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Abstract. Let G be a simply connected semisimple algebraic group with Lie
algebra g, let G0 ⊂ G be the symmetric subgroup defined by an algebraic

involution σ and let g1 ⊂ g be the isotropy representation of G0. Given an

abelian subalgebra a of g contained in g1 and stable under the action of some
Borel subgroup B0 ⊂ G0, we classify the B0-orbits in a and we characterize the

sphericity of G0a. Our main tool is the combinatorics of σ-minuscule elements

in the affine Weyl group of g and that of strongly orthogonal roots in Hermitian
symmetric spaces.

1. Introduction

Let G be a connected simply connected semisimple complex algebraic group with
Lie algebra g. Let B be a Borel subgroup, and set b = LieB. Recall that a G-variety
X is called G-spherical if it possesses an open B-orbit. The relationships between
spherical nilpotent orbits and abelian ideals of b have been first investigated in
[22]. There it is shown that if a is an abelian ideal of b, then any nilpotent orbit
meeting a is a G-spherical variety and Ga is the closure a spherical nilpotent orbit.
In particular, B acts on a with finitely many orbits.

Subsequently, Panyushev [20] dealt with similar questions in the Z2-graded case.
Let σ be an involution of G and g = g0 ⊕ g1 be the corresponding eigenspace
decomposition at the Lie algebra level. Let G0 be the connected subgroup of G
corresponding to g0 and B0 ⊂ G0 a Borel subgroup of G0. The “graded” analog of
the set of abelian ideals of b is the set Iσab of (abelian) B0-stable subalgebras of g1.

Definition 1.1. We say that a ∈ Iσab is G-spherical (resp. G0-spherical) if all orbits
Gx, x ∈ a are G-spherical (resp. if all orbits G0x, x ∈ a are G0-spherical).

Panyushev [18] started the classification of the spherical nilpotent G0-orbits in
g1. The classification of the spherical nilpotent G0-orbits in g1 was then completed
by King [12] (see also [2], where the classification is reviewed and a missing case
is pointed out). Shortly afterwards, Panyushev [20] noticed the emergence of non-
spherical subalgebras a ∈ Iσab, and classified the involutions σ for which these
subalgebras exist. After explicit verifications, he also noticed that an element a ∈
Iσab is G-spherical if and only if it is G0-spherical, but no verification was given,
and no conceptual proof was known.

The purpose of the present paper is to deepen and expand the results quoted
above in the following directions. Let a ∈ Iσab.

i) We clarify the connections between G0-orbits of nilpotent elements in g1,
spherical G-orbits of nilpotent elements in g1 and G0-orbits of abelian sub-
algebras in g1 which are stable under some Borel subalgebra of g0.
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ii) We prove that B0 acts on a with finitely many orbits, independently of its
sphericity. Moreover, we parametrize orbits via orthogonal set of weights
of a.

iii) Assume that there exist non-spherical subalgebras. We give a construction
of a canonical non-spherical subalgebra ap.

iv) We give a simple criterion to decide whether a is spherical or not: in The-
orem 6.7 we show that there exists a ∈ Iσab such that a is non-spherical if
and only if a ⊃ a.

One important feature of our approach lies in the methods used. The theory of
abelian ideals and its graded version rely on a strict relationship with the geometry

of alcoves of the affine Weyl group Ŵ of g [13], [4], and, for the graded case, with
Kac’s classification of finite order automorphisms of semisimple Lie algebras [11],
[6], [7].

The main link is that a B0-stable subalgebra a can be encoded by an element

wa ∈ Ŵ defined through its set of inversions N(wa) (cf. (2.1)). The elements so
obtained, called σ-minuscule (Definition 2.4), pave a convex polytope in the dual
space of a Cartan subalgebra of g and have remarkable properties: see Section 2.3
for a recollection of these facts. It has been explicitly asked (e.g., in [20]) to use
the above connections as a tool for dealing with problems about sphericity. This is
what we do here.

We start discussing items i)-iv) by making the content of i) more precise. Define
the height of a nilpotent element x ∈ g as

ht(x) = max{n ∈ N | ad(x)n 6= 0}.
In the adjoint case, Panyushev [18] completely characterized the spherical nilpotent
G-orbits in g by showing that, for x ∈ g, the orbit Gx is spherical if and only if
ht(x) 6 3. Subsequently, Panyushev and Röhrle [22] proved that, if a ⊂ b is an
abelian ideal, then the saturation Ga is spherical. On the other hand, if Gx is
spherical, by chosing b properly it is always possible to construct an abelian ideal
a ⊂ b such that Ga = Gx. Therefore we may regard both these properties as
consequences of the small height of the nilpotent element x.

For i = 0, 1 define the i-height of a nilpotent element x ∈ g1 as

hti(x) = max{n ∈ N | ad(x)n|gi 6= 0}.

In [18] Panyushev showed that, for x ∈ g1, the following implications hold

ht(x) 6 3 =⇒ G0x spherical =⇒ ht0(x) 6 4,ht1(x) 6 3.

In Corollary 6.3, we show the following result.

Theorem. If a ∈ Iσab and x ∈ a, then ht0(x) 6 3 and ht1(x) 6 4.

These properties completely characterize the elements of abelian subalgebras
of g1 which are stable under some Borel subgroup of G0 (see Section 5.1). As a
corollary, using Panyushev’s criterion for the G0-sphericity of a nilpotent element
in g1, it follows that a ∈ Iσab is G0-spherical if and only if it is G-spherical.

Regarding ii), a well known result independently due to Brion [3] and Vinberg
[26], states that every spherical G-variety contains finitely many B-orbits. In par-
ticular, every abelian ideal a of b contains finitely many B-orbits. In [21], the same
result has been proved avoiding the use of the sphericity of Ga. In Section 3, we
prove, along the same lines, the finiteness theorem quoted in ii), in the more general
context of finite order automorphisms of G (see Theorem 3.1).

To streamline our approach to iii), recall that involutions of g are encoded by
the datum of one or two simple roots (with suitable features) in the extended

Dynkin diagram Π̂ of g. The main result of [20] has been rephrased by Panyushev
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as follows: there exists a non spherical a ∈ Iσab if and only if if σ is defined by
a single simple root αp, which is long and non-complex (see Definition 2.3). (As

usual, if Π̂ is simply laced, every root is regarded as long). However this claim was
obtained as a by-product of direct considerations on various classes of involutions
and by constructing case-by-case a non-spherical element a ∈ Iσab for all involution
satisfying the previous condition.

In this paper we observe that, precisely when αp is long and non-complex, there
exists a special element ap ∈ Iσab, which plays a role in the classification of maximal
elements in Iσab performed in [7]. In Section 5 we study the properties of ap. In
particular, using the combinatorics of N(wap), we prove that ap is not G0-spherical.
The method is combinatorial: we associate to any orthogonal set of maximal car-
dinality in N(wap) r {αp} a generalized Cartan matrix of affine type, whose type
is severely restricted (see Proposition 5.3). The information we obtain from this
Cartan matrix allows us to build up a generic element x ∈ ap with ht1(x) = 4,
proving that ap is not G0-spherical.

The same strategy is applied in a wider context in Section 6, and it enables us
to classify the spherical elements of Iσab, as outlined in iv). The construction of
the minimal non-spherical subalgebra a is based on the combinatorics of strongly
orthogonal roots in Hermitian symmetric spaces. Many related technical results
might be of independent interest, and they are displayed in Section 4. To construct

a, decompose Π̂ r {αp} into a disjoint union of connected components Σ. Then
in each Σ there exists a unique simple root αΣ non-orthogonal to αp, and it turns
out that αΣ determines an Hermitian involution of tube type of the Lie algebra gΣ

having Σ as set of simple roots (see Subsection 4.4 and Proposition 5.7). If Φ(Σ)+
1

denotes the set of positive roots of gΣ having αΣ in their support, in Lemma 4.12
we prove that there exists a unique subset AΣ which is an antichain in Φ(Σ)+

1 w.r.t.
the dominance order 6Σ defined by Σ and which is a maximal orthogonal subset
of Φ(Σ)+

1 . Next, we prove that
⋃

Σ

⋃
η∈AΣ

{ξ+αp | ξ 6Σ η} is the set of inversions of

a σ-minuscule element, hence it determines an element a ∈ Iσab, which turns out to
have the property described in iv).
Acknowledgements. We thank Dmitri Panyushev for useful discussions.

2. Setup

Let G be a semisimple, connected and simply connected complex algebraic group
with Lie algebra g, and let B ⊂ G be a Borel subgroup with Lie algebra b. Through-
out the paper, σ : G −→ G will be an indecomposable automorphism of finite order
m. Then σ induces an automorphism of g as well, still denoted by σ. Fix a primitive
mth-root of unity ζ and consider the corresponding Zm-grading

g =
⊕
i∈Zm

gi,

where gi denotes the eigenspace of σ of weight ζi. Then g0 is a reductive subalgebra
of g (see [11, Lemma 8.1]), and the connected reductive subgroup G0 ⊂ G defined
by g0 coincides with the set of fixed points of σ. Fix a Cartan subalgebra h0 ⊂ g0,
which is abelian since g0 is reductive. If a ⊂ g is a h0-stable subspace, we let Ψ(a)
denote its set of h0-weights and, for λ ∈ Ψ(a), we let aλ be the corresponding weight
space.

Every eigenspace gi is a G0-module under the restriction of the adjoint action.
If i ∈ Zm, we denote by Φi the set of the non-zero h0-weights in gi. Denote finally
Φ = ∪iΦi the set of non-zero weights. We say µ, ν ∈ Φ are strongly orthogonal if
(µ, ν) = 0 and µ± ν /∈ Φ. (This definition agrees with the usual notion of strongly
orthogonal roots in a semisimple Lie algebra).
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Observe that Φ0 is the set of h0-roots for g0. As shown in [11, Chapter 8], h0

contains a regular element hreg of g. In particular the centralizer Cent(h0) of h0

in g is a Cartan subalgebra of g and hreg defines a set of positive roots in the
set of roots of (g,Cent(h0)) and a set Φ+

0 of positive roots in Φ0. We let Π0 be
the corresponding set of simple roots, b0 the corresponding Borel subalgebra, and
B0 ⊂ G0 the corresponding Borel subgroup.

2.1. The grading associated to a nilpotent element x ∈ g1. We fix in this
subsection notation concerning the grading of g associated to nilpotent elements in
g1 and the correspoding notion of height. The main references for this subsection
are [25] and [18]. By [25], an element x ∈ g1 is semisimple if and only if G0x is
closed, whereas it is nilpotent if and only if 0 ∈ G0x.

Let x ∈ g1 be a nilpotent element. By a modification of the Jacobson-Morozov
theorem, there exists a sl(2)-triple (x, h, y) with y ∈ g1 and h ∈ g0. Such triples
are usually called normal triples, or adapted triples. Let

g =
⊕
i∈Z

g(i)

be the Z-grading defined by h; then we get a bigrading of g by setting

gj(i) = gj ∩ g(i).

Since all normal triples containing x are conjugated by the stabilizer of x in G0 (see
[25, Theorem 1]), it follows that the structure of this bigrading does not depend on
the choice of the normal triple.

Following Panyushev [18], define the height of x as

ht(x) = max{n ∈ N | g(n) 6= 0}.
Since [x, g(i)] = g(i+ 2), this notion agrees with the height defined in the Introduc-
tion, namely the maximum n such that ad(x)n 6= 0.

2.2. Twisted loop algebra and finite order automorphisms. Since σ fixes
hreg, we see that the action of σ on the positive roots defines, once Chevalley
generators are fixed, a diagram automorphism η of g that, clearly, fixes h0. Set,

using the notation of [11], ĥ = h0 ⊕ CK ⊕ Cd. Recall that d is the element of

L̂(g, σ) = (C[t, t−1]⊗ g)⊕ CK ⊕ Cd

acting on C[t, t−1]⊗g as t ddt , while K is a central element. Define δ′ ∈ ĥ∗ by setting

δ′(d) = 1 and δ′(h0) = δ′(K) = 0 and let λ 7→ λ be the restriction map ĥ → h0.
There is a unique extension, still denoted by (·, ·), of the Killing form of g to a

nondegenerate symmetric bilinear invariant form on L̂(g, σ). Let ν : ĥ→ ĥ∗ be the
isomorphism induced by the form (·, ·), and denote again by (·, ·) the form induced

on ĥ∗. One has (δ′, δ′) = (δ′, h∗0) = 0.

We let Φ̂ be the set of ĥ-roots of L̂(g, σ). We can choose as set of positive roots

Φ̂+ = Φ+
0 ∪ {α ∈ Φ̂ | α(d) > 0}. We let Π̂ = {α0, . . . , αn} be the corresponding

set of simple roots. It is known that n is the rank of g0. Recall that any L̂(g, σ) is
a Kac-Moody Lie algebra g(A) defined by generators and relations starting from a
generalized Cartan matrix A of affine type. These matrices are classified by means
of Dynkin diagrams listed in [11].

Let Ŵ be the Weyl group of L̂(g, σ) and let Φ̂re = Ŵ Π̂ be the set of real roots

of L̂(g, σ). Recall that if β = w(α), α ∈ Π̂, one defines β∨ = w(α∨).
If γ ∈ h∗0, we set

hγ = ν−1(γ), γ∨ =
2hγ

(γ, γ)
(γ 6= 0).
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By [11, 5.1] if λ ∈ Cδ′ + h∗0 and β ∈ Φ̂re, then

λ(β∨) = 2
(λ, β)

(β, β)
= 2

(λ, β)

(β, β)
= λ(β

∨
) = 2

(λ, β)

(β, β)
= λ(β

∨
).

