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Abstract

This paper investigates the problem of multiple solar sail-based spacecraft formation flying in which the chief
follows a heliocentric displaced orbit, whereas each deputy adjusts the sail propulsive acceleration so as to track
a desired (relative) trajectory with respect to the chief. In particular, coordinated control strategies are presented
for both the full state feedback case and the relative velocity unavailability case, respectively. The developed
consensus-based algorithms rely on the protocols formulated on an undirected communication topology with
information link couplings, utilizing every available neighbor-to-neighbor information data such that the reliability
of the formation system can be enhanced. Illustrative examples show the validity the proposed method.
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Nomenclature

a = semimajor axis, [ au]
a = propulsive acceleration, [ mm/s2]
e = eccentricity
e = relative position errors [ m]
E = set of edges
f = true anomaly, [ rad]
G = communication topology graph
I = identity matrix
H = displacement, [ au]
L = Laplacian matrix (with entries [lij ])
N = number of deputy spacecraft
n = mean motion, [ rad/day]
nr = angular velocity of reference relative orbit, [ rad/day]
n̂ = solar sail normal unit vector
O = Sun’s center-of-mass
o = focus of displaced orbit
R = focus-spacecraft distance [ au]
r = position vector (with r = ‖r‖), [ au]
S = solar sail
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t = time, [ days]
TP = perifocal frame
TR = rotating frame
u = reflectivity modulation ratio
u = control input of deputy spacecraft
V = set of vertices
x̂, ŷ, ẑ = unit vectors of coordinate axes
W = weighted adjacency matrix (with entries [wij ])
α = cone angle, [ rad]
β = lightness number
γ = elevation angle, [ rad]
θ, ϕ = attitude angles [ rad]
µ� = Sun’s gravitational parameter, [ au3/day2]
ρx, ρy, ρz = components of relative position vector in chief’s rotating frame, [ km]
ρ = relative position vector, [ km]
υ = vertex
ω = angular velocity (with ω = ‖ω‖), [ rad/s]

Subscripts

P = planet
C = chief
i = i-th deputy
max = maximum
� = Sun

Superscripts

T = transpose
? = reference value
· = time derivative
∧ = unit vector

1. Introduction

Over the last decades, solar sailing has been considered one of the most promising technologies for space
mission application, such as interplanetary transfers [1, 2, 3, 4] and astronomical observations [5, 6], due to
its remarkable advantages compared to more conventional propulsion systems. Unlike traditional spacecraft
propelled by chemical or electric thrusters, a solar sail-based spacecraft exploits the solar radiation pressure
to generate a continuous (low) thrust by the interaction of solar photons with a large reflecting surface.
The peculiar propulsion mechanism of a solar sail enables the fulfilment of a class of high-energy orbits [7]
as, for example, rectilinear trajectories [8, 9, 10], or closed orbits whose orbital plane does not contain the
primary body [11]. Those non-Keplerian trajectories may be circular (or elliptic) heliocentric displaced
orbits capable of observing the polar region of a celestial body [12], or quasi-periodic orbits around artificial
Lagrange points [13], useful for monitoring solar plasma storms.

Some scientific tasks, such as the GeoSail magnetosphere mission [14, 15], require a continuous multi-
aspect observation and a high-imaging resolution, thus necessitating the deployment of multiple spacecraft
in a formation, so as to constitute a (virtual) synthetic aperture radar. In fact, by distributing the payload
among multiple spacecraft while each one carries the indispensable functional modules only, a mass decrease
(and size reduction) may be achieved for a single spacecraft, thereby significantly improving the system
performance in terms of propulsive acceleration. In this context, the concept of solar sail formation flying
has been proposed in some mission scenarios [16, 17]. Most of the available literature involving spacecraft
formation flying is focused on a classical chief-deputy architecture, where the information data flows from
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the chief to each deputy, without any mutual negotiation among deputies. One inherent weakness of such
a chief-deputy topology is that the whole system is not able to effectively respond to unexpected situations
or risks, since the chief is a single point of failure for the whole system [18]. In case of chief malfunction or
when a fault takes place in the chief-deputy communication links, the whole mission is at risk of failure.

A possible solution to this problem consists in incorporating the deputy-to-deputy information exchange
into the feedback control system, so as to increase the group robustness. This approach has been recently
proposed by Wang et al. [19] in a context different from that discussed in this paper. More precisely, the
formation flying problem presented in Ref. [19] involves electric solar wind sail-based spacecraft [20, 21],
i.e. a propulsion system that is substantially different from a solar sail and, more importantly, the relative
velocity of each neighboring spacecraft is assumed to be exactly known.

