 0.10‰ and 0.15‰ for δ13C and δ18O 

168 respectively.



169 3.3 U/Th dating and age modelling

170 The U/Th dating was performed following the method of Hellstrom (2003) at the University of 

171 Melbourne (Australia). Briefly, samples were dissolved and a mixed 236U-233U-229Th spike was added 

172 prior to removal of the carbonate matrix with ion-exchange resin. The purified U and Th fraction 

173 diluted in nitric acid was introduced to a multi-collector inductively coupled plasma mass spectrometer 

174 (MC-ICPMS, Nu-Instruments Plasma). The 230Th/238U and 234U/238U activity ratios were calculated 

175 from the measured atomic ratios using an internally standardized parallel ion-counter procedure and 

176 calibrated against the HU-1 secular equilibrium standard. Correction for detrital Th content was applied 

177 using initial activity ratios of detrital thorium (230Th/232Th)i of 1.5 ± 1.5. Two separate depth-age 

178 models (Fig. 3) were constructed using a Bayesian Monte Carlo approach (Scholz et al., 2012). One 

179 model comprises the basal aragonite and the lower calcite intervals and the other the calcite section at 

180 the top of the stalagmite. Age models were constructed including stratigraphical constrain following the 

181 method described in Hellstrom (2006). 

182

183 3.4 Mineralogical analyses

184 XRD powder diffraction measurements were carried out on three samples of the basal aragonitic 

185 interval at the XRD1 beamline (Lausi et al., 2015) at the Elettra synchrotron facility, Basovizza, 

186 Trieste, Italy. The analyzed samples were gently hand milled in an agate mortar under acetone. The 

187 powders were transferred to 0.7 mm Lindemann borosilicate capillaries. XRD powder patterns were 

188 collected using a monochromatic wavelength of 0.5903 Å (21.00 keV) and 500 × 500 μm2 spot size, 

189 using a Dectris Pilatus 2M hybrid-pixel area detector (DECTRIS Ltd., Baden-Daettwil, Switzerland). A 

190 preliminary calibration of the hardware setup was performed through the analysis of the powder pattern 

191 obtained using a 0.1 mm capillary LaB6 standard reference powder (NIST 660a) sample. Collected bi-

192 dimensional powder patterns were subsequently integrated through the FIT2D (Hammersley, 1997) 



193 software, and the resulting 1-D patterns are reported in Figs. S1, S2, S3. A quantitative Rietveld 

194 analysis was performed through the TOPAS-Academic program (Coelho, 2004). A preliminary Pawley 

195 refinement (Pawley, 1981) was performed to get starting values for cell parameters and background, 

196 modeled with a 1/x function, effective to describe background intensity at low angles due to air 

197 scattering, and with a 12-term Chebyshev function. The effect of asymmetry, zero error and absorption 

198 were accounted for, and resulted quite limited. The instrumental contribution to the peak shape was 

199 modelled through a pseudo-Voigt function, by fitting the data of a sample of SRM 660a (LaB6) 

200 collected under the same experimental setup. Peak-shape broadening was modelled taking into account 

201 Gaussian crystallite size and microstrain contributions. The refined region for all samples was from 5-

202 35° 2θ. Crystal structure models for calcite and aragonite were taken from Effenberger et al. (1981) and 

203 Ye et al. (2012) respectively. Only cell parameters were refined for the two phases, leaving unvaried 

204 atomic positional and displacement parameters. The Rietveld refinement (Rietveld, 1969) was led up to 

205 the satisfactory agreement factors reported in Table S1. Refined cell parameters for calcite (Table S2) 

206 are always close to literature values for pure calcite, pointing to a quite limited Mg content in all the 

207 samples (Table S3). Refined cell parameters for aragonite are shown in Table S4.

208

209 4- Results 

210 4.1 Lithology and mineralogy 

211 Petrographic investigation on thin sections, retrieved in continuous sections along the growth axis, 

212 shows that the basal 13 mm of OH2 are mostly composed of aragonite. Darker layers in the upper 

213 portion are probably due to organic material or clay (Fig. 4a). This interval shows typical aragonite ray 

214 crystals, with a width/length (W:L) ratio exceeding 6:1, an elongation along the c-axis and a uniform to 

215 patchy extinction (Fig. 4a). Specific calcite regions cannot be observed. However, detailed synchrotron 

216 mineralogical investigations of three samples within this section (Fig. 2) reveal a low amount of low-



217 Mg calcite (Table 1 and Table S3), suggesting a subtle, “cryptic” alteration in a sample apparently 

218 unaltered (Bajo et al., 2016). Aragonite-to-calcite transformation is indeed a common diagenetic 

219 process in speleothems and in aragonitic-biogenic carbonates (e.g. Gill et al., 1995; Zhang et al., 2014). 

220 The aragonite section is separated from the upper calcite portion by a rough surface clearly indicating a 

221 growth interruption (Fig. 4a). The calcite portion includes two intervals of continuous growth, which 

222 are separated by a hiatus at 24 mm dft (Fig. 4d-e). The calcite shows an elongated (W:L >6:1), compact 

223 columnar fabric (Fig. 4b-d). In the lower portion, crystals display mostly flat faces and are more 

224 elongated (crystal length of ca. 2 mm). They show a tendency to a radi-axial to feathered columnar 

225 fabric (Fig. 4b) with uniform to radi-axial extinctions, which are likely triggered by a high Mg content 

226 of the solution related to the dolomitic bedrock (Neuser and Richter, 2007; Frisia and Borsato, 2010) 

227 and by the slow growth rate. Above this, the crystals became progressively smaller (mean length of ca. 

228 1 mm at the top of the section, Fig. 4d), less elongated and show more defects, such as lateral 

229 overgrowth (Fig. 4d). 