If λ, µ ∈ Cδ′ + h∗0 and (µ, µ) 6= 0, we set

〈λ, µ∨〉 = 2
(λ, µ)

(µ, µ)
.

In particular, if α ∈ Φ̂ and β ∈ Φ̂re,

〈α, β∨〉 = α(β∨) = 〈α, β∨〉 = α(β
∨

).

We will use these equalities many times without comment.
Following [11, Chapter 8], we can assume that σ is the automorphism of type

(η; s0, . . . , sn), where η is the diagram automorphism defined above. Recall that, if

a0, . . . , an are the labels of the Dynkin diagram of L̂(g, σ) and k is the order of η,
then k(

∑n
i=0 siai) = m. Recall also that s0, . . . , sn are relatively prime so, in the

case of involutions (m = 2), we must have that si ∈ {0, 1} and si = 0 for all but at
most two indices.

Since σ is the automorphism of type (η; s0, . . . , sn), we can write αi = siδ
′ + αi

and it turns out that Π0 = {αi | si = 0}. Set also Π1 = Π̂ r Π0. Introduce
δ =

∑n
i=0 aiαi and note that δ = (

∑n
i=0 aisi)δ

′ = m
k δ
′.

Given λ ∈ Φ̂ we denote by L̂(g, σ)λ the corresponding root space in L̂(g, σ).
Recall the following properties (see [11, Exercise 8.2]).

Proposition 2.1. Let λ ∈ Φ̂re, then the following holds:

i) dim L̂(g, σ)λ = 1.

ii) If µ ∈ Φ̂, then the set of µ + iλ ∈ Φ̂ ∪ {0} is a string µ − pλ . . . , µ + qλ,
where p, q are non-negative integers such that p− q = 〈µ, λ∨〉.

iii) If µ ∈ Φ̂ and µ+ λ ∈ Φ̂, then [L̂(g, σ)λ, L̂(g, σ)µ] 6= 0.

Notice that, if λ = iδ′ + α ∈ Φ̂re, then

L̂(g, σ)λ = ti ⊗ gαi .

This implies that we can rephrase the previous proposition in terms of h0-weights
in g as follows.

Corollary 2.2. Let α ∈ Φi and β ∈ Φj. If i ≡ j mod m, assume also that α 6= β.

i) dim gαi = 1, and if −α ∈ Φi then [gαi , g
−α
i ] 6= 0.

ii) If (α, β) < 0 then α+ β ∈ Φi+j, and if (α, β) > 0 then α− β ∈ Φi−j.

iii) If α+ β ∈ Φi+j, then [gαi , g
β
j ] 6= 0.

In general, Π0 is disconnected and we write Σ|Π0 to mean that Σ is a connected
component of Π0. Clearly, the Weyl group W0 of g0 is the direct product of the
W (Σ), Σ|Π0. If θΣ is the highest root of Φ(Σ), set

Φ̂0 = {α+ Zkδ | α ∈ Φ0} ∪ ±Nkδ,
Π̂0 = Π0 ∪ {kδ − θΣ | Σ|Π0},
Φ̂+

0 = Φ+
0 ∪ {α ∈ Φ̂0 | α(d) > 0}.

Denote by Ŵ0 the Weyl group of Φ̂0. If α ∈ Φ̂, let [α : αi] be the coefficient of αi
in the expansion of α in terms of Π̂. Set

htσ(α) =

n∑
i=0

si[α : αi]
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and, for i ∈ Z,

Φ̂i = {α ∈ Φ̂ | htσ(α) = i}.

Note that if α ∈ Φ̂i, then α is a weight of gi.

2.3. B0-stable subalgebras in g1 and σ-minuscule elements. In this subsec-
tion we assume that σ is an (indecomposable) involution. With this assumption,

Π1 has at most two elements. If Π̂ is simply laced, the real roots of Φ̂ are regarded
as long.

Definition 2.3. We say that η ∈ Φ̂ is complex if η ∈ Φ0 ∩ Φ1.

It is clear that complex roots can occurr only if rk g0 < rk g. Moreover, if g is

simple and rk g0 < rk g, then η ∈ Φ̂ is complex if and only if it belongs to Φ̂re and
it is not long (see [7]). The case of g semisimple and not simple corresponds to g
equal to the sum k⊕ k of two isomorphic simple ideals, σ the flip involution, g0 = k,
and g1 ' k with k acting on itself via the adjoint representation.

For w ∈ Ŵ , define its set of inversions

(2.1) N(w) = {α ∈ Φ̂+ | w−1(α) ∈ −Φ̂+}.

Recall that a finite subset A of positive roots of an affine root system is of the form

N(w) for some w ∈ Ŵ if and only if both A and Φ̂+ r A are closed under root
addition (see e.g. [5]). We will refer to this property as biconvexity.

If α is a real root in Φ̂+, we let sα denote the reflection in α. If αi is a simple
root we set si = sαi .

Recall from [6] the following

Definition 2.4. An element w ∈ Ŵ is called σ-minuscule if N(w) ⊂ Φ̂1.

We denote by Wab
σ the set of σ-minuscule elements of Ŵ , and we regard it as a

poset under the weak Bruhat order.

We let Iσab be the set of abelian subalgebras of g contained in g1 that are sta-
ble under the action of the Borel subalgebra b0 of g0 corresponding to Φ+

0 , or
equivalently under the action of the Borel subgroup B0 ⊂ G0 with Lie algebra b0.
Inclusion turns Iσab into a poset.

Proposition 2.5. [6, Theorem 3.2] Let w ∈ Wab
σ . Suppose N(w) = {β1, . . . , βk}.

The map Θ :Wab
σ → Iσab defined by

w 7→
k⊕
i=1

g
−βi
1

is a poset isomophism.

Assume that g0 is semisimple; then there is an index p such that Π0 = Π̂r{αp}.
Assume furthermore that αp is non-complex (in particular, g is simple). Set Π0,αp =

Π0 ∩ α⊥p , W0,αp = W (Π0,αp), and denote by w0,αp the longest element of W0,αp .
Let w0 be the longest element of W0. Set

wp = spw0,αpw0

In [7] it is proved that wp ∈ Wab
σ if and only if αp is long; in such a case, the abelian

B0-stable subalgebra ap corresponding to wp is maximal.
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3. B0-orbits in B0-stable subalgebras contained in g1

Throughout this section, we will assume that σ : g −→ g is an (indecomposable)
automorphism of order m, and that a is a B0-stable subalgebra of g contained in g1.
By [19, Proposition 4.9], a contains no semisimple element. In particular, a∩g0

1 = 0
and a is completely determined by its set of weights Ψ(a) ⊂ Φ1:

a =
⊕

α∈Ψ(a)

gα1 .

Since a is B0-stable it follows that G0a is closed; since it contains no semisimple
element it follows that every element in a is nilpotent. Since there are only finitely
many nilpotent G0-orbits in g1, it follows that G0a is the closure of such an orbit.

For all α ∈ Φi, fix a non-zero element xαi ∈ gαi . If v ∈ a and v =
∑
α cαx

α
1 , then

we set supp(v) = {α ∈ Ψ(a) | cα 6= 0}. If S ⊂ Ψ(a) we set

xS =
∑
α∈S

xα1 .

Theorem 3.1. Let a be a B0-stable abelian subalgebra in g1. For all x ∈ a, there is
a unique orthogonal subset S of Ψ(a) such that B0x = B0xS . In particular, B0 acts
on a with finitely many orbits, which are parametrized by the orthogonal subsets of
Ψ(a).

In the special case of the involution σ : g ⊕ g → g ⊕ g, (x, y) 7→ (y, x), Iσab is
the set of abelian ideals of b and, for such an ideal a, Ga is always the closure of a
spherical nilpotent G-orbit in g [22]. Moreover, the closure of a spherical nilpotent
orbit in g can be realized as Ga for some abelian ideal a (up to choosing the Borel
subalgebra b in a compatible way). In this case, Panyushev [21] has recently given
a new proof of the finiteness of the B-orbits, by giving an explicit parametrization
of the B-orbits in a. Our proof of Theorem 3.1 will follow closely the proof of [21,
Theorem 2.2].

By Corollary 2.2, the following properties for a B0-stable abelian subalgebra
a ⊂ g1 hold.

(A1) If α ∈ Ψ(a), then −α 6∈ Ψ(a).
(A2) Let α, β ∈ Ψ(a), then α+ β 6∈ Φ2.
(A3) Let α ∈ Ψ(a) and γ ∈ Φ+

0 be such that α+ γ ∈ Φ1, then α+ γ ∈ Ψ(a).

Lemma 3.2. For α, β ∈ Ψ(a), α 6= β, the following statements are equivalent:

i) α, β are orthogonal;
ii) α− β 6∈ Φ0;

iii) δ′ + α and δ′ + β are strongly orthogonal in Φ̂.

Proof. (1)⇒ (2) Suppose that (α, β) = 0 and α− β ∈ Φ0. Then δ′ + α, δ′ + β ∈ Φ̂
are orthogonal as well, and

sδ′+β(α− β) = sδ′+β(δ′ + α)− sδ′+β(δ′ + β) = 2δ′ + α+ β.

It follows that 2δ′ + α+ β ∈ Φ̂, that is α+ β ∈ Φ2, contradicting (A2).
(2) ⇒ (1) Suppose that (α, β) 6= 0. If (α, β) < 0, then Corollary 2.2 implies

α + β ∈ Φ2, contradicting (A2). Therefore it must be (α, β) > 0, and again by
Corollary 2.2 we get α− β ∈ Φ0.

Statement (3) is clearly equivalent to the others. �

As in [21], the key step to prove Theorem 3.1 is the following combinatorial
lemma, which generalizes [21, Lemma 1.2] to the graded setting.

Lemma 3.3. Let α, β ∈ Ψ(a) be orthogonal weights and let γ ∈ Φ0. If α+γ ∈ Ψ(a),
then β + γ 6∈ Ψ(a)
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Proof. Assume that both α+γ and β+γ belong to Ψ(a). Suppose that (α, γ) < 0:
then (β + γ, α) < 0 as well, and Corollary 2.2 implies α + β + γ ∈ Φ2, against
(A2). Similarly it cannot be (β, γ) < 0. Suppose that (α, γ) = (β, γ) = 0: then
(α+γ, β+γ) > 0, hence Corollary 2.2 ii) implies α−β ∈ Φ0, which contradicts the
fact that α and β are orthogonal by Lemma 3.2. Therefore it must be (α, γ) > 0
and (β, γ) > 0.

On the other hand, again by Lemma 3.2, we have that

(α, β) = 0 ⇐⇒ α− β /∈ Φ0 ⇐⇒ (α+ γ)− (β + γ) /∈ Φ0 ⇐⇒ (α+ γ, β + γ) = 0.

In turn, by the orthogonality of α and β, the last equality implies that either
(α, γ) < 0 or (β, γ) < 0, which is a contradiction. �

We denote by 60 the dominance order on h∗0: λ 60 µ if µ − λ ∈ NΦ+
0 . If S is

subset of Ψ(a) we denote by min(S) the set of the minimal elements of S w.r.t. 60,
and define two subsets of Ψ(a) as follows

ΨS = {β ∈ Φ1 | there is α ∈ S with β − α ∈ Φ+
0 },

S>0 = {β ∈ Φ1 | there is α ∈ S with α 60 β}.

We also denote by aS the minimal B0-stable subalgebra of a containing the weight
space gα1 for all α ∈ S, namely

aS =
⊕
β∈S>0

gβ1 .

Lemma 3.4. Let a ∈ Iσab. Let S be an orthogonal subset of Ψ(a). Let x ∈ a be such
that S ⊂ supp(x) and S is a lower order ideal in supp(x). Then there is y ∈ B0x
with the same property such that supp(y) ∩ΨS = ∅.

Proof. Set Z = {x ∈ a | S is a lower order ideal in supp(x)}. If x ∈ Z, we set
T (x) = supp(x)rS. We prove the claim by induction on dim aT (x). If dim aT (x) =
0, then supp(x) = S and there is nothing to prove.

Assume dim aT (x) > 0. Set S ′ = ΨS , and for v ∈ a, let S ′(v) = S ′ ∩ supp(v).
We can assume that S ′(x) 6= ∅, for, otherwise, we can take y = x. Then there
are α ∈ S and γ ∈ Φ+

0 such that α + γ ∈ supp(x). By Lemma 3.3, it follows
that ε + γ 6∈ Ψ(a) for all ε ∈ S r {α}. If uγ(ξ) ∈ B0 is the element defined by
exponentiating ξxγ0 (ξ ∈ C), it follows that
(3.1)

uγ(ξ)xβ1 = xβ1 if β ∈ Sr{α}, uγ(ξ)xβ1 = xβ1 +ξ[xγ0 , x
β
1 ]+

ξ2

2
[xγ0 , [x

γ
0 , x

β
1 ]]+. . . otherwise.