The aim of this paper is to present a distributed solar sail formation architecture around a heliocentric
displaced orbit via a consensus concept. The coordinated cooperative control algorithms are used for solar
sail formation maintenance, where each deputy adjusts its sail attitude and reflectivity modulation ratio so
as to follow a prescribed relative geometry with respect to the chief. By exploiting the available neighbor-
to-neighbor information data, the underlying consensus concept facilitates each deputy spacecraft to update
its state in a cooperative way, (i.e., using information taken from its local neighbors) in such a way that
the final tracking error of each spacecraft converges to zero. The paper also discusses the case in which the
relative velocity information from the neighbor is not available. In this sense, the approach discussed in this
work improves the model described in Ref. [19].

The paper is organized as follows. Section 2 investigates the conditions of generating a heliocentric,
elliptic, displaced orbit for a solar sail-based spacecraft equipped with a reflectivity control device, and
discusses the feasible regions for a given set of orbital parameters. Section 3 analyzes the mathematical model
of the relative dynamics for solar sail formation flying around a heliocentric displaced orbit, which is then
used as a basis for designing consensus-based distributed control algorithms in Section 4. The effectiveness
of the control system is illustrated in Section 5 by means of some numerical simulations. Finally, some
concluding remarks are given in Section 6.

2. Mathematical model

Consider a mission scenario in which multiple solar sail-based spacecraft, flying in formation, provide a
continuous observation of the polar region of a celestial body as, for example, a planet (subscript P ). Using
the heliocentric (Keplerian) trajectory of the planet as the reference orbit of eccentricity eP , introduce a
perifocal reference frame TP (O; x̂P , ŷP , ẑP ), in which the origin O is at the Sun’s center-of-mass, the plane
(x̂P , ŷP ) coincides with the planet orbital plane P, axis x̂P points to the perihelion, and ẑP is positive in
the direction of the planet angular momentum vector ωP , see Fig. 1.

2.1. Conditions for maintaining an elliptic displaced orbit

In order to observe the polar region of the planet, the chief spacecraft (subscript C) covers an elliptic
displaced orbit of semimajor axis aC and eccentricity eC , whose orbital plane is parallel to P and is displaced
at a constant distance HC (with respect to P), see Fig. 1. The displaced orbit is maintained by exploiting
a reflectivity control device (RCD) [22, 23], whose mathematical model is consistent with that proposed in
Ref. [24]. More precisely, the sail surface can be thought of as being constituted by two parts. The first one
is covered with high reflectivity material for which a specular reflection model without degradation [25, 26]
is assumed (i.e., an ideal force model), whereas the second part is covered by a number of electrochromic
material panels (EMPs) that are used to modulate the propulsive acceleration modulus within a suitable
(small) range, see Fig. 2.

Each EMP is able to vary its reflectivity as a function of the applied voltage and, in a simplified analysis,
when the EMP is in its power-on mode the solar photons are specularly reflected, whereas in power-off
mode the incoming photons are totally absorbed. Note that this behaviour is consistent with the simplified
mathematical model discussed in Ref. [24]. In order to avoid the introduction of additional torque on the
spacecraft, it is assumed that a symmetry exists in the distribution of switched on/off panels with respect to
the vehicle center of mass. Considering the generic solar sail-based spacecraft of the formation architecture,
let the total sail area be denoted by As, while Ap is the sail area covered with EMPs. It is useful to introduce

the reflectivity modulation ratio u , Aoff/As, where Aoff is the area of the switched-off panels calculated at
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Figure 2: Conceptual scheme of a solar sail with electrochromic material panels.

a given time instant [24]. Accordingly, the range of the reflectivity modulation ratio is u ∈ [0, umax], where
umax = Ap/As corresponds to the case where all of EMPs are in power-off mode. In particular, the ratio u
is assumed to be varied with continuity, within its admissible range, by modulating the amount of on/off
time of EMP devices.

For a continuous polar region observation, the chief orbital angular velocity (ωC) and eccentricity (eC)
should match those of the planet, that is, ωC = ωP and eC = eP . As a result, the chief lies, at any given
time, in the same vertical plane passing through ẑP and containing the planet. According to Ref. [27], a
heliocentric displaced orbit with such an arrangement is referred to as Planet Following Displaced Orbit
(PFDO). Figure 1 also shows a second reference frame TRC