230 4.2 Chronology

231 The six corrected U/Th ages obtained from the aragonitic portion of OH2 range from 330.50 ± 11.06 ka 

232 to 329.228 ± 11.93 ka. The 21 corrected U/Th ages of the lower calcite section of OH2 provided ages 

233 between 323.42 ± 18.46 ka and 292.05 ± 14.11 ka (Table 2). Four ages obtained in the upper calcite 

234 portion range from 263.11 ± 7.83 ka to 264.77 ± 5.28 ka. All the speleothem ages, here and after, are 

235 referred to b2k according to the reference standardized speleothem database (SISAL, Comas-Bru et al., 

236 2017). Almost all ages are in stratigraphic order within the associated uncertainties. Only two ages 

237 were rejected as outliers (Table 2). As described above, mineralogical analyses show a small amount of 

238 aragonite to calcite transformation (Table 1). When neomorphism (i.e., the process of in-situ 

239 transformation of a mineral into a polymorph, Folk, 1965) occurs, most of the chemical properties can 

240 be re-set to the extent that they no longer fully represent the original conditions of deposition (Frisia et 



241 al., 2002; Zhang et al., 2014; Bajo et al., 2016). In particular, during aragonite-to-calcite 

242 transformation, U is commonly mobilized from the site of diagenesis, because recrystallization may 

243 involves a thin solution film in which U is easily mobilized (Domínguez-Villar et al., 2017), leading to 

244 an increase in the 230Th/238U isotopic ratio and resulting in U/Th ages which are older-than-true 

245 (Lachniet et al., 2012; Ortega et al., 2005; Bajo et al., 2016). This could severely compromise the 

246 accuracy of the U/Th chronology (Bajo et al., 2016). For OH2, petrographical and mineralogical 

247 observations show a limited occurrence of diagenetic alteration (more than 90% of aragonite preserved, 

248 see section 4.1). Moreover, the ages obtained from the aragonite section fit well with those of the 

249 calcite section above (Fig. 3). On the one hand, this suggests that the growth interruption between the 

250 aragonite and the calcite did not represent a significant time interval (i.e. it is within the associated 

251 uncertainty of the bounding ages). Moreover, it suggests that diagenesis does not significantly bias the 

252 accuracy of the U/Th chronology in the aragonite portion, otherwise ages for the aragonite portion 

253 would appear older (Lachniet et al., 2012; Ortega et al., 2005; Bajo et al., 2016). These considerations 

254 allow us to establish a continuous age-depth model for the aragonite-lower calcite section of OH2 

255 between 151 and 23 mm dft, ranging from 332.08 ± 9.41 ka to 292.16 ± 6.00 ka (Fig. 3). The age 

256 model obtained for the calcite portion above 23 mm dft covers the 264.40 ± 10.84 ka to 247.47 ± 7.58 

257 ka period. Due to the high number of performed dating, the uncertainties associated to the modelled age 

258 are significantly reduced with respect to those associated to single age measurements (average ca. 8.3 

259 kyr in the upper calcite section, ca. 5.2 kyr for the central calcite section and ca. 5.7 kyr for the 

260 aragonite section; 2σ uncertainty). The resulting temporal resolution of the stable isotope record is 

261 highly variable, ranging from more than 1 kyr to 40 yr (Fig. 5).

262

263 4.3. Stable isotopes



264 Stable isotope results plotted versus ages are shown in Fig. 5. In the basal aragonite interval (Fig. 2) 

265 stable isotope values display maximum values (average -7.0 ‰ and -8.0 ‰ for oxygen and carbon 

266 respectively), with strongly decreasing values slightly before the end of the interval, from ca. 331 ± 6 

267 ka to 328 ± 5 ka. δ18O values in the calcite portion of OH2 range from -7.67‰ to -9.57‰. The interval 

268 of lowest values (averaging ca. -9.0‰) occurs between ca. 326 ± 6 ka and 321 ± 8 ka. After ca. 321 ka, 

269 values increase abruptly until 318 ± 8 ka, and decrease slightly subsequentely. A well-marked event of 

270 increasing δ18O, 1 kyr lasting, is apparent at ca. 310 ± 5 ka. At 306 ± 6 ka values increase abruptly and 

271 remain higher until 298 ± 5 ka (Fig. 5). From ca. 298 to 295 ± 5 ka values abruptly decrease again, then 

272 rapidly increase and remain around -7.8‰ until the end of the interval at 292 ± 8 ka. Above the hiatus, 

273 from 264 ± 8 ka to the top of the record at 248 ± 8 ka, δ18O values are relatively stable between -8.0‰ 

274 and -8.6‰.

275 The calcite δ13C values of OH2 range from -6.87‰ to -10.20‰ (Fig. 5). Rather stable values around 

276 ca. -10‰, with only minor oscillations of ca. 0.5-0.7‰, occur throughout the 328 - 292 ka period of 

277 growth, except for an abrupt shift toward higher values (ca. -8.3‰) from 299 to 295 ka, when the δ18O 

278 record shows a prominent negative peak (Fig. 5). After the hiatus, from 264 ka onward, δ13C values are 

279 at their maximum, but rapidly decrease, reaching values close to the previous interval from ca. 256 ±8 

280 ka to the top of the record at ca. 248 ka.

281
282 5 Discussion
283
284 5.1 The aragonite interval: paleoclimate implications and the stable isotope record

285 The presence of aragonite in stalagmites is usually ascribed to low drip rate (Frisia et al., 2002) often 

286 coupled with high drip-water Mg concentration related to prior calcite precipitation (Fairchild and 

287 Treble, 2009), and/or to incongruent dissolution and long water residence time in dolomitic bedrock 

288 (Piccini et al., 2008; Regattieri et al., 2014b), such as that hosting the OH2 cave. All these processes 

289 occur during dry conditions; therefore, the presence of cave aragonite is an indicator of paleo-aridity 



290 (Frisia et al., 2002; McMillian et al., 2005; Wassenburg et al., 2012). The stable isotope geochemistry 

291 of aragonite speleothem has been less investigated for paleoclimatic purposes compared to calcite 

292 (Frisia et al., 2002; McMillian et al., 2005; Li et al., 2011), as the relationships between aragonite fabric 

293 and isotopic equilibrium conditions are less well known. However, the crystal ray habit observed in 