Let π : a −→
⊕

α∈S g
α
1 be the projection. We claim that π(uγ(ξ)x) = π(x) for

all ξ ∈ C. In fact, if ε ∈ S r {α} then, by (3.1), π(uγ(ξ)xε1) = xε1. Since S
is strongly orthogonal, α + kγ /∈ S so π(uγ(ξ)xα1 ) = xα1 . Finally, if β /∈ S and
β ∈ supp(x), then, since S is a lower order ideal in supp(x), β + kγ /∈ S, so

π(uγ(ξ)xβ1 ) = π(xβ1 ) = 0. Choose ξ0 ∈ C such that α + γ 6∈ supp(uγ(ξ0)x) and set
x′ = uγ(ξ0)x. By construction S ⊂ supp(x′). We have to prove that S is a lower
order ideal in supp(x′). Take η ∈ supp(x′) such that there exists β ∈ S with η 6 β.
We know that η = ζ+rγ, ζ ∈ supp(x). Since ζ 60 β, we have that ζ ∈ S. If ζ 6= α,
then, by Lemma 3.3, ζ + γ is not in Φ1, in particular η /∈ supp(x′). If ζ = α then,
by construction, either r > 1 or η = ζ. If r > 1 then α + γ 60 α + rγ 60 β ∈ S
and α+ γ ∈ supp(x), so α+ γ ∈ S. We already observed that this is not possible,
hence η = ζ ∈ S.

We now prove that aT (x′) ⊂ aT (x). It suffices to prove that, if β ∈ T (x′) then
β ∈ Ψ(aT (x)). Write β = ζ + rγ with r > 0 and ζ ∈ supp(x). If ζ /∈ S then we are
already done. If ζ ∈ S then, as shown above, we have ζ = α. Note that r > 0, for,
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otherwise β ∈ S. Now, if r > 0, as α + γ ∈ T (x) and α + γ 60 β, we have that
β ∈ Ψ(aT (x)).

Since α+ γ 6∈ supp(x′), it follows that aT (x′) ( aT (x). By the induction hypoth-
esis, it follows that B0x

′ contains an element y such that S is a lower order ideal
in supp(y) and supp(y) ∩ΨS = ∅. Since x′ ∈ B0x, we have that y ∈ B0x. �

Thanks to previous lemmas, we can now reproduce the same argument given in
[21, Theorem 2.2] to prove Theorem 3.1.

Proof of Theorem 3.1. We first show that every B0-orbit in a possesses a represen-
tative of the form xS , for some orthogonal subset S ⊂ Ψ(a).

Let v ∈ a. Set v0 = v and S0 = min supp(v). Notice that S0 is ortohogonal
by Lemma 3.2: indeed for all α, β ∈ S0 we have by construction that α − β 6∈ Φ0.
Therefore v0 and S0 satisfy the assumptions of Lemma 3.4, and there is v1 ∈ B0v0

such that S0 ⊂ supp(v1) and supp(v1)∩ΨS0
= ∅. Define S1 = S0∪min(supp(v1)r

S0): then by construction we still have α − β 6∈ Φ0 for all α, β ∈ S1, so that S1 is
again orthogonal by Lemma 3.2. It is clear that S1 is lower order ideal in supp(v1).

More generally, let i > 0 and suppose that vi and Si are defined. Then there is
vi+1 ∈ B0vi = B0v0 such that Si is a lower order ideal in supp(vi+1), supp(vi+1) ∩
ΨSi = ∅, and

Si+1 = Si ∪min(supp(vi+1) r Si)

is an orthogonal subset by Lemma 3.2 that is a lower order ideal in supp(vi+1).
Clearly, Si+1 is strictly bigger than Si, unless supp(vi+1) = Si. Therefore,

proceeding inductively, we find an element vk+1 ∈ B0v whose support equals Sk,
which is an orthogonal subset, hence B0v = B0vk+1 = B0xSk .

We now show that every B0-orbit contains a unique orthogonal representative
xS . If S ⊂ Ψ(a), notice that the vector space 〈B0xS〉 generated the orbit of xS is
B0-stable, therefore it coincides with aS .

Let S,S ′ be orthogonal subsets of Ψ(a) and suppose that B0xS = B0xS′ . Then
aS = aS′ , and we set Γ = min Ψ(aS). Notice that Γ ⊂ S ∩ S ′, therefore setting
R = S r Γ and R′ = S ′ r Γ we can decompose xS = xΓ + xR and xS′ = xΓ + xR′ .
Let B0 = T0U0 be the Levi decomposition of B0. Let b ∈ B0 be such that bxS = xS′

and write b = t−1u with t ∈ T0 and u ∈ U0. Then uxΓ + uxR = txΓ + txR′ . It
follows that txΓ = uxΓ = xΓ, hence xR′ ∈ B0xR. Since aR ⊂ aS ∩ aS′ is a smaller
B0-stable abelian subalgebra in g1 and since R and R′ are orthogonal subsets in
Ψ(aR), the claim follows proceeding by downward induction. �

The following facts are also proved by adapting the same proofs of [21]. Denote
by Sa ⊂ Ψ(a) the subset constructed as follows: set S1 = min Ψ(a), and for i > 1
define inductively

Si = min
(
Ψ(a) r

⋃
j<i

(Sj ∪ΨSj )
)
.

Define Sa =
⋃
i>0 Si, which is an orthogonal subset thanks to Lemma 3.2.

Proposition 3.5. Let S ⊂ Ψ(a) be an orthogonal subset.

i) B0xS is open in a if and only if S = Sa.
ii) As a T0-module, the tangent space TxS (B0xS) decomposes as follows:

TxS (B0xS) =
⊕

α∈S∪ΨS

gα1 .

In particular, dimB0xS = |S|+ |ΨS |.
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4. Antichains of orthogonal roots in Hermitian symmetric spaces

Suppose that g is a simple Lie algebra and let Π be a set of simple roots. Let θ
be the corresponding highest root and let αq ∈ Π be a simple root with [θ : αq] = 1.
Let p+ ⊂ g be the maximal parabolic subalgebra associated to the set of simple
roots Πr{αq}. Then its nilradical p+

u is abelian; conversely any standard parabolic
subalgebra with abelian nilradical arises in this way.

Let p+ = l⊕p+
u be the Levi decomposition, and let p− be the opposite parabolic

subalgebra of p+. The decomposition into l-submodules g = l⊕ p+
u ⊕ p−u defines an

involution σ of g by setting σ(x) = x if x ∈ l and σ(x) = −x if x ∈ p+
u ⊕ p−u . It is

then clear that

g0 = l, g1 = p+
u ⊕ p−u .

Recalling the notation introduced in Section 2.2, the sets Φi attached to σ are
Φ1 = Φ+

1 ∪ −Φ+
1 , where Φ+

1 is the set of roots β such [β : αq] = 1, while Φ0 is the
set of roots β such that [β : αq] = 0. Observe that in this case Φ = Φ0 ∪ Φ1 is the
set of roots of g. Since in this case h0 is a Cartan subalgebra of g, we can choose
hreg ∈ h0 so that α(hreg) > 0 for all α ∈ Π. With this choice, letting Φ+ denote
the set of positive roots of g corresponding to the choice of Π, we have that

Φ+
0 = {β ∈ Φ+ | [β : αq] = 0},

Φ+
1 = {β ∈ Φ+ | [β : αq] > 0},

Π0 = Π r {αq}.

We set Φ−i = −Φ+
i (i = 0, 1). Clearly, Φ±1 is the set of weights of h0 in p±u . We let

b±0 be the Borel subalgebra of g0 corresponding to Φ±0 . Recall that W0 denotes the
Weyl group of g0.

Let Ort(Φ+
1 ) be the collection of the orthogonal subsets of Φ+

1 , and let Ortmax(Φ+
1 )

be the collection of the orthogonal subsets of Φ+
1 which are maximal with respect

to inclusion. Regard Φ+
1 as a partial ordered set via 60. Since p+

u is an abelian
subalgebra of g, by Lemma 3.2 two elements α, β ∈ Φ+

1 are orthogonal if and only
if they are strongly orthogonal, if and only if α − β 6∈ Φ0. In particular, every
antichain A ⊂ Φ+

1 is an orthogonal subset.
Given B ∈ Ort(Φ+

1 ), let aB ⊂ p+
u be the B0-stable subalgebra generated by B.

We define a preorder ` on Ort(Φ+
1 ) as follows: if B1,B2 ∈ Ort(Φ+

1 ), then B1 ` B2 if

aB1 ⊂ aB2 . Equivalently, B1 ` B2 if and only if B1 ⊂ B>0
2 , where, if B ⊂ Φ+

1 , we set

B>0 = {α ∈ Φ+
1 | there is β ∈ B such that β 60 α}.

Given m 6 r, we will denote by Ortm(Φ+
1 ) the set of the orthogonal subsets of

cardinality m. If Φ is not simply laced, we will say B ∈ Ort(Φ+
1 ) is of type (h, k) if

it contains exactly h short roots and k long roots, and we denote by Ort(h,k)(Φ
+
1 )

the set of the orthogonal subsets of type (h, k). To unify some notations, in the
simply laced case we will regard every root as a long root. Therefore if Φ is simply
laced we have Ortm(Φ+

1 ) = Ort(0,m)(Φ
+
1 ).

In this section we will study the antichains of Φ+
1 . We will show that for every

orthogonal subset B ⊂ Φ+
1 there is always an antichain A ⊂ Φ+

1 such that A ` B.
We first discuss the simply laced case uniformly; the two remaining cases (Bn, α1)
and (Cn, αn) will be treated separately. We summarize our results in the following
theorem.

Theorem 4.1.

i) Suppose that Φ is simply laced. For all B ∈ Ort(Φ+
1 ), there is an antichain

A ⊂ Φ+
1 such that |A| = |B| and A ` B.
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ii) Suppose that Φ is not simply laced. For all B ∈ Ort(Φ+
1 ) of type (h, k),

there is an antichain A ⊂ Φ+
1 of type (h + bk/2c, k − 2bk/2c) such that

A ` B.

Proof. The claim follows combining Proposition 4.6, Proposition 4.7, Proposition
4.10. �

Let P ⊂ G be the parabolic subgroup corresponding to p+. It is well known that
G/P is an irreducible simply connected Hermitian symmetric space of compact
type, whose corresponding involution of G is σ, and every such a symmetric space
arises in this way (see e.g. [23, Section 5.5]). Therefore we will refer to the pair
(Π, αq) as a Hermitian pair, and we will say that σ is an involution of Hermitian
type, or simply a Hermitian involution. Correspondingly, we get also a symmetric
variety G/G0, where G0 = Gσ is the Levi factor of P .

Since p+
u ⊂ g1 is a B0-stable abelian subalgebra of g, by Theorem 3.1 it pos-

sesses finitely many B0-orbits, which are classified by Ort(Φ+
1 ). In this situation,

the description of the B0-orbits already follows by [21]: since p+
u is abelian, the

unipotent radical Pu acts trivially on its Lie algebra p+
u , therefore every B-orbit

is actually a B0-orbit. The G0-orbits in p+
u were studied by Muller, Rubenthaler,

and Schiffmann [16] and by Richardson, Röhrle and Steinberg [23]. In the latter
reference it is shown that they are parametrized by the W0-orbits in Ort(Φ+

1,`),

where Φ+
1,` ⊂ Φ+

1 denotes the subset of the long roots.

Let SΠ,αq ⊂ Φ+
1 be the orthogonal subset corresponding to the open B0-orbit of

p+
u , constructed recursively as in Proposition 3.5. In this case SΠ,αq is well known,

and it coincides with the set of Harish-Chandra strongly orthogonal roots (see [9],
[15]). Denote by r = |SΠ,αq | the rank of the symmetric variety G/G0. By [15,

Theorem 2] we have SΠ,αq ⊂ Φ+
1,`, in particular SΠ,αq is a maximal orthogonal

subset of Φ+
1 consisting of long roots, and by [16, Theorem 2.12 and Proposition

2.13] it follows that SΠ,αq is an orthogonal subset of maximal cardinality in Φ+
1 . In

particular, SΠ,αq ∈ Ortmax(Φ+
1 ), and |B| 6 r for all B ∈ Ort(Φ+

1 ).
We report in Table 1 the classification of the Hermitian pairs, together with the

rank of the corresponding symmetric varieties G/G0 (where Π = {α1, . . . , αn} is
enumerated as in [1]).

(Π, αq) rk(G/G0)

(An, αq) (1 6 q 6 n) min{q, n+ 1− q}
(Bn, α1) 2
(Cn, αn) n
(Dn, α1) 2
(Dn, αn−1), (Dn, αn) bn2 c
(E6, α1), (E6, α6) 2
(E7, α7) 3

Table 1 – Hermitian pairs and ranks of the corresponding symmetric varieties.

Remark 4.2. By [23, Proposition 2.8 and Remark], the Weyl group W0 acts transi-
tively on Ort(h,k)(Φ

+
1 ) for all h, k. In particular, we see that if Φ is simply laced then

Ortmax(Φ+
1 ) = Ortr(Φ

+
1 ) coincides with the collection of the orthogonal subsets of

maximal cardinality. On the other hand in the non-simply laced cases, correspond-
ing to the Hermitian pairs (Bn, α1) and (Cn, αn), we will easily see that if B is an
orthogonal subset of type (h, k), then B ∈ Ortmax(Φ+

1 ) if and only if 2h + k = r.
In particular, it follows that, if B ∈ Ort(Φ+

1 ) has maximal cardinality, then every
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root in B is long. Hence the orthogonal subsets of maximal cardinality coincide
with the elements of Ort(0,r)(Φ

+
1 ), and W0 acts transitively on these subsets. As

well, it follows that, by choosing properly the Borel subgroup B0 ⊂ G0, every sub-
set of orthogonal roots of maximal cardinality can be made into a set of strongly
orthogonal Harish-Chandra roots for Φ+

1 .

4.1. The simply laced case. We start by recording a well known fact that holds
for any root system. See e.g. [24, Lemma 3.2].