(o; x̂RC
, ŷRC

, ẑRC
), that is, a chief-fixed rotating
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frame in which x̂RC
is directed from the focus o of the displaced orbit to the chief spacecraft, while ẑRC

is
along the direction of ωC , that is, the direction of ẑRC

is orthogonal to the (displaced) orbital plane.
The equation of motion of the chief spacecraft in the rotating reference frame TRC

can be written as [28]

r̈C + 2ωC × ṙC + ω̇C × rC + ωC × (ωC × rC) = −µ�

r3
C

rC + aC (1)

where aC is the solar sail propulsive acceleration, µ� is the Sun’s gravitational parameter, and rC is the
Sun-chief vector (with rC = ‖rC‖ being the Sun-chief distance) whose components in the rotating reference
frame TRC

are (see Fig. 1)
[rC ]TRC

= [RC , 0, HC ]
T

(2)

and RC is the o-chief distance given by

RC =
aC
(
1− e2

C

)
1 + eC cos fC

(3)

where aC is the displaced orbit semimajor axis, and fC is the chief true anomaly measured counterclockwise
from the direction of the displaced orbit periapsis. Note that, since the chief is assumed to be synchronous
with the planet, the components of the chief angular velocity ωC in frame TRC

are

[ωC ]TR =
[
0, 0, ḟC

]T
(4)

with

ḟC =
nP (1 + eC cos fC)

2√
(1− e2

C)
3

(5)

where nP ,
√
µ�/a3

P is the planet mean motion.
Taking into account the effect of RCD and using the approach of Ref. [24], the expression of the (chief)

solar sail propulsive acceleration aC can be written as

aC =
βC µ�

2 r2
C

(r̂C · n̂C) [uC r̂C + 2 (1− uC) (r̂C · n̂C) n̂C ] (6)

where r̂C = rC/rC is the Sun-chief unit vector, uC is the chief reflectivity modulation ratio, βC is the chief
lightness number, defined as the ratio of the maximum propulsive acceleration modulus to the (local) solar
gravitational acceleration (µ�/r

2
C), and n̂C is the sail normal unit vector in the direction opposite to the

Sun. Note that the components of n̂ in frame TRC
are

[n̂C ]TRC
= [cos (αC + γC) , 0, sin (αC + γC)]

T
(7)

where γC , arctan (HC/RC) ∈ [0, π/2] rad is the elevation angle, that is, the angle between the Sun-chief
line and plane P, and αC , arccos (r̂C · n̂C) ∈ [0, π/2] rad is the sail cone angle. In particular, bearing
in mind Eq. (3), the elevation angle can be written as a function of the displaced orbit characteristics
{aC , eC ≡ eP } and the chief angular position fC as

γC = arctan

(
HC (1 + eC cos fC)

aC (1− e2
C)

)
(8)

On the other hand, the sail normal unit vector can be written as a function of the sail attitude as

[n̂C ]TRC
= [cos θC cosϕC , sin θC , cos θC sinϕC ]

T
(9)

where θC is the angle between n̂ and the (x̂RC
, ẑRC

) plane, and ϕC is the angle measured from x̂RC
to

the projection of n̂C onto the (x̂RC
, ẑRC

) plane, see Fig. 3. In particular, from Eqs. (7) and (9), the chief
attitude angles are θC = 0 and ϕC = αC + γC .
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Figure 3: Attitude angles of the solar sail-based chief spacecraft.

According to Eq. (1), and taking into account Eqs. (2)–(7), the normal (i.e. along the ẑRC
direction)

and radial (i.e. along the x̂RC
direction) components necessary to maintain a PFDO are

µ�

r2
C

sin γC =
βC µ�

2 r2
C

cos αC [uC sin γC + 2 (1− uC) cos αC sin (αC + γC)] (10)

R̈C +
µ�

r2
C

cos γC −RC ḟ
2
C =

βC µ�

2 r2
C

cos αC [uC cos γC + 2 (1− uC) cos αC cos (αC + γC)] (11)

After some algebraic manipulations (here omitted for the sake of brevity) on Eqs. (10)–(11), the value of
the sail cone angle αC required for maintaining a PFDO is found by solving the following sextic equation in
the variable tanαC

c6 tan6 αC + c5 tan5 αC + c4 tan4 αC + c3 tan3 αC + c2 tan2 αC + c1 tanαC + c0 = 0 (12)

where the coefficients {c0, c1, c2, c3, c4, c5, c6} are given by

c6 =
a4
C H

2
C

(
1− e2

C cos2 fC
)2

a6
P (1− e2

C)
2 (13)

c5 = 4 (aC/aP )
3

 HC

(
1− e2

C cos2 fC
)√

a2
C (1− e2

C)
2

+H2
C (1 + eC cos fC)

2
−
√
c6 (1− eC cos fC)

 (14)

c4 = 4

 aC
(
1− e2

C

)√
a2
C (1− e2

C)
2

+H2
C (1 + eC cos fC)

2
− (aC/aP )

3
(1− eC cos fC)

2

− c6 (15)

c3 = 0 (16)

c2 = c4 −
β2
C a

2
C

(
1− e2

C

)2
a2
C (1− e2

C)
2

+H2
C (1 + eC cos fC)

2
(17)

c1 = −c5 (18)

c0 = c6 (19)