294 OH2 has been identified as likely precipitating close to isotopic equilibrium (Frisia et al., 2002; Frisia 

295 and Borsato, 2010). Laboratory and field studies have demonstrated that different isotope fractionation 

296 factors for calcite and aragonite precipitating in equilibrium from the same solution cause enrichment 

297 in both carbon and oxygen isotope composition in aragonite (e.g. Tarutani et al. 1969; Romanek et al., 

298 1992; Frisia et al., 2002). In Clamouse Cave, France (Frisia et al., 2002), which has a temperature of 

299 14.5°C, so close to MAT at the OH2 site, the δ18O value at the tips of active stalagmites is 0.7 to 1.4‰ 

300 (average 1.0 ‰) heavier than stalagmite calcite formed from waters with similar oxygen isotope values 

301 (Frisia et al., 2002). Assuming deposition close to isotopic equilibrium, δ18O aragonite values can thus 

302 be corrected (i.e. calibrated to calcite) applying the appropriate aragonite-calcite fractionation offset. 

303 However, the diagenetic transformation of aragonite into calcite has been shown to produce a variable 

304 δ18O offset, which may prevent the simple translation of aragonite δ18O values into the “primary” 

305 calcite range. For example, Zhang et al., (2014) reported a depletion of 0.85‰± 0.29‰ in δ18O values 

306 in secondary calcite (containing 10% of aragonite relicts) with respect to primary aragonite from the 

307 same growth layer. In most environments, recrystallization occurs from the interaction of fluid 

308 solutions with aragonite crystals. This diagenetic process can occur under open or semi-closed 

309 geochemical conditions (Domínguez-Villar et al., 2017). Open conditions result from the formation of 

310 voids due to dissolution of primary aragonite crystals and subsequent cementation with calcite crystals 

311 (Martín-García et al., 2014). In this case, secondary calcite crystals record the composition of the fluid 

312 at the time of diagenesis and do not longer reflect the original fluid composition. Under semi-closed 

313 conditions, instead, recrystallization results from the nearly simultaneous aragonite dissolution and 



314 calcite precipitation through a solution film <1 mm thick; and the secondary calcite composition is 

315 partly inherited from the composition of the primary aragonite (Domínguez-Villar et al., 2017). For 

316 stalagmite OH2, petrographical observations (section 4.1) do not suggest large alteration by a 

317 significant water flux, because specific calcitic areas are not observed within the aragonite interval. 

318 Also, the amount of diagenetic calcite is rather low (average 7.5%, Table 1) ensuing that the bulk 

319 speleothem oxygen composition primarily reflect the original aragonite δ18O values, as the amount of 

320 preserved aragonite is more than 90%. Thus, we can tentatively apply a first-order correction to the 

321 OH2 δ18Oaragonite values (Fig. 5), to bring them in the range of the primary calcite. After subtracting 1.0 

322 ‰ (mean value from field study, Frisia et al., 2002), most of the δ18O values still remain considerably 

323 higher with respect to the calcite portion (Fig. 5) and the trend of strongly decreasing values observed 

324 at the end of the aragonite section continues in the basal calcite section. 

325 The increase in δ13C values predicted from the different enrichment factors for calcite and aragonite 

326 forming from the same waters is ca. 1.7‰, and is independent of temperature between 10° and 40°C 

327 (Morse and Mackenzie 1990; Romanek et al., 1992). However, field measurements at Clamouse Cave 

328 show an increase from 2 to 3.4‰ in carbon isotope composition with respect to co-precipitating calcite, 

329 thus slightly higher than the predicted value, also for aragonite precipitating near isotopic equilibrium 

330 (Frisia et al., 2002). The unpredicted increase in δ13C indicates that aragonite probably formed under 

331 slower, more constant, and more prolonged degassing conditions than calcite (Frisia et al., 2002). The 

332 complexity of phenomena that control 13C-enrichment in speleothem aragonite precludes applying a 

333 simple translation of δ13C data in the range of primary calcite, and prevents the discussion of their 

334 paleoclimatic meaning. Therefore, we will not discuss further the carbon record for the aragonite 

335 interval.

336
337 5.2. The δ18O record and its paleoclimatic interpretation in the local environmental framework 



338 The cave from which OH2 was retrieved was visited randomly several times since 2009, in different 

339 periods of the year and under different meteorological conditions. The cave always appeared 

340 hydrologically inactive, with no flowing and/or dripping water and no active speleothem growth. Thus, 

341 monitoring of modern drip and paired studies on modern calcite, normally recommended to test 

342 equilibrium deposition and the relationship between drip water and precipitation, was not possible. 

343 However, for OH2, deposition close to isotopic equilibrium can be inferred from the observed 

344 columnar fabric, which is thought to occur when speleothems are continuously wet, under relatively 

345 constant flow and from fluids at near-isotopic equilibrium conditions (Frisia et al., 2002; Frisia and 

346 Borsato, 2010, Frisia et al., 2015). The oxygen isotope composition of speleothems precipitating close 

347 to isotopic equilibrium depends on the isotopic composition of the drip water and on the cave air 

348 temperature (e.g. Lachniet et al., 2009). Isotopic fractionation factors between water and calcite has a 

349 temperature dependence of ca. -0.2‰ ± 0.03‰ °C-1 between 5°C and 35°C (Kim and O’Neil, 1997), a 

350 value that has been recently update to -0.177‰°C-1 specifically for speleothem calcite (Tremaine et al., 

351 2011). In regards to relationships between precipitation and drip water, many studies from temperate to 

352 arid settings indicate that the δ18O values of drip water appear to mostly represent, in relatively deep 

353 caves, the weighted mean annual δ18O value of precipitation (Yonge et al., 1985; Fleitmann et al., 

354 2004; Mattey et al., 2008; Piccini et al., 2008; Baneschi et al., 2011; Genty et al., 2014). In the absence 

355 of cave monitoring data and notwithstanding the limitation of this assumption, we can therefore assume 

356 that the same relationship holds for OH2 cave. However, probably in our case the recharge is likely 

357 mostly biased toward the winter season, due to the prevalence of winter precipitation in the Ohrid 