Lemma 4.3. Let β, β′ ∈ Φ+ and suppose that β′−β is a sum of positive roots. Then
there are γ1, . . . , γm ∈ Φ+ such that β′−β = γ1 + . . .+γm and β+γ1 + . . .+γi ∈ Φ+

for all i 6 m.

In the simply laced case, Lemma 4.3 can be improved as follows:

Proposition 4.4. Suppose that Φ is simply laced. Let β, β′ ∈ Φ+ and suppose
that β′ − β is a sum of positive roots. Then β′ − β is a sum of positive pairwise
orthogonal roots.

Proof. By Lemma 4.3, there are γ1, . . . , γm ∈ Φ+ such that β′ − β = γ1 + . . .+ γm
and β + γ1 + . . . + γi is a positive root for all i 6 m. Let m be minimal with
the previous property, fix γ1, . . . , γm ∈ Φ+ as above and, if 0 6 i 6 m, denote
βi = β + γ1 + . . .+ γi. We claim that γ1, . . . , γm are pairwise orthogonal.

If m = 1 there is nothing to prove. Assume m > 1, and suppose that γ1, . . . , γm
are not orthogonal. Let i0 6 m be the minimum such that (γi, γj) = 0 for all
i, j < i0 with i 6= j, and let j0 < i0 be such that (γj0 , γi0) 6= 0. Since 〈β, γ∨i0〉 > −1
and 〈γi, γ∨i0〉 > −1, we can assume that 〈γj0 , γ∨i0〉 = −1, thus γj0 + γi0 is a root. To
reach a contradiction, we show that the m− 1 positive roots

γ1, . . . , γj0−1, γj0+1, . . . , γi0−1, γj0 + γi0 , γi0+1, . . . , γm

also satisfy the assumptions of γ1, . . . , γm, contradicting the minimality of m. That
is, we show that βi − γj0 ∈ Φ+ whenever j0 < i < i0.

Indeed, if i < i0, then βi−1 +γi = βi ∈ Φ+, therefore 〈βi−1, γ
∨
i 〉 = −1, and being

(γi, γj) = 0 for all j < i it follows that 〈β, γ∨i 〉 = −1. Therefore, if j0 < i < i0, then
it follows 〈βi, γ∨j0〉 = 〈β, γ∨j0〉+ 〈γj0 , γ∨j0〉 = 1, and the claim follows. �

Lemma 4.5. Suppose that Φ is simply laced. Let B ∈ Ort(Φ+
1 ) and suppose that

it is not an antichain, then there exists B′ ∈ Ort(Φ+
1 ) with |B′| = |B| such that

B′ ` B, and dim aB′ < dim aB.

Proof. Notice that W0 acts on Ort(Φ+
1 ), we will find B′ in the W0-orbit of B. Let

β ∈ B be a minimal element and let β′ ∈ B with β < β′. Write β′−β = γ1+. . .+γm
for some pairwise orthogonal roots γ1, . . . , γm ∈ Φ+ as in Proposition 4.4, and notice
that γi ∈ Φ+

0 for all i. Set γ = γ1. Then 〈β′ − β, γ∨〉 = 2, and since Φ is simply
laced it follows that sγ(β) = β + γ and sγ(β′) = β′ − γ. On the other hand by
Lemma 3.3 γ is orthogonal to every root in B r {β, β′}, therefore

sγ(B) = (B r {β, β′}) ∪ {sγ(β), sγ(β′)}.
Being γ < β′ − β, we have β < sγ(β) and β < sγ(β′). Hence sγ(B) ` B, and since
β is minimal in B we get β 6∈ Ψ(aB′). �

Proposition 4.6. Suppose that Φ is simply laced. Let B ∈ Ort(Φ+
1 ), then there is

an antichain A ∈ Ort(Φ+
1 ) with |A| = |B| such that A ` B.

Proof. Notice that W0 acts on the orthogonal subsets of cardinality m = |B|. Sup-
pose that B is not an antichain, then by Lemma 4.5 there is B1 ∈ Ort(m,0)(Φ

+
1 )

such that B1 ` B and dim aB1
< dim aB. Let i > 1 and suppose that B1, . . . ,Bi ∈

Ort(m,0)(Φ
+
1 ) are such that Bi ` . . . ` B1 ` B and dim aBi < dim aBi−1

< . . . <
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dim aB. If Bi is not an antichain, then we can apply Lemma 4.5 again, and we find
Bi+1 ∈ Ort(m,0)(Φ

+
1 ) such that Bi+1 ` Bi and dim aBi+1

< dim aBi . Since Bi+1 is
not empty it must be dim aBi+1 > 0, therefore the process must stop for some k,
and Bk is an antichain. �

4.2. The odd orthogonal case. Consider the Hermitian pair (Bn, α1). We enu-
merate the set of simple roots Π = {α1, . . . , αn} as in [1]. Given i, j such that
1 6 i 6 n and 1 6 j < n we set

βi = α1 + . . .+ αi,

β′j = α1 + . . .+ αj + 2αj+1 + . . .+ 2αn.

Then Φ+
1 = {βi | 1 6 i 6 n} ∪ {β′j | 1 6 j < n}. Notice that Φ+

1 contains a unique
short root, namely βn.

In this case Ortmax(Φ+
1 ) = {B1, . . . ,Bn}, where we set Bi = {βi, β′i} for all i < n,

and Bn = {βn}. In particular, the only possible types for an orthogonal subset
are (0, 2), (1, 0) and (0, 1). Moreover Bn ` Bn−1 ` . . . ` B1, and Bn is the unique
antichain in Ortmax(Φ+

1 ). In particular, the following proposition trivially holds.

Proposition 4.7. Consider the Hermitian pair (Bn, α1), and let Φ+ = Φ+
0 ∪ Φ+

1

be the corresponding decomposition.

i) Let B ∈ Ort(Φ+
1 ) of type (h, k), then there is an antichain A ⊂ Φ+

1 of type
(h+ bk2 c, k − 2bk2 c) such that A ` B.

ii) There exists a unique antichain A∗ ∈ Ortmax(Φ+
1 ), and A∗ ` B for all

B ∈ Ortmax(Φ+
1 ).

4.3. The symplectic case. Consider the Hermitian pair (Cn, αn). We enumerate
the set of simple roots Π = {α1, . . . , αn} as in [1], and we embed Φ into the euclidean
vector space Rn with orthonormal basis ε1, . . . , εn by setting αi = εi − εi+1 for all
i < n and αn = 2εn. Then

Φ = {±(εi ± εj) | 1 6 i, j 6 n}r {0},
and Φ+

1 = {εi + εj | 1 6 i 6 j 6 n}. Notice that, for 1 6 i 6 j 6 n, we have

εi + εj = αi + . . .+ αj−1 + 2αj + . . .+ 2αn−1 + αn.

In particular εi + εj 6 εh + εk if and only if h 6 i and k 6 j. Notice that
SCn,α1 = {2ε1, . . . , 2εn}, so that r = n.

Let B ∈ Ort(Φ+
1 ), and write B = {εi1 + εj1 , . . . , εim + εjm} for some indices

i1 6 j1, . . . , im 6 jm. Correspondingly, we have a disjoint union
⋃m
k=1{ik, jk},

and B ∈ Ortmax(Φ+
1 ) if and only if {1, . . . , n} =

⋃m
k=1{ik, jk}, and it immediately

follows that, if B has type (h, k), then B ∈ Ortmax(Φ+
1 ) if and only if 2h + k = n.

Notice moreover that B is an antichain if and only if, up to some permutation of
{1, . . . ,m}, we have

i1 < i2 < . . . < im−1 < im 6 jm < jm−1 < . . . < j2 < j1.

It follows that there is a unique B ∈ Ortmax(Φ+
1 ) which satisfies the previous in-

equalities, therefore there is a unique antichain A∗ ∈ Ortmax(Φ+
1 ).

The following lemma is an easy consequence of previous description of Φ+
1 .

Lemma 4.8. Let β, β′ ∈ Φ+
1 be orthogonal roots.

i) Suppose that {β, β′} is of type (1, 1) and suppose that β < β′. Then β′−β =
2α+ α′ for some short roots α, α′ ∈ Φ+

0 with 〈α′, α∨〉 = −1.
ii) Suppose that {β, β′} is of type (2, 0), and suppose that β < β′. Then β′−β =

α+ α′ for some orthogonal short roots α, α′ ∈ Φ+
0 .

iii) Suppose that {β, β′} is of type (0, 2), then β − β′ = 2α for some short root
α ∈ Φ0.
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Proof. Assume β = εi + εj and β′ = εh + εk, for some i 6 j and h 6 k. The
orthogonality implies that i 6= h and j 6= k.

i) We have in this case h 6 k < i 6 j, and since {β, β′} contains exactly one
long root, either h = k < i < j or h < k < i = j. Therefore the claim follows by
setting α = εk − εi and α′ = εh − εk + εi − εj .

ii) We have in this case i < j and h < k, and the claim follows by setting
α = εi − εj = αk + . . .+ αj−1 and α′ = εh − εk = αh + . . .+ αk−1.

iii) We have in this case i = j and h = k, and the claim follows by setting
α = εh − εi. �

Lemma 4.9. Let B ⊂ Φ+
1 be an orthogonal subset of type (h, k), set k′ = bk2 c and

suppose that B is not an antichain. Then there exists an orthogonal subset B′ of
type (h+ k′, k − 2k′) such that B′ ` B, and dim aB′ < dim aB.

Proof. Let β ∈ B be a minimal element, and suppose that β < β′ for some β′ ∈ B.
We construct an orthogonal subset B′ such that B′ ` B and dim aB′ < dim aB,
whose type is (h + 1, k − 2) if β, β′ are both long, and (h, k) otherwise. Since two
positive long roots in a root system of tyoe Cn are always comparable, the claim
will follow repeating the argument until B′ contains at most a single long root.

If β, β′ are both long, then by Lemma 4.8 β′−β = 2α for some short root α ∈ Φ+
0 .

Denote B′ = (Br{β, β′})∪{α+β}. Since α+β = β′−α ∈ Φ+
1 , Lemma 3.3 implies

that (α, β) = 0 for all β ∈ Br {β, β′}. Therefore B′ is orthogonal, and it is of type
(h+ 1, k − 2) since α+ β is a short root. Moreover B′ ` B, and since β is minimal
in B we get dim aB′ < dim aB as well.

Suppose that β, β′ are both short roots. Following Lemma 4.8, write β′ − β =
α+α′ with α, α′ ∈ Φ+

0 short orthogonal roots. In particular, it must be 〈β′, α∨〉 =
−〈β, α∨〉 = 1, and by Lemma 3.3 it follows (α, β′′) = 0 for all β′′ ∈ B r {β, β′}.
Therefore

sα(B) = (B r {β, β′}) ∪ {α+ β, β′ − α}.
On the other hand, being β′ − β = α + α′, we get β < sα(β) and β < sα(β′).
Therefore sα(B) ` B, and since β is minimal in B it follows dim asα(B) < dim aB.

Suppose finally that ||β|| 6= ||β′||. Following Lemma 4.8, we can write β′ − β =
2α+ α′ where α, α′ ∈ Φ+

0 are short roots with 〈α′, α∨〉 = −1. In particular we get
α + α′ ∈ Φ+

0 , hence β + α, β′ − α ∈ Φ+
1 , and by Lemma 3.3 it follows (α, β′′) = 0

for all β′′ ∈ B r {β, β′}. Therefore

sα(B) = (B r {β, β′}) ∪ {sα(β), sα(β′)}.

On the other hand, being β′ − β = 2α + α′, we get β < sα(β) and β < sα(β′).
Therefore sα(B) ` B, and since β is minimal in B we get dim asα(B) < dim aB as
well. �

Proposition 4.10. Consider the Hermitian pair (Cn, α1).

i) Let B ⊂ Φ+
1 be an orthogonal subset of type (h, k). Then there is an an-

tichain A ⊂ Φ+
1 of type (h+ bk2 c, k − 2bk2 c) such that A ` B.

ii) There exists a unique antichain A∗ ∈ Ortmax(Φ+
1 ), and A∗ ` B for all

B ∈ Ortmax(Φ+
1 ).

Proof. i) Suppose that B is not an antichain, by Lemma 4.9 there is an orthogonal
subset B1 ⊂ Φ+

1 of type (h+bk2 c, k−2bk2 c) such that B1 ` B and dim aB1 < dim aB.
Suppose that Bi is defined, and suppose that Bi is not an antichain. Then we can
apply Lemma 4.9 again, and we find an orthogonal subset Bi+1 ⊂ Φ+

1 such that
Bi+1 ` Bi and dim aBi+1

< dim aBi . Since Bi+1 is not empty, aBi+1
cannot be zero,

therefore the process must stop for some k, and Bk is an antichain.
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ii) As we already noticed, if B ∈ Ort(Φ+
1 ) has type (h, k), then B is maximal if

and only if 2h + k = n. Therefore by i) for all B ∈ Ortmax(Φ+
1 ) there exists an

antichain A ∈ Ortmax(Φ+
1 ) such that A ` B. We also already noticed that there is a

unique antichain A∗ ∈ Ortmax(Φ+
1 ), therefore A∗ ` B for all B ∈ Ortmax(Φ+

1 ). �

4.4. Hermitian symmetric spaces of tube type. Let (Π, αq) be a Hermitian
pair and let p+ be the corresponding standard parabolic subalgebra of g. Let
SΠ,αq = {γ1, . . . , γr} be the set of Harish-Chandra strongly orthogonal roots, and

set h− = span(γ∨i | i = 1, . . . , r). By [9], [15], a root α ∈ Φ is in Φ+
1 if and only if

either α|h− = 1
2 (γi + γj) , for some i 6 j, or α|h− = 1

2γi for some i. A root α ∈ Φ

is in Φ+
0 if and only if either α|h− = 1

2 (γi − γj), for some i 6 j, or α|h− = ± 1
2γi,

for some i. Recall that the Hermitian symmetric space G/P is called of tube type
if it is holomorphically equivalent to the tube over a self dual cone. It is known
(cf. [14]) that Hermitian symmetric spaces of tube type correspond to Hermitian
involutions such that α ∈ Φ is in Φ+

1 if and only if α|h− = 1
2 (γi+γj) for some i 6 j,

and a root α ∈ Φ is in Φ+
0 if and only if α|h− = 1

2 (γi − γj), for some i 6 j. We will
call such involutions Hermitian involutions of tube type. Observe that a Hermitian
involution is of tube type if and only if

(4.1) (

r∑
i=1

γi, α) = (αq, αq) i, for all α ∈ Φi, i = 0, 1.

