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Abstract In this paper, we establish a methodology for modeling relative motion between heliocentric displaced orbits
by utilizing the Cartesian state variables in combination with a set of displaced orbital elements. Similar to classical
Keplerian orbital elements, the newly defined set of displaced orbital elements has a clear physical meaning and
provides an alternative approach to obtain a closed-form solution to the relative motion problem between displaced
orbits, without linearizing or solving nonlinear equations. The invariant manifold of relative motion between two
arbitrary displaced orbits is determined by coordinate transformations, obtaining a straightforward interpretation of the
bounds, namely maximum and minimum relative distance of three directional components. The extreme values of these
bounds are then calculated from an analytical viewpoint, both for quasi-periodic orbits in the incommensurable case and
periodic orbits in the 1:1 commensurable case. Moreover, in some degenerate cases, the extreme values of relative
distance bounds can also be solved analytically. For each case, simulation examples are discussed to validate the

correctness of the proposed method.

1 Introduction

In recent years, non-Keplerian displaced orbits have attracted a considerable attention because of their unique
advantages in astronomical missions [1-3], for example, in situ observation for Saturn’s rings, solar wind monitoring,
and real-time stereo-graphic investigations of a planetary surface [4-6]. Displaced orbits can be generated by suitable
orienting the thrust direction induced by the sun in such a way to balance the centrifugal and gravitational components
of the acceleration [1]. Spacecraft flying along displaced orbits can be promoted by new kinds of low thrust propulsion
systems such as solar sails [2] and electric sails [3]. As a matter of fact, these orbits are very difficult to reach with
conventional (either chemical or electric) propulsion systems. However, using solar sails as an example, some missions
require an extremely large reflector area that cannot be carried out from an engineering standpoint [9], leaving it
impractical to compromise between technical requirement and industrial manufacture in a near future. To that end, it is
necessary to introduce the concept of formation flying, distributing multiple sails in a relatively proximate region and
enabling them to construct a larger virtual sensor so as to achieve greater resolution than a single one. Nevertheless, up
to now, studies of relative motion between displaced orbits obtained using photonic solar radiation pressure are scarce
in the literature. Further, the linearized dynamic model was adopted among several existing ones [7-9], which were
inherently limited to small-distance and short-term missions. Therefore, it is useful to gain a nonlinear insight into the

relative motion problem, especially for the large baseline formation flying. Moreover, there have been few published
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works to explore the relative motion bounds and topology in the general case of two sails flying along displaced orbits,
which are of great importance in space mission’s design and analysis, and therefore, they deserve a detailed study.

Recognizing these open issues, we first manage to model solar sail relative motion between displaced orbits with
Cartesian relative state variables in conjunction with a newly established set of displaced orbital elements. Analogous to
Keplerian orbital elements, the new set of parameters defines the orientation of a displaced orbit with respect to an
inertial reference frame, as well as its real-time motion in rotating frame. Besides, utilizing coordinate transformations
that incorporate displaced orbital elements, a closed-form solution expressed in a rotating frame can be derived without
linearizing or solving the corresponding nonlinear equations. For the relative motion between circular displaced orbits,
the solution is time-explicit, which is useful to analyze the nature of relative motion.

We also determine the relative motion invariant manifold, which is constituted by the parameterized general solution,
and all possible orbits move along the manifold as they evolve. The invariant manifold presents a well-defined region in
the configuration space with certain clear bounds, and the orbits moving on the manifold manifest periodicity for the
commensurable case and quasi-periodicity (ergodicity) for the incommensurable case. The referred bounds in this paper
are indeed extreme distances of radial, along-track and cross-track motion, as well as relative distance between two
spacecraft flying along displaced orbits. The directional bounds are determined from an analytical viewpoint, both for
the incommensurable case and 1:1 commensurable case, and the relative distance bounds can be calculated analytically
in some degenerate cases. Analytical calculation of these bounds is essential for onboard on-off control when the
relative distance arrives at the pre-set boundary, while the prediction of relative motion bounds by pure numerical
integration is time consuming and may lead to time delays in inner communication. Moreover, to maintain a long-term
cluster flight or loosed formation around displaced orbits, the designers may select proper elements to guarantee the

limited-size mission requirement.