358 Region. 

359 Factors driving the oxygen isotopic composition of the meteoric precipitation (δ18Op) and thus that of 

360 the speleothems, are multiple and vary on a spatial and temporal basis (e.g. Dansgaard et al., 1964; 

361 Lachniet et al., 2009; Demeny et al., 2017; Drăgusin et al., 2014). In the central and western 



362 Mediterranean, the δ18Op has a strong, empirical relationship with the amount of rainfall (ca.-2.0‰ per 

363 100 mm/month) and a negligible dependence on temperature (ca. +0.3‰/°C, i.e.; close in magnitude 

364 but opposite in sign to the cave-temperature effect, Bard et al., 2002). Lower δ18Ocalcite values during 

365 wetter periods are commonly reported from speleothems and carbonatic lake sediments from the region 

366 (e.g. Bar-Matthews at al., 2000, 2003; Bard et al., 2002; Drysdale et al., 2004, 2007; Regattieri et al., 

367 2012, 2014a, 2015; Roberts et al., 2008, Zanchetta et al., 2007b, 2012, 2016a, 2017a; Giaccio et al., 

368 2015a, 2015b). This general relationship has been also supported by multiproxy investigations on both 

369 kinds of deposits (Drysdale et al., 2006, 2009; Regattieri et al., 2016a, 2016b, 2017; Sadori et al., 

370 2016b). In central and northern Europe, the δ18Op is strongly positively related to condensation 

371 temperature (+0.58‰ /°C, Rozansky et al., 1993), whereas the amount effect is negligible. This 

372 temperature dependence is reflected in the δ18O of calcite from speleothems and lakes, which usually 

373 show lower values during colder periods and higher values during warmer periods (e.g. Mangini et al., 

374 2005; Boch et al., 2011; Hauselmann et al., 2015; Spötl and Mangini, 2003; Spötl et al., 2006). In 

375 addition to these two main driving factors, there is an overall influence of changes in the isotopic 

376 values of the source of the precipitation (i.e. the sea surface water, e.g. Grant et al., 2012; Marino et al., 

377 2015). The Balkan Peninsula is part of the Mediterranean region, but it is also is affected by continental 

378 processes. Speleothem records from the region are scarce and mostly located along the Adriatic 

379 coastline (Suric, 2005; Rudzka, 2012; Chiarini et al., 2017) or in the more continental region, north of 

380 the Balkans, in Romania or Hungary (e.g. Onac et al., 2002; Onac and Lauritzen, 2006; Tămaş et al., 

381 2010; Demeny et al., 2017). For the F.Y.R.O.M. specifically, no other speleothem records are available 

382 to our knowledge, and the main drivers of δ18O composition of speleothem calcite are not defined yet. 

383 If we hypothesize that, as for the Mediterranean, the δ18O is mostly related to the amount effect, with 

384 lower values indicating wetter periods, the higher values and the decreasing trend observed in the 

385 calcite-calibrated δ18O record of the aragonite interval are in good agreement with the large 



386 hydrological shift (from drier to wetter conditions) reflected by the change in speleothem mineralogy at 

387 ca. 328 ka. Following this hypothesis, the general pattern of OH2 δ18O record shows significant 

388 similarities with paleoclimate proxies from the Lake Ohrid throughout the observed period (Fig. 5), 

389 supporting the interpretation of speleothem δ18O as a hydrological proxy. The shift in isotope 

390 composition and mineralogy indeed corresponds to the abrupt rise in arboreal pollen (AP-Pinus) 

391 percentage (Sadori et al., 2016a) and in total inorganic carbon (TIC) content (Francke et al., 2016) 

392 related to the MIS10-MIS9 transition (Fig. 5). Increase in AP indicates rising temperature and 

393 precipitation (Sadori et al., 2016a). Increase in TIC content of lake sediment implies high 

394 photosynthesis-induced precipitation of endogenic calcite, promoted by rising spring and summer 

395 temperatures (Francke et al., 2016). Moreover, the TIC content is also related to HCO3
- and Ca2+ 

396 concentrations in the lake water, which depend on lake water evaporation, the intensity of chemical 

397 weathering of limestone in the catchment, the karst discharge volume and surface runoff (Vogel et al., 

398 2010; Francke et al., 2016). These parameters are all related to the amount of precipitation, mostly 

399 occurring during winter, with enhanced ion supply through soil/epikarst dissolution processes and high 

400 soil CO2 activity during increased rainfall. This dependence of TIC content to precipitation amount 

401 may explain the similarity to the OH2 δ18O hydrological record. Between ca. 328 and 321 ka, lowest 

402 isotopic values of OH2 record are consistent with highest TIC and AP content in the lake record, within 

403 the associated uncertainties of both records (the mean 2σ uncertainties of the lake record, whose age 

404 model is based on tephrochronology and refined by tuning to local insolation, in this interval is ca. 2 

405 kyr, Francke et al., 2016). Thus, both the speleothem and the lake records agree in showing high 

406 precipitation during this period. Within this interval, slightly reduced precipitation (increasing 

407 speleothem δ18O) is apparent at ca. 323 ka (Fig. 5). A sudden increase in δ18O values at ca. 321 ka, 

408 indicating rainfall reduction, is followed by increased variability at multi-centennial scale until ca. 313 

409 ka. In the lake record, this period is marked by a pronounced minimum in TIC and AP and a significant 



410 maximum in δ18O values centered around 320 ka (Fig. 5). Slightly higher precipitation is apparent 

411 between 312 and 306 ka and is marked by lower δ18O values of lake and speleothem calcite and higher 

412 AP and TIC, although all the proxies suggest that this interval is slightly drier than the previous 

413 interglacial peak (Fig. 5). In the stalagmite record, as well as in the lake TIC and AP record, this 

414 interval is interrupted by a sharp, 2.5-kyr-long drier event centered at ca. 310 ka (Fig. 5). From 306 ka 

415 speleothem δ18O shows that precipitation decreases abruptly and remains low until ca. 297 ka, although 

416 with a brief wetter reversal centered at ca. 299 ka. A concomitant depressed temperature is suggested 

417 by a drop in endogenic calcite deposition and in AP content of lake sediments (Fig. 5). The break-down 

418 of calcite-precipitation preservation and the presence of siderite in the lake sediments suggest a glacial-

419 like climate state persisting throughout much of this phase (Francke et al., 2016; Lacey et al., 2016). 