Hermitian symmetric spaces of tube type are classified by the Hermitian pairs
(Π, αq) such that w0(αq) = −αq, in which case we say that (Π, αq) is a Hermitian
pair of tube type (see e.g. [10, Ch. X, D.4 pg. 528]). In particular, we have the
following possibilities:

i) (A2q−1, αq);
ii) (Bn, α1);

iii) (Cn, αn);
iv) (Dn, αn−1) with n even; (Dn, αn) with n even; (Dn, α1) for all n;
v) (E7, α7).

Notice that being of tube type is equivalent to the fact that p+
u is a regular pre-

homogeneous space under the action of G0, namely the boundary of the open
G0-orbit has codimension 1 (see [16] and the references therein).

If (Π, αq) is a Hermitian pair of tube type and Π is not simply laced, then the
short roots in Φ1 admit a nice description:

Lemma 4.11. Suppose that Φ is not simply laced and let σ be a Hermitian in-
volution of tube type. Let S be an orthogonal subset of Φ+

1 of maximal cardinality
and let β ∈ Φ+

1 be a short root. Then β = 1
2 (γ + γ′) for some distinct elements

γ, γ′ ∈ S.

Proof. By Remark 4.2, every γ ∈ S is a long root of Φ, and we can choose a set
of positive roots in Φ+

0 ⊂ Φ0 so that S is the corresponding set of Harish-Chandra
strongly orthogonal roots. Since σ is of tube type, we have that β = 1

2 (γ + γ′) + λ,
for some γ, γ′ ∈ S with (γ, γ′) = 0 and some λ with (λ, γ′′) = 0 for all γ′′ ∈ S,
therefore ‖β‖2 = 1

4 (‖γ‖2 + ‖γ′‖2) + ‖λ‖2 = 1
2‖γ‖

2 + ‖λ‖2. On the other hand β is

a short root, therefore ||β||2 = 1
2 ||γ||

2 and it follows λ = 0. �

If σ is the Hermitian involution of tube type associated to the Hermitian pair
(Bn, α1) or (Cn, αn), we proved in Proposition 4.7 and Proposition 4.10 that there
exists a unique antichainA∗ ∈ Ortmax(Φ+

1 ), and thatA∗ ` B for all B ∈ Ortmax(Φ+
1 ).

We now show that this property holds whenever σ is a Hermitian involution of tube
type.
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Proposition 4.12. Suppose that σ is a Hermitian involution of tube type.
Then there exists a unique antichain A∗ ∈ Ortmax(Φ+

1 ), and A∗ ` B for all
B ∈ Ortmax(Φ+

1 ).

Proof. As we noticed, the claim has already been proved if Φ is not simply laced.
Therefore we will assume that Φ is simply laced, so that Ortmax(Φ+

1 ) coincides with
the collection of the orthogonal subsets of maximal cardinality r. By Proposition
4.6, for all B ∈ Ortmax(Φ+

1 ), there is an antichain A ∈ Ortmax(Φ+
1 ) such that A ` B.

Therefore we only need to show the uniqueness of the antichain in Ortmax(Φ+
1 ).

Suppose A,A′ ∈ Ortmax(Φ+
1 ) are both antichains. Since they are both of max-

imal cardinality, by Remark 4.2, they are both sets of Harish-Chandra roots for
some choice of positive sets of roots in Φ0. Since the pair (Π, αq) is of tube type
we have, by (4.1),

(
∑
γ∈A

γ, αq) = (αq, αq) = (
∑
γ′∈A′

γ′, αq)

and, if α ∈ Π0,

(
∑
γ∈A

γ, α) = 0 = (
∑
γ′∈A′

γ′, α).

It follows that

(4.2)
∑
γ∈A

γ =
∑
γ′∈A′

γ′.

Let C be the matrix ((γ, γ′))γ∈A,γ′∈A′ . Consider the matrix C ′ obtained by replac-
ing the nonzero entries of C with 1. This is the incidence matrix of a relation. Let G
be its incidence graph. Write G = ∪iGi, where Gi are the connected components of
G. Assume first that Gi has more than one node. If γ ∈ Gi∩A∩A′ then (γ, γ′) = 0
for all γ′ ∈ A′ r {γ}, so γ is connected in G only to itself. Since Gi is connected
this is not possible, hence Gi ∩ A ∩ A′ = ∅. If Gi ∩ A = ∅ then any γ′ ∈ Gi ∩ A′
is orthogonal to A, contradicting the fact that A is in Ortmax(Φ+

1 ). Symmetrically
we have that also Gi ∩A′ is not empty. Since Gi is connected, if γ0 ∈ Gi ∩A, there
must be γ′0 ∈ Gi ∩ A′ such that γ0 6= γ′0 and (γ0, γ

′
0) 6= 0. Since

〈
∑
γ∈A

γ, γ∨0 〉 = 2 = 〈
∑
γ′∈A′

γ′, γ∨0 〉 = 1 + 〈
∑
γ′ 6=γ′0

γ′, γ∨0 〉,

we see that there are exactly two nodes in Gi to which γ0 is connected. Symmet-
rically, the same property holds for all γ′ ∈ Gi ∩ A′. Thus every node has degree
exactly 2 in Gi. It follows that Gi is a cycle

•

• • • •

Since Gi ∩A∩A′ = ∅ and the nodes in A connect only to nodes in A′ we have only
this possibility (letting ◦ be the nodes in A and • the nodes in A′):

◦

• ◦ • ◦ •

If (γ, γ′) 6= 0 then (γ, γ′) > 0 so γ − γ′ is a root. It follows that either γ > γ′

or γ′ > γ. We give an orientation to the graph G by orienting the edges so that
they point from the larger to the smaller root. Since both A and A′ are antichains,

we cannot have consecutive arrows
◦ • ◦

,
• ◦ •

. It follows that
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the nodes ◦ are either all sources or all sinks. By eventually exchanging A and A′,
we can assume that all ◦ are sources and all • are sinks. This means that we can
enumerate A ∩ Gi = {γ1, . . . , γs} and A′ ∩ Gi = {γ′1, . . . , γ′s} so that γ′i <0 γi.

It follows that λ =
∑
γi −

∑
γ′i >0 0. On the other hand

‖λ‖2 = ‖
∑

γi‖2 + ‖
∑

γ′i‖2 − (
∑

γi,
∑

γ′i)− (
∑

γ′i,
∑

γi)

= ‖
∑

γi‖2 + ‖
∑

γ′i‖2 − (
∑

γi,
∑
γ′∈A′

γ′)− (
∑

γ′i,
∑
γ∈A

γ).

By (4.2),

‖λ‖2 = ‖
∑

γi‖2 + ‖
∑

γ′i‖2 − (
∑

γi,
∑
γ∈A

γ)− (
∑

γ′i,
∑
γ′∈A′

γ′)

= ‖
∑

γi‖2 + ‖
∑

γ′i‖2 − (
∑

γi,
∑

γi)− (
∑

γ′i,
∑

γ′i) = 0.

It follows that Gi has only one node for all i. As observed earlier Gi ∩ A 6= ∅ and
Gi ∩A′ 6= ∅, thus, if Gi = {γ}, then γ ∈ A∩A′. Therefore A∪A′ = ∪iGi ⊂ A∩A′.
Thus A = A′. �

Remark 4.13. The proof of uniqueness of the antichain we have given when Φ is
simply laced can be extended (with some complications) to a uniform proof for any
Φ. Since the two non simply laced cases are easily dealt individually, we preferred
to omit this more complicated approach.

Given B ⊂ Φ+
1 , set

B60 = {α ∈ Φ+
1 | there is β ∈ B such that α 60 β}.

Notice that B60 = Ψ(a−B ), where a−B ⊂ p+
u is the B−0 -stable subalgebra generated

by B and B−0 ⊂ G0 is the opposite Borel subgroup of B.
If A∗ ∈ Ortmax(Φ+

1 ) is the unique antichain, it follows by Proposition 4.12, that
A∗ ⊂ B>0 for all B ∈ Ortmax(Φ+

1 ). The following corollary shows that A∗ ⊂ B60

as well.

Corollary 4.14. Let A∗ ∈ Ortmax(Φ+
1 ) be the unique antichain. Then A∗ ⊂ B60

for all B ∈ Ortmax(Φ+
1 ).

Proof. Let 6′0 be the partial order on Φ+
1 defined by Φ−0 . Then 6′0 is the reverse

partial order of 60, therefore a subset A ⊂ Φ+
1 is an antichain w.r.t. 60 if and only

if it is an antichain w.r.t. 6′0. Therefore, if `′ is the preorder on Ort(Φ+
1 ) defined

by 6′0, it follows by Proposition 4.12 that A∗ `′ B, namely A∗ ⊂ B60 . �

5. The special B0-stable abelian subalgebra

For the rest of the paper we will assume that σ : G −→ G is an (indecomposable)
involution. Moreover, throughout this section, we assume that g0 is semisimple and

that the simple root αp ∈ Π̂ corresponding to σ is long and non-complex.
Recall from Section 2.3 the element wp ofWab

σ and the corresponding subalgebra
ap ∈ Iσab. We call ap the special B0-stable abelian subalgebra.

For each component Σ of Π0, we let Φ(Σ) be the root subsystem of Φ0 generated
by Σ. As shown in [6, Lemma 5.7], there is a unique simple root αΣ ∈ Σ which is
connected to αp. If moreover θΣ is the highest root in Φ(Σ), then [θΣ : αΣ] = 1,
therefore (Σ, αΣ) is a Hermitian pair. It is then clear that γ ∈ Φ(Σ) is orthogonal
to αp if and only if [γ : αΣ] = 0. Following Section 4, we denote by Φ(Σ)+

1 the set
of roots in Φ(Σ)+ that have αΣ in their support.

Set Cσ = {α ∈ Φ̂+ |αp + kδ − α ∈ Φ̂+} and define

C1
σ = Cσ ∩ Φ̂1 = {α ∈ Cσ | [α : αp] = 1}.
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Notice that C1
σ ⊂ Φ̂+

re.

Lemma 5.1.

i) N(wp) =
⋃

Σ{γ + αp | γ ∈ Φ(Σ)+
1 } ∪ {αp}, where Σ ranges among the

components of Π0;
ii) N(wp) = C1

σ;
iii) The map Υ : C1

σ →
⋃

Σ Φ(Σ)+
1 ∪ {0} mapping η to η − αp is an order

preserving bijection, where Σ varies among the components of Π0;
iv) If γ, η ∈ C1

σ r {αp}, then (Υ(γ),Υ(η)) = (γ, η).
v) If η ∈ C1

σ r {αp}, then (αp,Υ(η)) = −(αp, η).

Proof. i) It is well known that N(w0,αpw0) =
⋃

Σ Φ(Σ)+
1 . If γ ∈ Φ(Σ)+

1 , then
〈γ, α∨p 〉 = 〈αΣ, α

∨
p 〉, and since αp is long. we have 〈αΣ, α

∨
p 〉 = −1. It follows that

sp(γ) = γ + αp ∈ Φ̂+, hence

N(wp) = N(spw0,αpw0) = {αp} ∪ sp(N(w0,αpw0)),

and the claim follows.
ii) Clearly αp ∈ C1

σ. Moreover, if γ ∈ Φ(Σ)+
1 , then kδ + αp − (γ + αp) =

kδ − γ ∈ Φ̂+. It follows that N(wp) ⊆ C1
σ. Since wp(αp) = kδ + αp, it follows that

`(wpsp) = `(wp) + 1. This implies that N(wpsp) = N(wp)∪ {kδ+ αp}. Let η 6= αp
be in C1

σ so that there is β such that η + β = kδ + αp. By biconvexity of N(wpsp),
exactly one between η and β is in N(wp). Since [η : αp] = 1 and [β : αp] = 2, it
follows from the fact that wp ∈ Wab

σ that η ∈ N(wp). Thus C1
σ ⊆ N(wp), and the

claim follows.
iii) Follows by i) and ii).

iv) Since αp is long, if α ∈ Φ(Σ)+
1 then (α, αp) = − (αp,αp)

2 . Therefore, if γ, η ∈
C1
σ r {αp}, we have

(γ, η) = (γ −αp, η−αp) + (γ −αp, αp) + (η−αp, αp) + (αp, αp) = (γ −αp, η−αp).
The second claim follows as well, since (Υ(η),Υ(η)) = (η, η).

v) Since αp is long and Υ(η) ∈ Φ(Σ)+
1 , it must be 〈Υ(η), α∨p 〉 = −1. Therefore

〈η, α∨p 〉 = 1, and it follows (αp,Υ(η)) = −(αp, η). �

Lemma 5.2. Let {η1, . . . , ηt} be an orthogonal set of real roots, let ηt+1 be a real
root such that (ηi, ηt+1) < 0 for all i 6 t, and set A = (〈ηj , η∨i 〉)i,j=1,...,t+1. Then
A is a generalized Cartan matrix of finite or affine type.