2 Relative Motion Between Heliocentric Displaced Orbits

To formulate the problem conveniently, first introduce the following related coordinate systems, seen in Fig. 1:

1) Z is a heliocentric inertial frame, centered at the Sun, denoted by O . The fundamental plane is the ecliptic plane,
the unit vector X is directed from the Sun’s center along the vernal equinox,Z is normal to the fundamental plane,
positive in the direction of the celestial north, and Y=7ZxX.

2) R is arotating frame, centered at the spacecraft, denoted by S . The fundamental plane is the orbital plane with its
origin o , the unit vector x is in the radially outward direction, 7 is normal to the orbital plane, positive in the direction of

the angular momentum vector, and p=Zxx.
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Fig. 1 Coordinate systems and related angles
In this context, assume that the spacecraft flying along displaced orbit is propelled by a solar sail. A heliocentric
circular displaced orbit can be obtained by directing the thrust vector so as to have a component normal to the displaced
orbital plane. The sail orientation is defined by the unit vector 2 normal to the reflecting surface, fixed in the rotating

frame R . The performance is characterized by the dimensionless lightness number 8, defined as the ratio of the
propulsion acceleration to the solar gravitational acceleration, that is 8 =1.529/c ( g m‘z) , where ¢ is the sail mass per

unit area. For a given orbital angular velocity w, a displaced orbital radius a, and a displacement H from the Sun, the
following relationships should hold so as to keep equilibrium in R [4]
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where w, = \/ U / r,or= \/ @’ +H’ is the Sun-sail distance, and ¢ is the angle related to the attitude of the sail.

2.1 Set of Displaced Orbital Elements
In the classical two-body problem, the orbital motion in three-dimensional space can be described either by the state
= [a,e,i,Q, a),f] eR*xS*, where R and S denote

= [r,v] eR*xR’, or a set of orbital elements @

vector S Keplerian

Keplerian
the real number space and spherical space respectively. The state vector is convenient for onboard measurement, while
the orbital elements provide a straightforward understanding of the orbital orientation with respect to the inertial frame,
as well as real-time on-orbit location. However, for some Keplerian cases, the Eulerian angles Q,» may become
undefined [11-13]. Since the displaced orbit is assumed circular in this paper, we shall define a new set of nonsingular

displaced orbital elements e,,,, ., to characterize the motion.

First, locate the intersection of the orbital plane with plane.» , which is parallel to the ecliptic plane and passes
through the center o of the displaced orbit. The intersection is the line of nodes, and the point on that line where the
orbit passes above the plane.~ from the below is called the ascending node. The unit vector directed from the center o
to the ascending node is denoted by IV, see Fig.1. The circular displaced orbital elements are defined as follows:

a : displaced orbital radius;

i : inclination, the angle between the orbital plane and the ecliptic plane, measured according to the right-handed rule,
counterclockwise from the positive Z axis to the normal to the orbital plane;

Q: right ascension of the ascending node, the angle measured from the positive X axis to the line of nodes;

@ : mean argument of latitude, measured from N to the position vector r .

From Eq. (1), note that for a given pair of a and H , the angular velocity w depends on the angle ¢ . In this paper, ¢
is assumed to be fixed by means of a passive control [14]. The transformation procedure between the state vector

S isplaced = [r, v] , in frame 7 and the displaced orbital elements e is as follows.

Displaced

1) wDisplaced = SD[splaced °



A. For a given pair  and ¢ , calculate wand H from Egs. (1) and (2).

B. Calculate the state vector in the frame R :
[r]R =[a, O, H]T, [v]R =[0, wa, O]T (3)

C. Calculate [r]z and [v]Z using the coordinate transformation R — Z . The directional cosines matrix is given by:

TR%I(Q’i’w):Tz(_Q)TL(_i)Tz(_w) (4)
where

1 0 0 cos(-) sin(-) 0
r.()=|0 cos() sin()| T.()=|-sin() cos() 0 )

0 -sin(-) cos() 0 0 1

cosw cos —sinw cosisin) —sinw cosQ—cosw cosisinQ  sinisin Q
T, ,, 2| cosmsinQ+sinw cosicosQ —sinw sinQ +cosw cosicosQ  —sinicosQ (6)
sinew sin i cosw sini cosi

The state vector in the frame 7 is therefore expressed as
[r]I = TRA)I : [V]R > [V]I = TR%I ) [V]R (7)
2) SDisplaced = wDisplaced :

A. Calculate the modulus of the state vector:
e =~rr. pf=~v-v (8)

B. Calculate ¢ and w by combining Egs. (1), (2) and (8), then determine w using the following equations:

w-v=0 )
w-r=wa (10)
o = (1)
C. Calculatei :
i= alrccos(cb-Z) (12)

D. Calculate N :

N:(z&@)/

Zx4| (13)
E. Calculate Q from Eq. (13):

Q= arccos(N . X) (14)
F. Calculatew utilizing Eq. (13):

w:arccos(1;~N) (15)

In essence, the introduction of the new set of displaced orbital elements is useful for modeling relative motion
between displaced orbits and obtaining a closed-form solution to the relative motion problem, as will be shown in the

next section.