420 However, the continuous growth of OH2 in this period suggests temperatures above 0°C. After 297 ka, 

421 a stepwise abrupt decrease in speleothem δ18O indicates enhanced precipitation. This wetter period 

422 matches, for shape and length, a spike in AP content, although TIC content does not show a similar 

423 increase. A drastic reduction of precipitation characterizes the period between 295 ka and the end of the 

424 section at ca. 292 ka. Resumption of speleothem growth after ca. 264 ka is marked in the lake record by 

425 slight increase in AP percentages (Fig. 5), but not in TIC, which suggests that relatively cold and dry 

426 conditions persisted. 

427

428 5.3 The δ13C record and its paleoclimatic interpretation 

429 In temperate settings, increasing δ13C values in speleothems are related to a more significant 

430 contribution of 13C-enriched CO2 from bedrock dissolution and/or to a decrease in soil-CO2 

431 productivity due to a reduction in rainfall and/or cooler climate (e.g. Genty et al., 2001). Reduction in 

432 recharge can also produce degassing along the fracture paths and longer rock-water interaction time, 

433 both resulting in higher δ13C of drip water and speleothem (Baker et al., 1997; Fairchild et al., 2006). 



434 Commonly, when oxygen is interpreted in hydrological terms, as in our case, a positive correlation is 

435 observed between δ13C and δ18O values, with a reduction of soil biological activity (higher δ13C) paired 

436 to a reduction in precipitation (higher δ18O). In the OH2 stalagmite, the δ13C record is more stable with 

437 respect to δ18O and characterized by relatively low values (Fig. 5), which indicates a strong 

438 contribution of organic CO2 from the soil both during the interglacial and during the following glacial 

439 inception. It suggests that the soil above the cave was relatively well developed during the whole 

440 period, enough to buffer the effect of precipitation changes recorded by the oxygen isotope record. 

441 Accordingly, the pollen record from the nearby Lake Ohrid (Sadori et al., 2016a) indicates a significant 

442 percentage of trees in the lake catchment also during part of the MIS10 and MIS8. However, it is worth 

443 noting that, although subdued, the variability observed in the δ13C record during the period from ca. 

444 330 to 297 ka resembles that observed in the δ18O record (Fig. 5), suggesting a modulation of soil 

445 productivity related to rainfall fluctuations. The combination between lower δ18O (intended as a 

446 hydrological proxy) and higher δ13C values is reported more rarely. In periods when the soil–water 

447 residence time is relatively short (i.e. enhanced rainfall and very high infiltration rate), complete 

448 isotopic equilibration may not occur between soil CO2 and the percolating H2O, and the infiltrating 

449 water may retain a component of isotopically heavier atmospheric CO2 in solution (Bar-Matthews et 

450 al., 2000; McDermott, 2004). Alternatively, high δ13C paired with low δ18O can be the result of 

451 enhanced weathering of the host rock, potentially related to reaction of oxygenated water with sulphide 

452 minerals. This process is common in dolomitic bedrock and tends to produce sulphuric acid which, by 

453 promoting dissolution, will enhance the host rock δ13C contribution (Bajo et al., 2017), and the supply 

454 of more 13C-enriched carbon, due to high water flux. Similar processes may explain the positive δ13C 

455 values paired with the negative δ18O values between 297 and 295 ka and likely indicate a prominent 

456 increase in precipitation (Fig. 5). After the hiatus, from 264 ka, rapidly decreasing δ13C values may 

457 represent the progressive reestablishment of soil and vegetation in the catchment following the 



458 maximum of glacial MIS8 (Fig. 5). This, and the presence of the preceding hiatus, may suggest 

459 temperature below 0°C and/or that the catchment was ice-covered during the MIS8 maximum. In the 

460 Balkans, glaciations may have taken place during MIS8, although deposits have not been preserved due 

461 to later glaciations being more extensive (Hughes et al., 2006). Indeed, extensive evidences of 

462 glaciation in the area were reported by Ribolini et al., (2011, 2017).

463

464 5.4 The Ohrid record in a Mediterranean-North Atlantic context
465
466 At orbital scale the OH2 record broadly matches the latest part of Termination IV and the isotopic sub-

467 stages of MIS 9e-b and 8b of the global stacked benthic record LR04 (Lisiecki and Raymo, 2005). 

468 However, marine-pollen records covering MIS9 have shown that the onset and the demise of benthic 

469 and terrestrial stadials and interstadials have a variable phasing, and that their length can significantly 

470 differ (Tzedakis et al., 2004; Roucoux et al., 2006; Desprat et al., 2009), as already observed for MIS5 

471 (Shackleton et al., 2003). In the following discussion we will refer to the terrestrial counterparts of the 

472 marine stages as defined by Tzedakis et al. (2004) on the basis of vegetation changes from core MD01-

473 2443 (Fig. 6), retrieved in the southern Portuguese margin (Fig. 1). The distinct mineralogical change 

474 and strongly decreasing δ18O values indicated in the OH2 record at ca. 328 ka represent increasing 

475 precipitation related to the MIS10-MIS 9 transition. Wettest conditions following this shift since 326 ka 

476 prevail only briefly. The sudden reduction in precipitation apparent at ca. 321 ka indeed marks the end 

477 of the interglacial optimum. The early end of the interglacial optimum observed in our record may 

478 correspond to a regional event of forest decline observed from Greece to Spain (Tzedakis et al., 2004, 

479 2006; Desprat et al., 2009) and in the MD01-2443 record (Fig. 6; Tzedakis et al., 2004; Roucoux et al., 

480 2006), where the length of terrestrial climate optimum of the 9e interglacial is similar (ca. four ka, 