Proof. The fact that A is a generalized Cartan matrix [11, Section 1.1] is clear. It
is also symmetrizable: setting D = diag(||η1||2, . . . , ||ηt+1||2) we have that DA =
2((ηi, ηj)), which is symmetric. Since (ηi, ηt+1) 6= 0 for all i 6 t, DA is an inde-
composable matrix. Therefore it is enough to check that DA is of finite or affine
type. By [11, Lemma 4.5], we need to check that DA is positive semi-definite of
corank less than or equal to 1. Since η1, . . . , ηt are orthogonal DA has rank at least
t. It is clear that, given a positive semi-definite symmetric bilinear form (·, ·) on a
vector space V and a set of vectors R = {v1, . . . , vk} in V , the matrix ((vi, vj)) is

positive semi-definite. On the other hand, since Φ̂ is an affine system, the invariant
form (·, ·) is positive semi-definite, and being DA = 2((ηi, ηj)) it follows that DA
is positive semi-definite. �

Let S ⊂ C1
σ r {αp} be an orthogonal subset of maximal cardinality. Consider

the set of roots

ΠS = S ∪ {−αp}
and the matrix AS = (〈η′, η∨〉)η,η′∈ΠS . We will show that G0ap is not spherical.
The following is the key result in this direction.



SPHERICAL NILPOTENT ORBITS AND ABELIAN SUBALGEBRAS 19

Proposition 5.3. Let S ⊂ C1
σr{αp} be an orthogonal subset of maximal cardinal-

ity. Then |S| 6 4 and AS is a Cartan matrix of affine type.

Proof. Set S = {η1, . . . , ηt}. By Lemma 5.2, AS has to be either of finite or of affine
type. By a slight abuse of notation we denote by ΠS the corresponding Dynkin
diagram. This diagram has t+1 nodes with t nodes connected only to the remaining
node corresponding to αp. This immediately implies that t 6 4, and since αp is
long, the node connected to all other nodes corresponds to a long simple root.

If t = 4 then the diagram is of type D
(1)
4 , hence it is affine. If t = 3 the only

possibilities are D4 or B
(1)
3 . If ΠS is of type D4, then η = kδ− (η1 + η2 + η3− 2αp)

is a root in Φ̂ with [η : αp] = 1. Set β = η1 + η2 + η3 − αp ∈ Φ̂. Then β ∈ Φ̂,
[β : αp] = 2, and η + β = kδ + αp. It follows that η ∈ C1

σ. Being (η, ηi) = 0 for
i = 1, 2, 3, we see that {η1, η2, η3} is not a set of maximal cardinality in C1

σ r {αp}.
This excludes the possibility that ΠS is of type D4, so ΠS is of affine type.

If t = 2 then ΠS can be only of type A3, B3, G
(1)
2 , D

(2)
3 . By Lemma 5.1 together

with Remark 4.2, {Υ(η1),Υ(η2)} is an orthogonal subset of maximal cardinality in⋃
Σ Φ(Σ)+

1 , and both Υ(η1) and Υ(η2) are long roots in the respective components
of Π0. In particular, Π0 contains at most two components.

Suppose that t = 2 and that Π0 = Σ1 ∪ Σ2 is the union of two components,
then by Remark 4.2 the Hermitian symmetric spaces corresponding to (Σ1, αΣ1

)
and (Σ2, αΣ2

) have both rank 1, hence Σ1, Σ2 are both of type A, and αΣi is an
extremal root in Σi (see Table 1). Since αΣi and Υ(ηi) are both long in Σi, by
Lemma 5.1 v) it follows that

(5.1) 〈−αp, η∨i 〉 = 〈αp,Υ(ηi)
∨〉 = 〈αp, α∨Σi〉.

This means that αp is connected to αΣi in Π̂ with the same number of edges that

connect −αp to ηi in ΠS . If ΠS is of type A3, it follows that Π̂ is of type A, of the
shape

◦ ◦ ◦ • ◦ • ◦ ◦ ◦

(where the roots αΣi are denoted by black nodes), which is absurd since Π̂ is not

of finite type. If ΠS is of type B3, then Π̂ is of the shape

◦ ◦ ◦ • ◦ • ◦ ◦ ◦

The only affine diagrams of this shape are F
(1)
4 and E

(2)
6 . If Π̂ is of type F

(1)
4 then

αp has label 3, while if Π̂ is of type E
(2)
6 , then αp has label 2. Since in both cases

the corresponding automorphism σ is not an involution, it follows that Π0 must
contain a unique component.

Suppose that t = 2 and that Π0 is connected. By Lemma 5.1 together with
Remark 4.2, it follows that {Υ(η1),Υ(η2)} is an orthogonal subset of maximal
cardinality in Φ(Π0)+

1 , and that ||η1|| = ||η2||. Therefore, if ΠS is not affine, it
must be of type A3. Suppose that this is the case; then by (5.1) αp is connected to
αΠ0

by a single edge. On the other hand, by Remark 4.2 again, the symmetric space
corresponding to the Hermitian pair (Π0, αΠ0

) has rank 2. Up to an automorphism
of Π0, by Table 1 the possibilities for the pair (Π0, αΠ0) are the following: (An, α2),
(Bn, α1), (Dn, α1), (D5, α5), (E6, α1). But then by obvious considerations it follows

that Π̂ also of finite type, a contradiction.
It remains to check the case when t = 1. If ΠS is of finite type, then it is of type

A2, C2, or G2. Since {Υ(η1)} is a set of orthogonal roots of maximal cardinality in⋃
Σ Φ(Σ)+

1 , it follows that Π0 is connected, and the Hermitian symmetric variety
corresponding to the pair (Π0, αΠ0) has rank one, therefore Π0 is of type A and αΠ0
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is an extremal root in Π0. By (5.1), αp is connected to αΠ0
by the same number of

edges that connect −αp to η1. Therefore, if ΠS is of finite type, then Π̂ would be
of finite type as well, which is absurd. �

For the reader’s convenience we list here all possible diagrams for the affine root
system ΠS , with the corresponding labels.

◦

◦ ◦ ◦

◦

11

1 2 1

1

◦

◦ ◦ ◦

1

1 2 2
◦ ◦ ◦
1 1 1

◦ ◦ ◦
1 32

◦ ◦
2 1

D
(1)
4 B

(1)
3 D

(2)
3 G

(1)
2 A

(2)
2

Table 2 – Affine root systems corresponding to non-spherical orbits in G0ap

Remark 5.4. Let Ξ be one of the affine diagrams of Table 2, let kΞ be the integer

such that Ξ is of type X
(kΞ)
r (kΞ ∈ {1, 2}) and let α ∈ Ξ be the unique long

simple root which is connected to all other simple roots. Let ξ ∈ Ξ and let aΞ,ξ

be the corresponding label in Ξ, then for all ξ ∈ Ξ, we have kΞaΞ,ξ = |〈α, ξ∨〉|. In
particular, the equality

kΞ(
∑
ξ 6=α

aΞ,ξ) = 4

holds. If S is an orthogonal subset of C1
σr{αp} of maximal cardinality and ξ ∈ ΠS ,

then we will denote kΠS and aΠS ,ξ simply by kS and aS,ξ.

As in Section 3, we fix a weight vector xµ1 ∈ gµ1 for all µ ∈ Φ+
1 . Recall that αp

is the lowest weight in Φ1 and that Ψ(ap) = {−η | η ∈ C1
σ}. If S ⊂ C1

σ r {αp} is an
orthogonal subset, we set

xS =
∑
η∈S

x−η1 ∈ ap.

For all η ∈ S, we choose yη1 ∈ gη1 so that [x−η1 , yη1 ] = −η∨. Since the weights η

are strongly orthogonal, setting yS =
∑
η∈S y

η
1 and hS = −

∑
η∈S η

∨, we have that

{xS , hS , yS} is a normal sl(2)-triple which contains xS as a nilpositive element.

Theorem 5.5. Suppose that g0 is semisimple and αp is long and non-complex, and
let S be an orthogonal subset of C1

σ r {αp} of maximal cardinality. Then the orbit
G0xS ⊂ g1 is not spherical. In particular, G0ap is not spherical.

Proof. Let S = {η1, . . . , ηt} be an orthogonal subset of C1
σr{αp} of maximal cardi-

nality. Since
∑
α∈ΠS

aS,αα is an isotropic vector, it follows that kS(
∑
α∈ΠS

aS,αα)
is a multiple of δ. Since

[kS(
∑
α∈ΠS

aS,αα) : αp] = [kS(

t∑
i=1

aS,ηiηi) : αp]− kSa−αp,S = 4− 2 = 2,

it follows that kS(
∑
α∈ΠS

aS,αα) = kδ, hence

(5.2)

t∑
i=1

kSaS,ηiηi − αp = kδ + αp.
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It follows moreover that kSaS,ηi(ηi, ηi) = 2(αp, ηi), namely

(5.3) kSaS,ηi = 〈αp, η∨i 〉.
The equalities (5.2) and (5.3) show that

t∑
i=1

〈αp, η∨i 〉ηi = 2αp,

hence
∑t
i=1〈αp, η∨i 〉〈ηi, α∨p 〉 = 4. Since αp is long, we have that 1 = 〈ηi, α∨p 〉 =

〈ηi, α∨p 〉, therefore considering the normal sl(2)-triple {xS , hS , yS} we get

−αp(hS) =

t∑
i=1

〈αp, η∨i 〉 =

t∑
i=1

〈αp, η∨i 〉 = 4.

Considering the grading
⊕

i∈Z g1(i) induced by hS , we see that g
−αp
1 ⊂ g1(4),

therefore G0xS is not spherical by [18, Theorem 5.6]. �

Let Σ ⊂ Π0 be a component, and let eΣ = −〈αp, α∨Σ〉 be the number of edges
connecting αΣ with αp. As a corollary of the previous proof we get the following.

Corollary 5.6. Let S = {η1, . . . , ηt} be an orthogonal subset of maximal cardinality
of C1

σ r {αp} and let Σ ⊂ Π0 be a component.

i) If Υ(ηi) ∈ Φ(Σ), then kSaS,ηi = 〈αp, η∨i 〉 = eΣ.
ii) Let (kδ−2αp)Σ be the orthogonal projection of kδ−2αp onto hΣ = span(hα |α ∈

Σ) and set IΣ = {i |Υ(ηi) ∈ Φ(Σ)}. Then∑
i∈IΣ

Υ(ηi) =
1

eΣ
(kδ − 2αp)Σ.

Proof. i) This follows immediately by formulas (5.1) and (5.3).

ii) Since kS(
∑t
i=1 aS,ηi) = 4, formula (5.2) implies that

t∑
i=1

kSaS,ηiΥ(ηi) = kδ − 2αp.

On the other hand (kδ − 2αp)Σ =
∑
i∈IΣ kSaS,ηiΥ(ηi), therefore the claim follows

by i). �

We already noticed at the beginning of the section that (Σ, αΣ) is a Hermitian
pair. More precisely, we have the following.

Proposition 5.7. Let Σ ⊂ Π0 be a component, then (Σ, αΣ) is a Hermitian pair
of tube type.

Proof. For all α ∈ Σ r {αΣ}, it clearly holds (α, kδ − 2αp) = (α, (kδ − 2αp)Σ) = 0.
By Corollary 5.6 we get then the equality

(α,
∑
i∈IΣ

Υ(ηi)) = i(αΣ, αΣ) for all α ∈ Φ(Σ)+
i , i = 0, 1.

By Lemma 5.1, {Υ(ηi) | i ∈ IΣ} is an orthogonal set of maximal cardinality in
Φ(Σ)+

1 . By Remark 4.2 we can then choose a set of positive roots for Φ(Σ)0 in such
a way that {Υ(ηi) | i ∈ IΣ} is the corresponding set of strongly orthogonal roots in
Φ(Σ)+

1 . Therefore the claim follows immediately from (4.1). �

In Theorem 5.5 we constructed a non-spherical orbit G0xS ⊂ G0ap starting
from an orthogonal subset S ⊂ C1

σ of maximal cardinality. We now show that this
construction extends to any maximal orthogonal subset S ⊂ C1

σ, and it always gives
rise to the same G0-orbit.
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Theorem 5.8. Let S ⊂ C1
σ r {αp} be a maximal orthogonal subset.

i) For all α ∈ Φ it holds α(hS) = −2〈α, α∨p 〉.
ii) The orbit G0xS ⊂ g1 is not spherical, and G0xS = G0xT for all maximal

orthogonal subset T ⊂ C1
σ r {αp}.

Proof. If Σ ⊂ Π0 is a component, set SΣ = Υ(S) ∩ Φ(Σ)+
1 , a maximal orthogo-

nal subset in Φ(Σ)+
1 . Write explicitly SΣ = {γ1, . . . , γs, β1, . . . , βt} with γ1, . . . , γs

long roots and β1, . . . , βt short roots. Let rΣ be the rank of the Hermitian sym-
metric space corresponding to the pair (Σ, αΣ) and let S ′Σ = {γ1, . . . , γrΣ} be an
orthogonal subset of maximal cardinality of Φ(Σ)+

1 containing {γ1, . . . , γs}. Then
S ′ =

⋃
Σ Υ−1(S ′Σ) is an orthogonal subset of C1

σ r {αp} of maximal cardinality.
By Proposition 5.7, the Hermitian pair (Σ, αΣ) is of tube type, therefore by

Lemma 4.11, upon relabelling γs+1, . . . , γrΣ , we may assume that βi = 1
2 (γs+2i−1 +

γs+2i) for all i = 1, . . . , t. By Corollary 5.6 it follows that

s∑
i=1

γi +

t∑
j=1

2βj =

rΣ∑
i=1

γi =
1

eΣ
(kδ − 2αp)Σ.