2.2 Nonlinear Equations Establishment



In this section, we shall study the relative motion modeling between two heliocentric displaced orbits. The sail that
tracks a given reference orbit, is referred to as the chief (subscript C), and the other is called the deputy (subscript D).
The fundamental equations of the two sails under Newtonian central-body gravitation and solar radiation pressure

acceleration can be written as

d’r U R LT
ﬁz_grc"'ﬁc (”c"'c) E”C (16)
d’r u . 2 .
dtzD Z_EFD+ﬁD(nD'rD) Z”D (17)

Let p = r,, —r. denote the relative position and ¢ <[0,7/2|be the thrust pitch angle betweennandr, then the relative

acceleration expressed in the frame 7 is obtained by subtracting Eq. (16) from Eq. (17)

d? A N
f:—ﬂ}rD +ﬂ3rc+[}D cos’ aDﬂan—/)’c cos’ acﬂznc (18)
dt rD C D C

We can also utilize the following relationship

2

d’p
ar’

=p+2wexprwex(wexp)tw.xp (19)

where the dot symbol represents a time derivative taken in the rotating frame.

As w,. is normal to the orbital plane, and in our case, w,. =0 , we can write
[wele =[0. 0. @] =[0, 0, w.T (20)
The position vector of the chief is given by
[VC]RC =[ac, 0, Hc]T 21
The relative position vector is written as
[p], =[x » =] (22)
Because we assume that the angle ¢ is fixed in the frame R , the unit vector 7. is therefore
[ ], =[cosp., 0. sing. T (23)
The unit vector 7,, in the frame R, can be obtained through coordinate transformations:
[, ], = Tror (Qesic. @) T,y (i, @, )-[cos @y, 0, sing,, | (24)
Substituting Eqs. (19) - (24) into Eq. (18) yields a set of nonlinear differential equations expressed in the frame R,

written in terms of relative state in combination with displaced orbital elements:

)'C'—chy—wéx = Hee T ,U(ac +X) ++ ﬂﬁD;OS:aDﬁD (1) >~ HBe Csz e SOS(PC
(az+HZ) [(“c+x)2+y2+(Hc+Z)2T (ac+x) +y* +(H, +2) a; +H}
2api, (2
P+2w k—wiy =~ Ky + HP,, cos aDnD( ) (25)

[(ac +x)2 +y’ +(H, +z)2]% (ac +x)2 +" +(H, "'Z)2

HH B U (Hc + Z) + 1Py cos’ aphp (3) _ 1P cos’ o sing@e
(@) [aon o0t (e ] @) o s
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where 71,, (k) is the k-th entry of vector 7, | . and

cospy ST, (k.1)T, (k1) +sing, ST, (k,1)T, (k.3)
k=1 k=1

3 3
(4, ], = cos%szC (k,2)T, (k,l)+sin(pDAZTC (k,2)T, (k,3) (26)
=1 k=1

3 3
cos <pD§TC (k,3)T, (k,1)+sin (ngTC (k,3)T, (k,3)

where T, (i . ) and 7, (i, J ) are given in Eq. (6). Eq. (25) is the basic dynamic equation of relative motion between two

heliocentric displaced orbits. In general, it is difficult to carry out the stability performance directly. One feasible

approach is to study the stable region numerically for a given set of parameters.