481 Tzedakis et al., 2004). Also the speleothem δ18O record from Corchia Cave (Central Italy; Drysdale et 

482 al., 2004), interpreted in turn as related to the amount effect, shows only a short interglacial 



483 precipitation maximum followed by a progressive trend of aridification and increased variability, which 

484 however has a different pattern compared to our record. Interestingly, at the same time SST from the 

485 Iberian margin shows only a moderate decline, which may indicate a partial land-sea decoupling during 

486 the interglacial (Fig. 6; Tzedakis et al., 2004). Instead, an early end of peak interglacial conditions is 

487 reported in a recent SST record from the Gulf of Lions covering the last four glacial/interglacial cycles 

488 (Cortina et al., 2015; Fig. 6). In this case, present and past SST changes are principally driven by 

489 variations in the intensity of northwesterly winds (the Mistral and Tramontana), blowing through the 

490 Pyrenees, the Massif Central, and the Alps (Cortina et al., 2011, 2013, 2015; Pinardi and Masetti, 

491 2000). The early demise of peak interglacial conditions observed in this record (with respect to 

492 southern SST records) have been addressed as related to atmospheric patterns driven by high-latitude 

493 dynamics, like southward shifts of the atmospheric polar front and related persistent invasions of Arctic 

494 air masses (Cortina et al., 2015). The similarity observed with our record may suggest that during 

495 periods of reduced ice volume and strong MOC, atmospheric dynamics also became more influential 

496 on Mediterranean continental hydrology. Unstable hydrological conditions and slightly reduced 

497 precipitation for the 321-313 ka period mirror the stadial of MIS9d. On the Iberian margin, this interval 

498 was characterized by a less arid and warmer climate compared to the subsequent stadial MIS9b 

499 (Roucoux et al., 2006; Desprat et al., 2009), although punctuated by several millennial-scale events of 

500 forest reduction and/or SST cooling (Roucoux et al., 2006; Desprat et al., 2009). Despite the relative 

501 age uncertainties associated with both records prevent a detailed correlation, the general pattern 

502 observed in our record and in the pollen records from the Iberian margin is very similar (Fig. 6). The 

503 subsequent period, from 313 to 306 ka, corresponds to interstadial MIS9c and shows a generally wetter 

504 climate marked by an abrupt event of reduced precipitation at ca. 310 ka. On the Portuguese margin, 

505 this interstadial appears characterized by two warm intervals with higher SST and forest expansions 

506 interrupted by a cooler/drier phase in between (Fig. 6; Roucoux et al., 2006; Desprat et al., 2009). This 



507 event corresponds to a prominent event of ice rafted debris (IRD) deposition in the subpolar North 

508 Atlantic (McManus et al., 1999). It also marks the overrun of the δ18O benthic value of 3.5‰, 

509 considered by some as the critical threshold for ice volume triggering ice sheet instability, large iceberg 

510 discharge and disruption of Atlantic meridional overturning circulation (AMOC), with associated 

511 increase in the amplitude of sub-orbital SST reductions (McManus et al., 1999). A drastic reduction of 

512 arboreal vegetation is apparent within the MIS9c also in the high resolution pollen record from Tenaghi 

513 Philippon (TP, Greece, Fig. 6; Fletcher et al., 2013). In TP, increased variability at millennial time 

514 scales is observed during the early glacial (MIS9c-a) and was addressed as related to climate dynamics 

515 involving interhemispheric coupling via the bipolar see-saw (EPICA Community Members, 2006) and 

516 the rapid transmission of Atlantic climate variability into the Mediterranean region (Fletcher et al., 

517 2013). In spite of the chronological mismatching, the general pattern of millennial-scale variability 

518 observed in our record resembles that of the TP pollen record (Fig. 6). This suggests that precipitation 

519 instability in the Ohrid region during the glacial inception can be likely linked to the reduction of 

520 northward oceanic heat transport associated with changes in North Atlantic circulation and European 

521 atmospheric gradients. The drastic precipitation decrease since 306 ka mirrors stadial conditions of 

522 MIS9b. On the Iberian margin, this interval corresponds to a pronounced tree population collapse and 

523 to the expansion of steppe vegetation, indicating dry and cold conditions related to a moderate and brief 

524 incursion of sub-polar water off the Iberian margin. In the TP record, this interval is characterized by 

525 cool conditions with fluctuating humidity (Fletcher et al., 2013). In particular, a well-expressed peak in 

526 arboreal vegetation during this stadial shows a very good match with the abrupt peak in precipitation 

527 apparent in our record between 297 and 295 ka (Fig. 6). After this peak, arboreal vegetation at TP 

528 decreases strongly and OH2 temporarily ceased deposition, thus the interstadial MIS9a is not 

529 represented in our record. The resumption of growth at ca. 264 ka suggests a wetter interval and 

530 warmer temperature leading to the progressive development of soil above the cave. This interval of 



531 climatic amelioration could correspond to the distinct climatic transition apparent during MIS 8 in 

532 pollen record from TP, where a re-expansion of arboreal populations and deepening of local water 

533 depth were observed (Fig. 6; Fletcher et al., 2013). Again, the short-term precipitation variability could 

534 resemble the small changes apparent in vegetation composition at TP, although detailed correlations are 

535 prevented by the associated uncertainties of both records. On a wider scale, North Atlantic and 

536 Mediterranean SST rose during this period and the Asian monsoon was re-invigorated (Jiang et al. 

537 2010), suggesting a hemispheric intensification of the hydrological cycle (Fletcher et al., 2013). Our 

538 record ends at ca. 248 ka, because the very top part of the stalagmite is missing (Fig. 2).

539
540 6-Conclusions

541 The stalagmite (OH2) from F.Y.R.O.M. (Southern Balkans) consists of two intervals of growth 

542 covering the time periods between ca. 332 to 292 ka and ca. 264 to 248 ka, corresponding to the latter 

543 part of the MIS10 to 9 transition and to sub-stages 9e to 9b, and to the latter part of MIS8 respectively. 