Those coefficients are function of the sail lightness number βC , the chief angular position fC , the planet
orbit characteristics {aP , eP ≡ eC}, and the displaced orbit characteristics {aC , HC}. The corresponding
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value of the reflectivity modulation ratio uC is given by

uC =
2
[
sin γC − βC cos2 αC sin (αC + γC)

]
βC cos αC [sin γC − 2 cos αC sin (αC + γC)]

(20)

which is a function of βC , the sail cone angle αC , and the elevation angle γC . For illustrative purposes,
consider now a chief spacecraft covering an Earth-synchronized elliptic PFDO with an eccentricity eC ≡
eP = 0.0167. In this scenario, Figs. 4-5 show the feasible regions with different constraints on the maximum
value of the reflectivity modulation ratio uCmax

, when the sail lightness number is βC = {0.3, 0.6}. Note
that the area of the feasible region enlarges as the values of uCmax and βC increase.
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Figure 4: Feasible regions as a function of {aC , HC} with βC = 0.3 and uCmax = {0.1, 0.2, 0.3, 0.4}.

Consider, for example, an elliptic displaced orbit with a semimajor axis aC = 0.95 au and a displacement
HC = 0.05 au. Figure 6 shows that the cone angle αC and the reflectivity modulation ratio uC reach
their maximum values when the chief is at the aphelion, whereas the minimum values are obtained at the
perihelion of the displaced orbit.

2.2. Chief-deputy relative motion

Having analyzed the generation of an elliptic displaced orbit for the chief, we are now in a position to
study the relative motion between chief and deputies. Taking into account Eq. (1), the equation of relative
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Figure 5: Feasible regions as a function of {aC , HC} with βC = 0.6 and uCmax = {0.1, 0.2, 0.3, 0.4}.

motion can be written as

ρ̈i + 2ωC × ρ̇i + ω̇C × ρi + ωC × (ωC × ρi) = −µ�

r3
i

ri +
µ�

r3
C

rC + ai − aC (21)

where ρi , ri − rC is the relative position vector between the i-th deputy and the chief spacecraft, see
Fig. 7. Since the deputy sails operate in close vicinity of the chief, the relative distances among the solar
sails are very small compared with the Sun-sail distance. Accordingly, paralleling the approach adopted in
Ref. [16] and bearing in mind Eq. (6), the deputy propulsive and gravitational accelerations in Eq. (21) can
be linearized around those of the chief as

ai ' aC +
∂aC

∂rC
ρi +

∂aC

∂n̂C
∆n̂i +

∂aC

∂uC
∆ui (22)

−µ�

r3
i

ri ' −
µ�

r3
C

rC +
∂(−µ� rC/r

3
C)

∂rC
ρi (23)
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where ∆ n̂i , n̂i − n̂C , and n̂i is the sail normal unit vector of the i-th deputy, ∆ui , ui − uC , and ui is
the reflectivity modulation ratio of the i-th deputy. Also

∂aC

∂rC
=
βC µ�

r4
C

{
uC
2

[
(rC n̂

T

C) + (n̂C · rC) I3 −
(n̂C · rC) (rC r

T

C)

r2
C

]

+ 2 (1− uC)

[
(n̂C · rC) (n̂C n̂

T

C)− 2 (n̂C · rC)
2

(n̂C r
T

C)

r2
C

]}
(24)

∂aC

∂n̂C
=
βC µ�

r4
C

{uC
2
rC r

T

C + (1− uC)
[
2 (n̂C · rC) (n̂C r

T

C) + (n̂C · rC)
2 I3

]}
(25)

∂aC

∂uC
=
βC µ�

r4
C

[
1

2
(n̂C · rC) rC − (n̂C · rC)

2
n̂C

]
(26)

∂(−µ� rC/r
3
C)

∂rC
=

3µ�

r5
C

rC r
T

C −
µ�

r3
C

I3 (27)
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where I3 is the 3× 3 identity matrix.
Bearing in mind that n̂i can be written in terms of ϕi and θi, see Eq. (9) and Fig. 3, it is possible to

further linearize ∆ n̂i as

∆n̂i '
∂n̂C

∂ [ϕC , θC ]
[∆ϕi, ∆ θi]

T
(28)

where ∆ϕi , ϕi − ϕC and ∆ θi , θi − θC are the relative sail attitude angles, and the Jacobian matrix is
given by

∂n̂C

∂ [ϕC , θC ]
=

− sin ϕC cos θC − cos ϕC sin θC
0 cos θC

cos ϕC cos θC − sin ϕC sin θC

 (29)

Substituting Eqs. (22)–(29) into Eq. (21), the linear differential equation of the relative motion between the
i-th deputy and the chief is