3. General Solution and Invariant Manifold of Relative Motion via Displaced Orbital

Elements

In this section, we shall derive a general solution to the relative motion problem using Eulerian transformations,
instead of linearizing the problem, in order to avoid possible errors. To express the relative position in the chief’s

rotating frame R.., we may use the frame 7 as an intermediate bridge [15]. The first step is to transform the deputy’s
position vector from frame R, to frame Z , and then operate a similar transformation from frame Z to frame R.. The
second step is to obtain the relative position by subtracting the two position vectors expressed in the frame R.. In

transformations, the related Eulerian angles are Q , i and @ respectively. The relative position vector p is therefore

[p]pf=TI%’RC(QC’I.C’ZD-C)'TRDAI(QD’iD’wD)'[aD’ 0, HD]T_[acs 0, HC]T (27)

The components of the relative position vector p is written as

- 3
ap ST ()T, (k1) + H, ST (1), (K.3) - ac

[l =| @S T (k2)T, (k1)+H, 3T, (k2)T, (k.3) (28)

3 3
an T (k3)T, (k1) + H, X7 (K:3)T, (k:3)- He

After some mathematical operations, Eq. (28) can be expressed in a compact form
& COST . COST,, —&, COST . SINW, +&, sinw . cos@ , +&, sinw . sinw,, — & cosm,. +& sinw . —a. [a,
[p];, =a» £, COST COST ) +&, COST . SIN®w, — & sinw . cos@ ) +&, sinw . sinw ) +&, cosm. +& sinw,.

—&,co8®@,, +&sinw, +& — H. [a,

(29)
where
g 2cos(Q.-Q,) (30)
g, Zcosiysin(Q, -Q.) (31)
& £[ cosi, cosiy, cos(Q —Q, ) +sini sini, | (32)
g, Zcosicsin(Q, -Q.) (33)
& 2 H,/a,sini,sin(Q.-Q,) (34)



& £ H,[a,[sini. cosiy, - cosic sinij, cos (Q. - Q) | (335)

&, £sini, sin (QD -Q.) (36)
& £ cosi, sini, —cosi, sini. cos(Q. -Q,)) (37)
& £ H,/a,| cosi. cosi, +sini, sini, cos(Q. -Q,) | (38)

The closed-form solution in the three-dimensional configuration space constitutes the invariant manifold R , on

which the relative motion will evolve all the time. The expression of p contains two angular coordinates,

(wc,wD) €S'xS', and the invariant manifold % is, most likely, a typical space with continuous surfaces of a cylinder,

torus (toroid), sphere, or truncated cone [16], etc. Such a manifold has the appearance of a smooth surface and can be
treated as a two-dimensional Euclidean space.
There are two qualitatively different cases, depending on whether the natural frequencies are commensurable or not.

For the commensurable case, the ratio of the frequencies is rational, satisfying w./w, = p/q , where p,g € N, and N

denotes the set of natural numbers. All possible orbits in this case are closed curves on®R . In practice, the 1:1
commensurability is more preferable in the engineering sense, because most of the formation flying missions require
periodic relative motion on short time scales. For the incommensurable case where the ratio of the frequencies is
irrational, the flow on % is referred to as two-periodic quasi-periodic. This type of orbit unfolds along a helix on the
surface of ® , meandering over the whole region of ® . However, every orbit winds around endlessly, never intersecting
itself and yet never quite closing. For this case, the orbit is termed dense on %R : in other words, each orbit comes
arbitrarily close to any given point on %t . This is not to say that the orbit passes through each point; it just comes
arbitrarily close [17].

Consider a chief heliocentric displaced orbit, paralleled to the ecliptic plane. Note that Qis undefined in this case,
however, for the sake of simplicity in form and consistency in equations, we may treat Q as a meaningless variable that
can be set freely, without the need to introduce the mean longitude/ =@ +Q to eliminate the singularity [11], as is
usually done. Notably this is not a restrictive assumption, as the final results are independent of Q..

We use the normalized variables by settingr. = u =1. Lete,. = 45°,¢, = 60", and the displaced orbital elements of
the two sails are given by

@ = [ ,ic,Q0,w.]=[08,0,0,5

(39)
@, =[ay.i.Q,.0,]=[2/V7.5,90 0, ]

where (”) denotes the normalized value. Using the parameters given above, we obtain @, =0.5,&, =+/0.5 JH =006,

H,=B/\7,B.=30\2/49,B, =8J7/25.