544 We interpret the speleothem oxygen isotope variations as related largely to variations in rainfall 

545 amount, with decreasing/increasing values indicating wetter/drier conditions. This is supported by the 

546 speleothem mineralogy and by the similarity of the speleothem oxygen record with the multiproxy 

547 record from the nearby Lake Ohrid. The OH2 δ18O record shows increasing precipitation related to the 

548 glacial/interglacial transition, which is also marked by a shift in speleothem mineralogy from aragonite 

549 (indicating drier conditions) to calcite (indicating wetter conditions) occurring at ca. 328 ka. From ca. 

550 325 and 321 ka the record shows the highest rainfall associated to peak interglacial conditions of 

551 MIS9e. The length of the interglacial wettest period (ca. 6 ka) is similar to that observed in pollen and 

552 speleothem records from western and southern Europe (Tzedakis et al., 2004; Roucoux et al., 2006; 

553 Desprat et al., 2009; Drysdale et al., 2004) and in the SST record from the Gulf of Lions (Western 

554 Mediterranean, Cortina et al., 2015), and shorter with respect to SST records from the Iberian Margin 

555 (Tzedakis et al., 2004; Roucoux et al., 2006; Desprat et al., 2009; Martrat et al., 2007). This suggests a 



556 decoupling between North Atlantic conditions and Mediterranean continental hydrology during period 

557 of low ice volume and strong AMOC, with atmospheric dynamics becoming perhaps more influential. 

558 Unstable hydrological conditions and slightly reduced precipitation are apparent in the OH2 record for 

559 the 321-313 ka period and mirror stadial conditions of MIS 9d, which on the Iberian Margin appears 

560 similarly punctuated by several millennial-scale events of forest reduction and/or SST cooling. The 

561 subsequent period, from 313 to 306 ka, corresponds to MIS 9c and shows a generally wetter climate 

562 marked by an abrupt event of reduced precipitation at ca. 310 ka. The event is apparent also in pollen 

563 records from the Iberian Margin and from Southern Europe (Tzedakis et al., 2004; Roucoux et al., 

564 2006; Desprat et al., 2009, Fletcher et al., 2013), and corresponds to a prominent event of IRD 

565 deposition in the subpolar North Atlantic (McManus et al., 1999). The occurrence of this event in our 

566 record suggests that precipitation instability in the Ohrid region during the glacial inception can be 

567 likely linked to the reduction of northward oceanic heat transport associated with changes in North 

568 Atlantic circulation and associated atmospheric patterns. Reduced precipitation and fluctuating 

569 humidity characterized the period from 306 ka to the growth interruption at ca. 292 ka. Within this 

570 interval, a strong anticorrelation between low δ18O values and highest δ13C values between 299 and 295 

571 ka suggest high infiltration rate and low equilibration between atmospheric and soil CO2 in 

572 combination with a maximum in precipitation. Resumption of growth occurs at ca. 264 ka and 

573 decreasing δ13C values suggest progressive development of soil above the cave after the maximum of 

574 glacial MIS8. This latter interval of growth resembles a re-expansion of arboreal populations in 

575 southern Europe and matches North Atlantic and Mediterranean SST rose, as well as intensification of 

576 the Asian monsoon (Fletcher et al., 2013). 

577 Overall, the OH2 record suggests that hydrological variability in Southern Balkans can be linked to 

578 regional and extra-regional climatic patterns both during interglacial and glacial inception intervals, 

579 when an indirect influence of North Atlantic oceanic conditions and Northern Hemisphere ice sheet 



580 dynamics can be recognized. Finally, the similarity observed between the multiproxy record from Lake 

581 Ohrid and the OH2 oxygen isotope record highlights the great potential of future speleothem studies in 

582 the region. Indeed, following the approach proposed by Zanchetta et al. (2016b), through the alignment 

583 of proxy time series from both archives, it may be possible to integrate the Lake chronology with 

584 independent, radiometric constraints provided by the speleothem chronology

585
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1026 Figures and Tables captions

1027 Figure 1- Upper panel: location of Ohrid and of other sites mentioned in the text. Lower panel: 

1028 Schematic geological map of the site and location of the cave entrance.

1029 Figure 2: The stalagmite OH2

1030 Figure 3: Age-depth models (thick darker lines), 95% confidence intervals (thin lighter lines) and ages 

1031 for OH2. In blue the upper calcite section, in red the lower calcite and the aragonite portion; ages in 

1032 light blue and red from the calcite, ages in green from the aragonite. Ages in yellow were removed as 

1033 outlier (the left one) or for analytical problem (the right one).

1034 Figure 4: A-E: Microphotographs of thin sections from stalagmite OH2 (A-D crossed nicols; E parallel 

1035 nicols). The OH2 sketch (low-right corner) indicates the position of the microphotographs.



1036 Figure 5: Temporal resolution (yr for mm of growth, A, obtained by calculating the age difference 

1037 between each isotope point) and stable isotope results (B carbon; C oxygen) for stalagmite OH2. In 

1038 grey original values for the aragonite (on both B and C) and in dark blue (on C) calcite-calibrated 

1039 aragonite values (see text for details). Dotted lines indicate similar variations between oxygen and 

1040 carbon records. The gray rectangle indicates the interval of anticorrelation between δ13C and δ18O 

1041 values. The OH2 record is then compared with proxies time series from Lake Ohrid: D) TIC (Francke 

1042 et al., 2016); E) δ18O of lake endogenic calcite (Lacey et al., 2016); F) arboreal pollen percentage 

1043 (excluding pinus, which is over-represented in the Ohrid record, Sadori et al., 2016b).

1044 Figure 6: comparison of OH2 δ18O record (A) with B) High resolution arboreal pollen record from 

1045 Tenaghi Philippon (Fletcher et al., 2013); C) Pollen record (temperate pollen) from core MD01-2443 

1046 (Tzedakis et al., 2004; Roucoux et al., 2006); yellow dotted lines indicate the proposed correlations 

1047 between wet period in the speleothem record and intervals of expansion of arboreal vegetation at 

1048 Tenaghi. D) Uk 37 SST from core MD01-2443 (Roucoux et al., 2006, orange line; Martrat et al., 2004, 

1049 brown line) and from core PRGL 1 (Cortina et al., 2015, red line). At the bottom, Marine Isotope 

1050 Stages and Substages are also reported (from Railsback et al., 2015). 

1051 Table 1- Modal abundancies of calcite and aragonite as evaluated from the Rietveld study for the 

1052 analyzed samples in the basal aragonitic interval of OH2.