ρ̈i + 2Mv ρ̇i + Mp ρi = Mc ui (30)

where ui is the control input of the i-th deputy, given by

ui = [∆ϕi, ∆ θi, ∆ui]
T

(31)

whereas Mv, Mp, and Mc are the coefficient matrices defined as

Mv ,

 0 −ωC 0
ωC 0 0
0 0 0

 (32)

Mp , Ṁv − diag
(
ω2
C , ω

2
C , 0

)
− ∂aC

∂rC
− ∂(−µ� rC/r

3
C)

∂rC
(33)

Mc ,

[
∂ aC

∂ n̂C

∂ n̂C

∂ [ϕC , θC ]
,

∂ aC

∂uC

]
(34)

Note that, from Eqs. (25)–(26), it can be verified that the matrix Mc in Eq. (34) is nonsingular provided
βC 6= 0.

In the following analysis, the relative trajectory tracking problem involving the formation system de-
scribed by Eq. (30) will be addressed. In particular, distributed cooperative control strategies are presented
for two important cases: 1) with full state feedback; 2) without relative velocity measurement. In both cases
the formation maintenance error eventually approaches zero while consensus is preserved during transition.

3. Solar sail formation flying via consensus control

The consensus control algorithms are now developed for a spacecraft formation architecture with a single
chief and N ≥ 2 deputies, based on a local neighbor-to-neighbor information exchange. In particular, the
communication topology of the relative motion is described by an undirected graph, under the assumption
that the information exchange is bidirectional.

A few pertinent concepts of graph theory are first reviewed, according to Ref. [29]. A weighted undirected
graph G consists of a finite non-empty vertex set V , {υ1, . . . , υN}, an edge set E , {(υ1, υ2) , . . . , (υN−1, υN )} ⊆
V ×V, and a weighted adjacency matrix W = [wij ] ∈ RN×N . The matrix W is defined such that its generic
entry wij = wij ∈ R+ if (υi, υj) ∈ E with i 6= j, whereas wii = 0. Note that the matric W is symmetric,
and wij = 0 if (υi, υj) /∈ E . The Laplacian matrix L = [lij ] ∈ RN×N associated with W is defined as

lij = −wij and lii =
N∑
j=1

wij ,∀ i 6= j. In addition, the matrix L is symmetric positive semi-definite, and

N∑
j=1

lij = 0,∀ i 6= j. Finally, an undirected graph is called connected if there exists a path from every vertex

to every other vertex.
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In the following discussion, emphasis is focused on the cases where the information exchange topology is
fixed and the weights wij are constant. In modeling the topology of the solar sail-based formation architecture
during the relative motion, each deputy spacecraft is represented by a vertex, while the data flow between
any two deputies is characterized by a weighted edge. In particular, assume that each deputy has access to
the state information of the chief, that is, the topology graph G is connected.

3.1. Consensus control with full state feedback

Consider first the case where the consensus protocol is formulated via full state feedback, that is, both the
relative position and relative velocity information are available when there is a path between two deputies
(i.e., two vertices). Let (ρ?i , ρ̇

?
i ) ∈ R3 × R3 denote the desired relative trajectory of the i-th deputy with

respect to the chief, and introduce the position error ei , ρi − ρ?i and the velocity error ėi , ρ̇i − ρ̇?i . The
aim of the developed controller is to drive each deputy towards the desired relative trajectory, viz. ei → 0
and ėi → 0, while consensus (i.e. ei → ej and ėi → ėj) is guaranteed during the transition phase by
exploiting the available information data transmitted from the local neighbors. To this end, the cooperative
control law for the system represented by Eq. (30) is designed as [30]

ui = M−1
c

ρ̈?i + 2Mv ρ̇
?
i + Mp ρi − λ

p
i ei − λ

v
i ėi −

N∑
j=1

wp
ij (ei − ej)−

N∑
j=1

wv
ij (ėi − ėj)

 (35)

where {λpi , λvi } ∈ R+, wp
ij and wv

ij are the (i, j) entries of the weighted adjacency matrices Wp and Wv,
respectively. Note that Wp and Wv are allowed to be different and, in particular, the last two terms in
Eq. (35) are designed to maintain the formation during the transition phase, while the other terms are
selected in order to drive each deputy towards the desired relative trajectory.

Theorem 1: Using the control law given by Eq. (35) for the system represented by Eq. (30), consensus
tracking is asymptotically achieved, that is, ei → ej → 0 and ėi → ėj → 0 as t→∞.