Thus

eΣ(

s∑
i=1

Υ−1(γi) +

t∑
j=1

2Υ−1(βj)) = (kδ − 2αp)Σ + eΣrΣαp.

Summing over all components Σ ⊂ Π0, we get∑
η∈S

eηη = kδ − 2αp +
∑
Σ

eΣrΣαp,

where for η ∈ C1
σ r {αp} we define

eη = −〈αp,Υ(η)∨〉 =

{
eΣ if Υ(η) ∈ Φ(Σ)+

1 is a long root,
2eΣ if Υ(η) ∈ Φ(Σ)+

1 is a short root.

Notice that by Lemma 5.1 and Corollary 5.6 i) we have eη = 〈αp, η∨〉 = kSaη,S
for all η ∈ S ′. Therefore by Corollary 5.6 ii) and Remark 5.4 we obtain∑

Σ

eΣrΣ =
∑
η∈S′

eη =
∑
η∈S′

kS′aη,S′ = 4.

On the other hand, by Lemma 5.1, we have eη = 〈αp, η∨〉 for all η ∈ S, therefore
we get

(5.4)
∑
η∈S
〈αp, η∨〉η =

∑
η∈S

eηη = kδ + 2αp.

We now conclude the proof by showing that the orbit G0xS does not depend on
the maximal orthogonal subset S ⊂ C1

σ, hence it is non-spherical by Theorem 5.5.
We identify the orbit G0xS ⊂ g1 by computing its weighted Dynkin diagram (see
[8, Section 9.5]).

By Lemma 5.1 we have 〈η, α∨p 〉 = 1 for all η ∈ C1
σ r {αp}. If α ∈ Φ, considering

the normal sl(2)-triple {xS , hS , yS}, it follows that

α(hS) = −
∑
η∈S
〈α, η∨〉〈η, α∨p 〉 = − 2

||αp||2
(α,
∑
η∈S
〈αp, η∨〉η).

By (5.4) we get then

α(hS) = − 2

||αp||2
(α, kδ + 2αp) = −2〈α, α∨p 〉.

Since the right hand side of previous equality does not depend on S, it follows that
G0xS does not depend on S either. �
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We conclude this Section by showing that G0ap has complexity one. Recall that
the complexity of an irreducible G0-variety is defined as

cG0
(X) = min

x∈X
codimB0x.

In particular, the spherical G0-varieties coincide with the G0-varieties of complexity
zero, and the complexity of a G0-variety can be regarded as a measure of its non-
sphericity. By Theorem 3.1 together with Theorem 5.8, if S ⊂ C1

σ is a maximal
orthogonal subset, then xS is in the open G0-orbit of G0ap. Since the complexity of
a G0-variety coincides with that of its G0-stable open subsets, it follows in particular
that cG0

(G0xS) = 1 for all maximal orthogonal subset S ⊂ C1
σ r {αp}.

We start by recalling and proving some general results about the gradings asso-
ciated to nilpotent elements of small height in Z2-graded Lie algebras.

5.1. Remarks on the gradings associated to nilpotent elements of small
height in g1. Let x1 ∈ g1 be a nilpotent element and let {x1, h0, y1} be a normal
sl(2)-triple containing x1. Denote p0 = g0(> 0), u0 = g0(> 1) and l0 = g0(0),
then p0 is a parabolic subalgebra of g0 with Levi factor l0 and with nilradical u0.
Fix a Borel subalgebra b0 ⊂ g0 contained in p0 and set b00 = b0 ∩ g0(0), a Borel
subalgebra of l0, so that b0 = b00 ⊕ u0. Notice that g1(i) is l0-stable for all i ∈ Z.

Let P0 be the parabolic subgroup of G0 corresponding to p0, L0 ⊂ P0 the
Levi factor corresponding to l0 and U0 the unipotent radical of P0, B0 ⊂ G0 the
Borel subgroup corresponding to b0, and B00 ⊂ L0 be the Borel subgroup of L0

corresponding to b00. Recall that in this section the fixed points set g0 of the

involution is assumed to be semisimple and we denote by αp the simple root in Π̂
corresponding to σ.

Proposition 5.9. Suppose that g0 is semisimple with corresponding simple root

αp ∈ Π̂, and let x1 ∈ g1 be a nilpotent element with ht(x1) = m. Then g1(m) is
an irreducible L0-module. If moreover α(h0) > 0 for all α ∈ Φ+

0 , the highest weight

vector of g1(m) is x
−αp
1 .

Proof. Up to conjugating x1 we may assume that α(h0) > 0 for all α ∈ Φ+
0 . Notice

that u0 acts trivially on g1(m), therefore every highest weight of g1(m) as a l0-
module is actually a highest weight for g1 as a g0-module. On the other hand,
since g0 is semisimple, g1 is an irreducible g0-module with highest weight vector

x
−αp
1 , therefore g1(m) is an irreducible l0-module as well, with highest weight vector

x
−αp
1 . �

Assume furthermore that ht(x1) 6 4 and g0(4) = 0. For i > 2, set ai = g1(>i).
Notice that ai is a B0-stable abelian subalgebra of g: indeed ai is p0-stable, hence
P0-stable, and being ht(x1) 6 4 and g0(4) = 0, it follows that [ai, ai] ⊂ g0(4) = 0. It
follows then by Theorem 3.1 that ai possesses finitely many B0-orbits, parametrized
by the orthogonal subsets of Ψ(ai).

Proposition 5.10. Suppose that ht(x1) 6 4 and that g0(4) = 0. Then g1(i) is a
spherical L0-module for all i > 2.

Proof. Let i > 2 and consider the B0-stable subalgebra ai. By Theorem 3.1, there
is vi ∈ ai such that B0vi = ai. Since ai = g1(i) ⊕ ai+1 and since ai+1 is also B0-
stable, we may write vi = ui + u′i, for some ui ∈ g1(2) and u′i ∈ ai+1 with ui 6= 0.
Therefore

g1(i)⊕ ai+1 = ai = [b0, vi] ⊂ [b00, ui]⊕ ([u0, ui] + [b0, u
′
i]).

Since [b00, ui] ⊂ g1(i) and [u0, ui] + [b0, u
′
i] ⊂ ai+1, the equality [b00, ui] = g1(2)

follows. Therefore g1(2) = B00ui is a spherical L0-module. �
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5.2. The complexity of G0ap. We now apply the results of previous subsection to
compute the complexity of G0ap. As we already noticed, it is enough to show that
cG0(G0xS) = 1 when S ⊂ C1

σr{αp} is an orthogonal subset of maximal cardinality.
In particular, under the bijection Υ : C1

σ r {αp} →
⋃

Σ Φ(Σ)+
1 of Lemma 5.1, we

may assume that αΣ ∈ Υ(S) for all components Σ ⊂ Π0.
Let S ⊂ C1

σr{αp} be an orthogonal subset of maximal cardinality, let {xS , hS , yS}
be the corresponding normal sl(2)-triple, let g =

⊕
g(i), and for j = 0, 1 set

gj(i) = gj ∩ g(i). We keep the notation of previous subsection.
Let K0 ⊂ L0 be the identity component of the stabilizer of xS ∈ g1(2). Then K0

is reductive and g1(2) is a K0-orthogonal module, therefore by a theorem of Luna
there exists a reductive subgroup M ⊂ K0 and a K0-stable open subset Z ⊂ g1(2)
such that every K0-orbit in Z is isomorphic to K0/M (see [18, Section 5]). Then
by [18, Theorem 5.4] the following formula holds:

(5.5) cG0
(G0xS) = cL0

(g1(2)) + cM (g1(>3)).

Proposition 5.11. We have g1(3) = g0(4) = {0} and g1(4) = g
−αp
1 is the trivial

one-dimensional representation of (L0, L0).

Proof. By Theorem 5.5, we have α(hS) = −2〈α, α∨p 〉 for all α ∈ Φ. In particular
g(3) = {0}. If g(4)α 6= {0}, then 〈α, α∨p 〉 = −2. Since αp is long, it follows that

α = −αp. Since αp is non-complex, g0(4) = {0} and g1(4) = g
−αp
1 .

By definition, L0 is the Levi subgroup of G0 whose set of simple roots is

Π00 =
⋃
Σ

{α ∈ Σ |α(hS) = 0}.

Let Σ ⊂ Π0 be a component. Recall that αΣ ∈ Σ is the unique simple root non-
orthogonal to αp. On the other hand by Theorem 5.8 we have α(hS) = −2〈α, α∨p 〉,
therefore Π00 =

⋃
Σ(Σ r {αΣ}) and it follows that every simple root of L0 is

orthogonal to −αp. This show that g1(4) = g
−αp
1 is the trivial one-dimensional

representation of (L0, L0). �

Corollary 5.12. Let S ⊂ C1
σr{αp} be an orthogonal subset of maximal cardinality,

then cG0
(G0xS) = 1. In particular, cG0

(G0ap) = 1.

Proof. Proposition 5.10 implies that cL0
(g1(2)) = 0, whereas Proposition 5.11

shows that g1(>3) = g1(4) is one-dimensional, and by Theorem 5.8 together with
(5.5) we get 1 6 cG0(G0xS) = cM (g1(4)) 6 1. �

6. Classification of B0-stable subalgebras of g1

In this section g is a semisimple Lie algebra and σ is an (indecomposable) invo-
lution of g. Theorem 3.1 prompts us to study the orbits G0x ⊂ g0 ⊕ g1 with x of
the form

(6.1) xS =
∑
γ∈S0

xγ0 +
∑
γ∈S1

xγ1 ,

where S0 ⊂ Φ0, S1 ⊂ Φ1, S0 ∩ S1 = ∅, and S0 ∪ S1 is a set of strongly orthogonal
weights in Φ = Φ0 ∪ Φ1. We denote by S the disjoint union of S0 and S1. Notice
that all xS are nilpotent: indeed setting yS =

∑
γ∈S0

y−γ0 +
∑
γ∈S1

y−γ1 and hS =∑
γ∈S1

γ∨ +
∑
γ∈S2

γ∨ we get a sl(2)-triple {xS , hS , yS}.
Let m be the height of xS . Since hS ∈ h0, we can choose a weight α ∈ Φ such

that gα ⊂ g(m), namely such that

α(hS) =
∑
γ∈S
〈α, γ∨〉 = m.
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Set S+(α) = {γ ∈ S | 〈α, γ∨〉 > 0}, so that

(6.2)
∑

γ∈S+(α)

〈α, γ∨〉 > m.

Define α̂ = α if α ∈ Φ0, and α̂ = δ′ + α if α ∈ Φ1 r Φ0. Choose for each

γ ∈ S+(α) a root γ̂ ∈ Φ̂ such that γ̂ = γ, and define Ŝ+(α) = {γ̂ | γ ∈ S+(α)}
and ΠS,α = Ŝ+(α) ∪ {−α̂}. As S+(α) ∪ {−α} ⊂ Φ, we have that ΠS,α ⊂ Φ̂re, so
the matrix A(S, α) = (〈β, ξ∨〉)β,ξ∈ΠS,α is a generalized Cartan matrix, which is of
finite or affine type by Lemma 5.2.

Lemma 6.1. Let S ⊂ Φ be a strongly orthogonal subset, and let α ∈ Φ be such
that α(hS) = ht(xS). Then the following statements hold.

i) ht(xS) is less than or equal to the degree of −α̂ in ΠS,α. In particular
ht(xS) 6 4.

ii) If GxS is not spherical, then ht(xS) = 4 and ΠS,α is of affine type, in which
case its diagram is one of those listed in Table 2.

Proof. i) If γ ∈ S+(α), notice that 〈α, γ∨〉 = 〈α̂, γ̂∨〉, and that this number is less or
equal to the number of edges connecting −α̂ with γ̂. Therefore the claim follows by
formula (6.2), by observing that the degree of any node in a finite or affine diagram
is at most 4.

ii) By [17, Theorem 3.1], if GxS is not spherical then ht(xS) > 4, hence ht(xS) =
4 by i). Since in a Dynkin diagram of finite type any node has degree at most 3,
it follows that ΠS,α is affine. Moreover, if 〈α̂, γ̂∨〉 is less than the number of edges
connecting α̂ and γ̂ for some γ ∈ S+(α), then

∑
γ∈S+(α)〈α̂, γ̂∨〉 < 4. Thus, for all

γ ∈ S+(α), 〈α̂, γ̂∨〉 equals the number of edges connecting α̂ and γ̂, and α̂ is long
in ΠS,α. It follows that the diagram ΠS,α is one of the affine diagrams listed in
Table 2. �

In the next result we use the main idea of Proposition 2.2 of [22].

Lemma 6.2. Let S ⊂ Φ be a strongly orthogonal subset and suppose that S ⊂ Ψ(a)
for some a ∈ Iσab. Let α ∈ Φ be such that α(hS) = ht(xS), then α ∈ Φ1 r Φ0 and∑

γ∈S+(α)

〈α, γ∨〉γ̂ = kδ + 2α̂.