1053 Table 2: Corrected (in bold) and uncorrected U/Th ages for OH2 stalagmite. The activity ratios have 

1054 been standardized to the HU-1 secular equilibrium standard, and ages calculated using decay constants 

1055 of 9.195 × 10−6 (230Th) and 2.835 × 10−6 (234U). Depths are mm from top. Ages in italics were made on 

1056 aragonite. Ages with asterisk were rejected as outliers. The double line represents the growth 

1057 interruption.
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Sample name depth aragonite (%) calcite (%)
OH2 C 143 12.6 87.4
OH2 B 147 4.3 95.7
OH2 A 151 5.7 94.3
Table 1



Sample ID 238U ng/g depth 230Th/238U 234U/238U Age uncr (ka) 232Th/238U 230Th/232Th Age cr Ka 2se(ka)
OH2-3 76 2.00 1.1749 1.2217 267.136 0.021144 55.6 264.771 15.279
OH2-6 63 6.00 1.0816 1.1632 246.155 0.042439 25.5 240.769 10.243
OH2-14 38 14.00 1.1189 1.1779 263.126 0.095959 11.7 250.793 17.697
OH2 C 29 22.00 1.1787 1.2279 264.017 0.008066 146.1 263.112 7.829
OH2-24 95 26.00 1.2466 1.2589 292.140 0.000612 2035.5 292.050 14.113
OH2-31 113 33.00 1.2162 1.2332 292.935 0.000310 3929.4 292.940 9.552
OH2-38 111 38.00 1.2040 1.2275 287.586 0.000255 4715.2 287.615 11.063
OH2-41 105 43.00 1.2072 1.2230 296.655 0.000532 2267.5 296.618 9.499
OH2-48 84 48.00 1.2083 1.2265 293.220 0.000524 2305.2 293.211 9.275
OH2-B 96 55.00 1.2188 1.2309 297.656 0.000216 5631.5 298.935 11.557
OH2-59 35 60.00 1.2900 1.2908 296.633 0.071792 18.0 289.258 18.360
OH2-66 33 68.00 1.2313 1.2491 288.703 0.003664 336.1 288.302 11.376
OH2-72 40 72.00 1.2437 1.2668 280.365 0.003505 354.8 279.999 14.068
OH2-74 41 75.00 1.3534 1.3351 305.576 0.003709 364.9 305.245 19.289
OH2-84 44 87.00 1.2176 1.2309 297.479 0.019795 61.5 295.390 12.138
OH2-92 54 91.00 1.2687 1.2721 298.133 0.007243 175.2 297.441 14.736
OH2-94* 42 92.00 1.2899 1.2689 327.496 0.004670 276.2 327.027* 20.795
OH2-93 62 96.00 1.2233 1.2384 293.757 0.002637 463.8 293.463 9.903
OH2 D 47 101.00 1.2271 1.2339 303.850 0.000141 8681.3 303.890 9.986
OH2-100 99 107.00 1.2150 1.2185 312.365 0.000446 2722.2 312.329 13.706
OH2-107 104 113.00 1.2099 1.2151 311.316 0.000398 3037.7 311.287 13.454
OH2-103 100 118.00 1.1897 1.2015 306.998 0.000140 8526.9 307.004 5.964
OH2-123 95 125.00 1.2218 1.2223 315.128 0.001263 967.4 315.027 17.787
OH2-124 79 130.00 1.1345 1.1479 323.557 0.001260 900.5 323.423 18.463
OH2-A 61 137.00 1.1351 1.1510 317.150 0.001244 912.6 319.500 27.601
OH2-135 11539 140.00 1.1989 1.1951 330.527 0.000133 8985.4 330.500 11.060
OH2-132 4785 142.00 1.2217 1.2123 331.944 0.000076 15971.2 331.908 8.326
OH2-137 9585 144.00 1.1982 1.1935 332.485 0.000008 152603.4 332.521 10.611
OH2-138 11589 145.00 1.1946 1.1912 331.515 0.000017 72226.1 331.475 11.117
OH2-140 10516 146.00 1.2162 1.2084 331.172 0.000038 31710.0 331.161 10.344
OH2-142 14646 148.00 1.2120 1.2048 331.731 0.000017 72426.6 331.752 11.027
OH2-145 4424 150.00 1.2060 1.2014 329.200 0.000049 24721.5 329.228 11.928
OH2-145* 1943 150.00 1.2047 1.2019 326.326 0.000047 25810.4 326.368* 9.783
Table 2









sample Rp (%) Rwp (%) GoF
OH2-A 6.696 9.061 13.721
OH2-B 7.063 9.465 14.199
OH2-C 5.907 7.995 12.727

Table S1- Agreement factors for Rietveld refinement. 

Calcite a c d104
OH2-A 4.983(3) 17.07(1) 3.035
OH2-B 4.990(4) 17.06(1) 3.036
OH2-C 4.984(1)   17.049(5) 3.032
Effenberger et al 4.9896(2) 17.061(1) 3.035
Table S2- Refined cell parameters for calcite.

a Mgmol c Mgmol d104 Mgmol
OH2-A 1.5 0 0
OH2-B 0 0 0
OH2-C 1.5 0 0
Table S3- Mg content in calcite, evaluated according to Zhang et al. (2010).

Aragonite a b c
OH2-A 4.9533(3) 7.9816(6) 5.7404(4)
OH2-B 4.9541(3) 7.9805(6) 5.7407(4)
OH2-C 4.9528(3) 7.9821(6) 5.7409(4)
Ye et al.( 2012) 4.9596(5) 7.9644(7) 5.7416(5)
Table S4- Refined cell parameters for aragonite.