Proof: Consider the candidate Lyapunov function V defined as

V ,
1

2

N∑
i=1

λpi e
T

i ei +
1

2

N∑
i=1

ėT

i ėi +
1

4

N∑
i=1

N∑
j=1

wp
ij (ei − ej)T

(ei − ej) (36)

Note that V is positive definite, and its time derivative is given by

V̇ =

N∑
i=1

λpi e
T

i ėi +

N∑
i=1

ėT

i

−2Mv ėi − λpi ei − λ
v
i ėi −

N∑
j=1

wp
ij (ei − ej)−

N∑
j=1

wv
ij (ėi − ėj)

+

+
1

2

N∑
i=1

N∑
j=1

wp
ij (ei − ej)T

(ėi − ėj) (37)

Bearing in mind Eq. (32), the matrix Mv is skew symmetric and, therefore, ėT

i Mv ėi = 0. Recalling that
wp

ij = wp
ji, the following relationship holds

N∑
i=1

N∑
j=1

ėT

i w
p
ij (ei − ej) =

1

2

N∑
i=1

N∑
j=1

ėT

i w
p
ij (ei − ej) +

1

2

N∑
j=1

N∑
i=1

ėT

j w
p
ji (ej − ei) =

=
1

2

N∑
i=1

N∑
j=1

wp
ij (ėi − ėj)T

(ei − ej) (38)

so that
N∑
i=1

N∑
j=1

ėT

i w
v
ij (ėi − ėj) =

1

2

N∑
i=1

N∑
j=1

wv
ij (ėi − ėj)T

(ėi − ėj) (39)
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Substituting Eqs. (38)–(39) into Eq. (37), the time derivative of the Lyapunov function becomes

V̇ = −
N∑
i=1

λvi ė
T

i ėi −
1

2

N∑
i=1

N∑
j=1

wv
ij (ėi − ėj)T

(ėi − ėj) ≤ 0 (40)

Note that the formation system described by Eq. (30) is non-autonomous, since its coefficients are time
dependent. Therefore, Matrosov’s theorem [31] is here adopted for convergence analysis. To that end, let

F (ei, ėi) ,
N∑
i=1

eT

i ėi (41)

Since V̇ is semi-negative definite, see Eq. (40), it follows that {ei, ėi} is uniformly bounded and so is the func-

tion F . Also, V̇ = 0 implies ėi = 0, therefore the time derivative of F on domain D ,
{

(ei, ėi) | V̇ = 0
}

=

{(ei, ėi) | ėi = 0} can be written as

Ḟ = −
N∑
i=1

λpi e
T

i ei−
N∑
i=1

N∑
j=1

wp
ij e

T

i (ei − ej) = −
N∑
i=1

λpi e
T

i ei−
1

2

N∑
i=1

N∑
j=1

wp
ij (ei − ej)T

(ei − ej) ≤ 0 (42)

Note that |Ḟ | is positive definite for any ei 6= 0. As a result, there exists a class K function <, such that
|Ḟ | ≥ < (‖ei‖). According to Matrosov’s theorem, the equilibrium of the system under the control law
Eq. (35) is uniformly asymptotically stable, that is, ei → ej → 0 and ėi → ėj → 0 as t → ∞. This
complete the proof.

3.2. Consensus without relative velocity measurement

The distributed control law given by Eq. (35) requires each deputy to know the relative velocities of
its local neighbors. However, in many cases of practical interest such an information is not available,
especially for solar sail-based spacecraft with a small payload and instrument mass. Moreover, even when
the spacecraft is equipped with a (relative) velocity sensor, the precision still remains questionable for large
baseline formation missions. These two issues require finding an alternative algorithm accounting for the
unavailability of relative velocity measurement. To this end, the consensus strategy is proposed as [32]

ξ̇i = Φ ξi + λvi ei +

N∑
j=1

wv
ij (ei − ej) (43)

ζi = Γ

Φ ξi + λvi ei +

N∑
j=1

wv
ij (ei − ej)

 (44)

ui = M−1
c

ρ̈?i + 2Mv ρ̇
?
i + Mp ρi − λ

p
i ei −

N∑
j=1

wp
ij (ei − ej)− ζi

 (45)

where {ξi, ζi} ∈ R3, {λpi , λvi , w
p
ij , w

v
ij} are defined as in Eq. (35), the matrix Φ ∈ R3×3 is Hurwitz,

and Γ = ΓT ∈ R3×3 is the positive-definite solution to the Lyapunov equation ΦT Γ + Γ Φ = −Θ where
Θ = ΘT ∈ R3×3 is positive-definite. In particular, since no relative velocity information is used, wv

ij can
be thought of playing a similar role as in Eq. (35). Note that the terms involving the relative velocity
requirement in Eq. (35) are now replaced by the output of a passive filter, as is shown in Eqs. (43)–(44).

Theorem 2: Using the control law given by Eq. (45) for the system represented by Eq. (30), consensus
is asymptotically reached, that is, ei → ej → 0 and ėi → ėj → 0 as t→∞.