In particular, ht0(xS) 6 3 and
∑
γ∈S+(α)〈β, γ∨〉 = 2〈β, α∨〉 for all β ∈ Φ ∪ {0}.

Proof. Since S+(α) ⊂ Φ1 we can assume that γ̂ = δ′ + γ for all γ ∈ S+. As in
the proof of Theorem 5.5, we find that, if ΠS,α = Ξ, then kΞ(

∑
ξ∈Ξ aΞ,ξξ) is an

isotropic vector, hence it is a multiple of δ, say

(6.3) kΞ(
∑
ξ∈Ξ

aΞ,ξξ) = sδ.

The coefficient s can be computed by counting the occurrences of roots in Φ+
1 in the

left hand side of (6.3). It follows that s = 2k if α ∈ Φ0, and s = k if α ∈ Φ1 r Φ0.

Define a multiset {γ̂i | i = 1, · · · , 4} by listing every γ̂ ∈ Ŝ+(α) with multiplicity
〈α̂, γ̂∨〉 = kΞaΞ,γ̂ (see Remark 5.4). Set β = kδ + α̂. Since α̂ = α ∈ Φ0, it follows
that β is a root. Notice that β− γ̂i− γ̂j is a root for all i 6= j. If indeed γ̂i = γ̂j for
some i 6= j, then 〈α̂, γ̂∨i 〉 > 2, hence 〈β, γ̂∨i 〉 > 2 and β − 2γ̂i is a root. If instead
γ̂i 6= γ̂j , then 〈α̂, γ̂∨i 〉 > 0 and 〈α̂ − γ̂i, γ̂∨j 〉 > 0, so β − γ̂i − γ̂j is either a root or
zero. On the other hand γ̂i + γ̂j cannot be a root because a is abelian, therefore
β − γ̂i − γ̂j is a root also in this case.
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Since
∑4
i=1 γ̂i =

∑
γ∈S+(α) kΞaΞ,γ̂ γ̂ = 2kδ + 2α̂ = 2β, we have

∑
i<j

(β − γ̂i − γ̂j) = 6β − 3

4∑
i=1

γ̂i = 0,

thus β − γ̂i − γ̂j is a positive root for some i < j. Since γ̂i ∈ Φ̂+
1 for each i,

β − γ̂i − γ̂j is a root in Φ̂+
0 . Since 〈β, γ̂∨i 〉 > 0 and htσ(β − γ̂i) = 1, β − γ̂i ∈ Φ̂1.

Since β − γ̂i = γ̂j + (β − γ̂i − γ̂j), we see that β − γ̂i ∈ Ψ(a). Since β − γ̂i and γi
are both in Ψ(a) and β − γ̂i + γ̂i = β, we reach a contradiction since a is abelian.

To prove the last claim, notice that α is long in ΠS,α, hence 〈γ, α∨〉 = 1. If
β ∈ Φ0 ∪ Φ1 ∪ {0}, we get then the equality∑

γ∈S+(α)

〈β, γ∨〉 =
2

||α||2
∑

γ∈S+(α)

〈α, γ∨〉(β, γ̂) = 2
(β, kδ + 2α̂)

||α||2
= 2〈β, α∨〉.

�

As a consequence of Lemma 6.2, we get the following result.

Corollary 6.3. Let a ∈ Iσab and let x ∈ a, then ht(x) 6 4 and ht0(x) 6 3. In
particular, Gx is spherical if and only if ht1(x) 6 3, if and only if G0x is spherical.

Proof. By Theorem 3.1, acting with B0 we may assume that x = xS for some
orthogonal subset S ⊂ Ψ(a). Then by Lemma 6.1 we get ht(x) 6 4, and by Lemma
6.2 we get ht0(x) 6 3. The last claim follows by [18, Theorem 5.6]. �

If in previous corollary we take x in the open B0-orbit of a, then we get the
following.

Corollary 6.4. Let a ∈ Iσab, then a is G-spherical if and only if it is G0-spherical.

Recall that Π1 contains at most two elements, and that if Π̂ is simply laced,

then the real roots of Φ̂ are regarded as long. The next result has been proved in
[20] as a consequence of a case-by-case inspection. We provide here a conceptual
proof that follows from Lemma 6.2 and the results of Section 5.1. Note also that
Theorem 6.5 includes Theorem 2.3 of [22].

Theorem 6.5. There exists a ∈ Iσab such that G0a is not spherical if and only if
Π1 = {αp} and αp is long and non-complex.

Proof. If Π1 = {αp} with αp long and non-complex then by Theorem 5.5 the special
B0-stable subalgebra αp gives rise to a non-spherical variety G0ap.

Let now a ∈ Iσab and suppose that G0a is not spherical. By Theorem 3.1 there is
an orthogonal subset S ⊂ Ψ(a) such that G0xS is not spherical, and by Lemma 6.1
we get ht(xS) = 4. Fix α ∈ Φ such that α(hS) = 4, then α ∈ Φ1 r Φ0 by Lemma

6.2. Set α̂ = δ′ + α ∈ Φ̂1.
If Π1 = {αi, αj} consists of two distinct elements, then k = 1. Moreover, since

α̂ ∈ Φ̂+
1 , we can assume [α̂ : αi] = 1 and [α̂ : αj ] = 0. By Lemma 6.2 we have∑

γ∈S+(α)

〈α, γ∨〉γ̂ − 2α̂ = δ.

Being (γ̂, α̂) > 0, for all γ ∈ S+(α) relation γ̂ − α̂ ∈ Φ̂ ∪ {0} holds. Therefore
[γ̂ : αi] = 1 for all γ ∈ S+(α), and we get [δ : αi] = 2 which is absurd.

Thus Π1 = {αp} consists of a single element, and g0 is semisimple. By Proposi-
tion 5.9, we can choose α = w(−αp) with w ∈W0. Since α ∈ Φ1 r Φ0, we see that
αp cannot be complex. Suppose that αp is short. Then also α is short, and there
must be a component Σ ⊂ Π0 such that θΣ is long. Since (θΣ, αp) = (αΣ, αp) < 0,
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it follows that 〈θΣ, α
∨
p 〉 6 −2, and setting β = w(θΣ) we get 〈β, α∨〉 > 2. Since

α(
∑
γ∈S+(α) γ

∨) = ht(xS) = 4, it follows that the element xS+(α) =
∑
γ∈S+(α) xγ

is still in a, and being ht(xS+(α)) > 4 its G0-orbit is still non-spherical by Corollary

6.3. Therefore we can assume that S = S+(α). By Lemma 6.2 we get then

β(
∑
γ∈S

γ∨) = β(
∑

γ∈S+(α)

γ∨) = 2〈β, α∨〉 > 4.

As β ∈ Φ0 and g0(i) = 0 for i > 3, this is absurd. Therefore αp must be long. �

Assume now that Π1 = {αp} with αp long and non-complex. We give a classifi-
cation of the subalgebras a ∈ Iσab such that G0a is non-spherical. By Proposition
4.12, for any component Σ ⊂ Π0 there is a unique maximally orthogonal antichain
AΣ in Φ(Σ)+

1 . Regarding C1
σ as a poset w.r.t. the dominance order, it is clear from

Lemma 5.1 that C1
σ r {αp} contains a unique maximally orthogonal antichain A,

namely

A =
⋃
Σ

Υ−1(AΣ).

For Γ ⊂ C1
σ, we set Γ60 = {ξ ∈ C1

σ | ξ 60 η for some η ∈ Γ}.

Lemma 6.6. There is w ∈ Wab
σ such that N(w) = A60 .

Proof. We show that, if ζ, ξ ∈ Φ̂+ are such that ζ + ξ ∈ A60 , then exactly one
among ζ and ξ is in A60 . Since A60 ⊂ C1

σ = N(wp), then exactly one among ζ and
ξ (say ζ) is in C1

σ. Since ζ + ξ ∈ A60 , then ζ ∈ A60 . This implies that both A60

and its complement are closed under root addition. It follows that there is w ∈ Ŵ
such that N(w) = A60 . Since N(w) ⊂ N(wp), it is clear that w ∈ Wab

σ . �

Let a = Θ(w) (see Proposition 2.5).

Theorem 6.7. Suppose that Π1 = {αp} with αp long and non-complex, and let
a ∈ Iσab. Then G0a is not spherical if and only if {−η | η ∈ A} ⊂ Ψ(a), if and only
if a ⊂ a.

Proof. Suppose that G0a is non-spherical, and let S ⊂ Ψ(a) be an orthogonal subset
such that G0xS is not spherical. Then by Lemma 6.1 we have ht(xS) = 4, and by
Corollary 6.3 there is α ∈ Φ1 such that g1(4)α 6= 0, namely α(hS) =

∑
γ∈S〈α, γ∨〉 =

4. We may assume that α is maximal w.r.t. 60 among the weights of g1(4). As in
the proof of Theorem 6.5, we can assume that S = S+(α).

Suppose that α = −αp. We have that α̂ = δ′ − αp = −αp + 2δ′ = kδ − αp. If
γ ∈ S, since αp is long we get

〈δ′ − γ, (kδ + αp)
∨〉 = 〈γ, α∨〉 = 1,

hence δ′ − γ ∈ C1
σ. Thus O = {δ′ − γ | γ ∈ S} is an orthogonal subset of C1

σ. Notice
moreover that O is a maximal orthogonal subset in C1

σ: if indeed η ∈ O⊥ ∩ C1
σ,

then ΠS,α ∪ {η} gives rise to a generalized Cartan matrix which is neither finite
nor affine, contradicting Lemma 5.2. Therefore Υ(O) is a maximal orthogonal
set in

⋃
Σ Φ(Σ)+

1 , and by Corollary 4.14 it follows that
⋃

ΣAΣ ⊂ Υ(O)60 . By
Lemma 5.1, it follows that A ⊂ O60 ⊂ N(Θ−1(a)) which in turns means that
N(w) ⊂ N(Θ−1(a)), or, equivalently, that a ⊂ a.

Suppose that α 6= −αp. Then there exists β ∈ Φ+
0 such that α+β ∈ Φ0∪Φ1∪{0},

and the maximality of α among the weights of g1(4) implies that
∑
γ∈S〈α+β, γ∨〉 <

4. Therefore by Lemma 6.2 we get

(6.4) 2〈β, α∨〉 =
∑
γ∈S
〈β, γ∨〉 < 0.
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In particular there is γ such that (β, γ) < 0 and, by Lemma 3.3 it follows (β, γ′) > 0
for all γ′ ∈ S r {γ}.

Suppose that (β, γ′) = 0 for all γ′ ∈ S. Then sβ(S) is an orthogonal subset of
Ψ(a) and G0xsβ(S) = G0xS is still not spherical, and sβ(α) is a maximal weight in
Φ1 w.r.t. 60 such that sβ(α)(hsβ(S)) = ht(xsβ(S)) = 4. On the other hand by (6.4)
we have α 60 sβ(α), therefore we may proceed inductively by replacing xS with
xsβ(S) until either α = −αp or we find a root γ′ ∈ S such that 〈γ′, β∨〉 > 0.

If α = −αp then we are done, therefore we may assume that there are γ, γ′ ∈ S
such that (γ, β) < 0 and (γ′, β) > 0. Consider the set Πβ = {γ, β,−γ′}, then
Aβ = (〈ν, ξ∨〉)ν,ξ∈Πβ is a generalized Cartan matrix, and by Lemma 5.2 it is either
of affine or of finite type. Identify Πβ with the corresponding Dynkin diagram;
since (β, γ′) > 0 for all γ′ ∈ S r {γ}, by (6.4) we have that 〈β, γ∨〉 6 −2, so Πβ is
not simply laced and γ is a short node. If moreover 〈β, γ∨〉 = −2, then again by
(6.4) it follows that 〈β, γ′∨〉 = 1. With these conditions at hand, we see that the
only possibilities for the diagram of Πβ are the following:

◦ ◦ ◦
−γ′ β γ

◦ ◦ ◦
−γ′ β γ

◦ ◦ ◦
−γ′ γβ

The first case has to be discarded because, otherwise, the diagram of ΠS,α would

have rank three with two nodes γ, γ′ satisfying ‖γ
′‖2
‖γ‖2 = 4, and this never occurs for

the diagrams of Table 2. The second case also has to be discarded, otherwise by
Lemma 6.2 it would follow

2〈β, α∨〉 =
∑
γ∈S
〈β, γ∨〉 = −1.

Therefore the diagram of Πβ is of type G
(1)
2 . This is possible only if L̂(g, σ) is

of type G
(1)
2 . Let Π̂ = {α0, α1, α2} be as in [11, Table Aff 1] (in particular, α2

is short). Since β is long and belongs to Φ+
0 , we have that β = α0. Moreover,

−γ′+ 2β+ 3γ is isotropic so −γ̂′+ 2β+ 3γ̂ = δ, hence −γ̂′+ 3γ̂ = 3α0 + 2α1 + 3α2.

Since γ̂′, γ̂ ∈ Φ̂+
1 , we have that [γ̂ : α0] 6 1 and [γ′ : α0] 6 1. It follows that

γ̂′ = α1 + xα2 and γ̂ = α0 +α1 + yα2. From [−γ̂′ + 3γ̂ : α2] = 3 and (γ̂′, γ̂) = 0 we
obtain that either γ̂′ = α1, γ̂ = α0 + α1 + α2 or γ̂′ = α1 + 3α2, γ̂ = α0 + α1 + 2α2.
In both cases one easily verifies that γ̂ cannot belong to Ψ(a) with a ∈ Iσab. Hence
we have obtained the desired contradiction. We conclude that α = −αp, and the
proof is complete. �
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