Proof: Consider the candidate Lyapunov function V defined as

V ,
1

2

N∑
i=1

λpi e
T

i ei +
1

2

N∑
i=1

ėT

i ėi +
1

4

N∑
i=1

N∑
j=1

wp
ij (ei − ej)T

(ei − ej) +
1

2
ξ̇

T (
L̄v ⊗ I3

)−1
(IN ⊗ Γ) ξ̇ (46)
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where ⊗ denotes the Kronecker product, ξ , [ξT

1 , . . . , ξ
T

N ]
T
, L̄v , Lv + diag (λv1, . . . , λ

v
N ). Since the

Laplacian matrix Lv =
[
lvij
]
∈ RN×N associated with Wv =

[
wv

ij

]
∈ RN×N is symmetric positive semi-

definite, it follows that L̄v is symmetric positive definite, and so is L̄−1
v . The time derivative of V can be

written as

V̇ =

N∑
i=1

λpi e
T

i ėi +

N∑
i=1

ėT

i

−2Mv ėi − λpi ei −
N∑
j=1

wp
ij (ei − ej)− ζi

+

+
1

2

N∑
i=1

N∑
j=1

wp
ij (ei − ej)T

(ėi − ėj) +
1

2
ξ̈

T (
L̄v ⊗ I3

)−1
(IN ⊗ Γ) ξ̇ +

1

2
ξ̇

T (
L̄v ⊗ I3

)−1
(IN ⊗ Γ) ξ̈ (47)

After some mathematical manipulations, Eq. (47) reduces to

V̇ = −1

2
ξ̇

T (
L̄−1
v ⊗Θ

)
ξ̇ ≤ 0 (48)

Since the time derivative V̇ given by Eq. (48) is a function of ξ̇i rather than ėi, Matrosov’s theorem cannot be
directly applied. Instead, the Barbalat’s lemma [33] is here used for convergence analysis. In Eq. (46), V is a

positive definite function of
{
ei, ėi, ei − ej , ξ̇

}
, and Eq. (48) implies V̇ ≤ 0, therefore {ei, ėi, ei − ej , ξ̇}

are all bounded. Since Φ is Hurwitz, it can be drawn from Eq. (43) that ξ̈ is bounded, from which∣∣∣V̈ ∣∣∣ =
1

2

∣∣∣ξ̈T (
L̄−1
v ⊗Θ

)
ξ̇ + ξ̇

T (
L̄−1
v ⊗Θ

)
ξ̈
∣∣∣ ≤ ∥∥∥(L̄−1

v ⊗Θ
)
ξ̇
∥∥∥ ∥∥∥ξ̈∥∥∥ (49)

Equation (49) shows that V̈ is also bounded, and hence V̇ is uniformly continuous. According to the
Barbalat’s lemma, V̇ → 0 as t→∞, which further results in ξ̇ → 0. From Eq. (43)

...
ξ is bounded, therefore

ξ̈ is uniformly continuous. Using the Barbalat’s lemma, ξ̈ → 0 as t → ∞. For the sake of convenience,
Eq. (43) may be rearranged into a compact form as

ξ̇ = (IN ⊗Φ) ξ +
(
L̄v ⊗ I3

)
e (50)

where e , [eT
1 , . . . , e

T

N ]
T
. Recalling that

{
ξ̇, ξ̈

}
→ 0, Eq. (50) states that ė→ 0. Likewise, it can be verified

that ë→ 0. Using the control law given by Eq. (45), the error equation of the formation system described
by Eq. (30) becomes

ë+ 2 (IN ⊗Mv) ė+
(
L̄p ⊗ I3

)
e+ (IN ⊗ Γ) ξ̇ = 0 (51)

Since
{
ė, ë, ξ̇

}
→ 0, therefore

(
L̄p ⊗ I3

)
e = 0, which amounts to stating that e → 0. This complete the

proof.

4. Numerical simulations

To illustrate the performance of the developed consensus-based control law, a formation mission scenario
is now discussed, with a chief spacecraft (SC) and three surrounding deputies (Si with i = {1, 2, 3}) that are
coordinated through local communication. The chief covers an Earth-synchronized PFDO (i.e. eC = 0.0167)
with semimajor axis aC = 0.95 au, and displacement HC = 0.05 au, while all deputies are driven towards
the prescribed trajectory with different phases. In the chief rotating reference frame TRC

, the parametric
solution of the i-th deputy trajectory (relative to the chief) is assumed to have the following algebraic form

ρ?i =
[
100 sin (nr t+ φi) , 200 cos (nr t+ φi) , 100

√
3 sin (nr t+ φi)

]T
km (52)

where nr , 100nP is the angular velocity of the relative orbit, and φi = 2 (i− 1)π/3 is the phase angle.
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4.1. Case A: full relative state information is available

Consider first the case where a full relative state information is available when a path between two
deputies exists. The corresponding communication topology graph of the formation system is shown in
Fig. 8, whereas the position (Wp) and velocity (Wv) weighted adjacency matrices among deputies are given
by

Wp =

0 1 2
1 0 0
2 0 0

 , Wv =

 0 5× 10−3 1× 10−2

5× 10−3 0 0
1× 10−2 0 0

 (53)

C
S

2
S

1
S

3
S

chief

Figure 8: Information exchange topology among the solar sail formation system.

The initial conditions of the three deputies are assumed slightly different from the desired trajectories,
and the initial errors e0 , [ex0

, ey0
, ez0 ]

T
are reported in Tab. 1. Using a trial and error procedure, a

satisfactory control performance (in terms of convergence time and tracking accuracy) is obtained when the
dimensionless parameters are selected as λpi = 5× 103 and λvi = 25. Accordingly, the position and velocity

ex0
[ km] ey0

[ km] ez0 [ km] ėx0
[ m/s] ėy0

[ m/s] ėz0 [ m/s]
S1 40 −20 20 1× 10−5 −2× 10−5 3× 10−5

S2 −20 20 −40 −2× 10−5 1× 10−5 −1× 10−5

S3 −40 −20 40 2× 10−5 −1× 10−5 −3× 10−5

Table 1: Initial errors of three deputies in the full state feedback case.

errors of the three deputies are drawn in Fig. 9 and Fig. 10 respectively, while the variations of control
inputs ∆ϕi, ∆ θi, and ∆ui are shown in Fig. 11. Figure 12 illustrates the actual position of the three
deputies (denoted with a circle, a square and a star) when compared with the desired position (denoted with
a dot). These positions are calculated at t = {0, 5, 10, 15} days and are projected on the

(
x̂RC

, ŷRC

)
plane.

Note that Fig. 12 shows how the control law given by Eq. (35) allows the three deputies to be perfectly
synchronized with negligible final errors.

4.2. Case B: The relative velocity information is unavailable

In this case, the initial errors are assumed to take the same value as those listed in Tab. 1, and the
position and velocity weighted adjacency matrices are given by

Wp =

0 1 2
1 0 0
2 0 0

 , Wv =

 0 500 1000
500 0 0
1000 0 0

 (54)
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Figure 9: Components of the position error in the full state feedback case.
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Figure 10: Components of the velocity error in the full state feedback case.
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Figure 11: Control input with control law given by Eq. (35).

Because the relative velocity information is not incorporated into the feedback control system, Wv can be
freely adjusted. Using a trial and error procedure, a satisfactory control performance is obtained when the
parameters in Eq. (45) are chosen to be λpi = λvi = 100, Φ = −18 I3, and Γ = 10 I3. Finally, since the initial
value of intermediate variables ξi can be randomly chosen, here it is assumed that ξi0 = 0.

To illustrate the performance of the control law given by Eq. (45), the time histories of position and
velocity errors are reported in Fig. 13 and Fig. 14, for a time interval of 30 days. Figures 15 and 16 illustrate
the control input and the intermediate variables ξi, while the instantaneous positions of the three deputies
are shown in Fig. 17. Note that, even in absence of relative velocity measurements, the steady state errors
of the three deputies all converge to zero, while consensus is guaranteed during the whole transition phase.
When compared with the results of the full state feedback case, the control law given by Eq. (45) produces
a more oscillating behavior and requires higher control inputs.

5. Conclusions

The problem of solar sail formation flying around a heliocentric displaced orbit has been investigated.
Distributed architectures of the formation control system have been developed for both a full state feedback
case and a relative velocity-free case, the latter being achieved with the introduction of a passive filter
that removes the relative velocity requirement. In particular, the discussed consensus algorithms rely on a
protocol that enables multiple solar sails to maintain a desired formation geometry, while every available
neighbor-to-neighbor information coupling is used to obtain an asymptotic coordination.

Illustrative examples have shown that the proposed consensus-based strategies guarantee a time-balanced
maneuver for solar sail formation flying around a displaced orbit. Compared with a traditional chief-deputy
framework, the inclusion of the shared data flow among neighbors into cooperative control system improves
the robustness and redundancy of the group, thus preventing an unfavorable situation in which a chief
malfunction would imply a failure of the whole formation system.

A natural extension of this work is the analysis of the consensus algorithm performance when a non-ideal
force model is assumed to describe the solar sail propulsive acceleration, or larger distances between satellites
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Figure 12: Relative trajectories of the three deputies in the full state feedback case.

are considered (as for Earth remote sensing or space environment measurement). In this case, the control
law design must be revised to deal with the thermo-optical characteristics of the reflective film and other
constraints such as, for example, time delays and data package lost.
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