Using Eq. (28), the closed-form solution of relative position becomes

x| |a,(-coswsinw, cosi, +sinw . cosw, )+ H, cosw . sini,, —a,
[p]RC ={y|= a, (sinw sinw,, cosi, +cosw, cos@, )- H, sin@, sini, (40)
z a, (sinw , siniy, )+ H, cosi, — H,

Since the orbit is assumed circular, the mean arguments of latitude of the chief and deputy are written as

@, =w. t+w, mod 27

(41)

@, =w, t+w, mod 27



wherew . andw,, are the initial mean arguments of latitude of the chief and deputy. It indicates that p can be expressed

as an explicit function of time. This is of great importance and advantage in understanding the dynamic nature of
relative motion between two displaced orbits. For example, it can be used to find the bounds of relative motion, as will
be illustrated in Sec. 4. The components of the relative position vector in Eq. (40) can be further written as
x ==k, c0s(Wel + @, ) sin (wpt+w 5 )+, Sin (wel +@ ) ) 08wyl Hm ) +K; o8 (wel +@ g ) +K,
y =k, sin(wot +@ ¢, )sin(wyl+@ g ) +i, cos (wet +@ o ) €08 (wpt+wm ) )~ K, sin(wel +@ ) (42)
zZ =K sin(th+wD0)+K6
where

A

A . A . . A A . . A .
K, =a,cosi,, k,=a,, k,=H,sini,, x,=-a., ks=a,sini,, k;=H,cosi,—H, (43)

Fig.2 shows the three-dimensional relative orbit (dotted line) lying on the invariant manifold R (solid line). Since the
ratio of the angular velocities W, / @, =~0.5 is an irrational number, the motion along % is quasi-periodic. Fig.3 depicts

the relative motion projected on x-y, x-z, and y-z planes respectively. It can be clearly seen that with the given conditions,

the invariant manifold R resembles a frustum of a cone with a curved rotation surface.

W i xfr

Fig. 2 Three-dimensional quasi-periodic relative motion and the invariant manifold it lies on
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Fig. 3 Projections of quasi-periodic relative motion to x-y, x-z, and y-z planes

If the thrust pitch angle of the deputy is changed such as to guarantee the commensurability of the two angular
velocities, then the relative motion turns to be periodic. For example, assuming ¢,, =arctan2/ NG , the normalized

angular velocity of the deputy sail becomes @, =0.5, equal to that of the chief, therefore satisfying 1:1



commensurability (resonance). Fig.4 illustrates ten 1:1 commensurable periodic relative orbits that are evenly

distributed on the invariant manifold ® with equal initial phase (mean argument of latitude) differences. Fig.5 illustrates

the projections to x-y, x-z, and y-z planes.

Fig. 4 Three-dimensional 1:1 commensurable periodic relative motion and the invariant manifold it lies on
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is shown in Fig. 6, all closed curves starting on R remain on R for all time during the motion.
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Fig. 5 Projections of 1:1 commensurable periodic relative motion to x-y, x-z, and y-z planes

Changing the ratio of the frequencies @, /&, , more types of commensurable periodic relative orbits are obtained. As



1:2 commensurability 2:3 commensurability

8:5 commensurability 3:1 commensurability

-1.5

-1

5:6 commensurability 7:4 commensurability

Fig. 6 Other types of commensurable periodic relative orbits
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4. Bounds of Relative Motion
As illustrated above, the relative motion between displaced orbits is always bounded, lying on invariant manifold R .
In this section, the upper and lower bounds of each single directional motion for the incommensurable case and 1:1

commensurable case will be studied from an analytical point of view.

4.1 Bounds of Incommensurable Relative Orbit
Eq. (28) provides a parametric presentation of the relative motion invariant manifold between two displaced orbits.
For the incommensurable case, the relative orbit is quasi-periodic and ergodic, so Eq. (28) can be used to seek for the

extreme value points of the incommensurable relative orbit.

4.1.1 Radial bounds
To find the bounds of radial motion, the following relationship should hold

Ox DzaT c (k, 1)T (k,1)+ HDzaT c (k. 1)T (k,3)=0 (44)
awc ow, (g
% 0,37 () D gy S ey TR @)
ow, @, Oow,
From Eq. (6), note that
Ty (k3) _ (k.3) =0, k=1,2,3 (46)
Oow,

Substituting Eq. (46) into Eqgs. (44) and (45) results in
—& -sin@ . cos@;, +&, -sinm . sinw,, +&, -cosw . sinm,, +&, -cos@ . cosm, +&, -sinw, +&-cosm,. =0  (47)
&, -sinw cosw,, —&, -sinw sinw,, - & -cosw . sinw,, —&, -cosw. cosw,, =0 (48)
wherew . , @, are the mean arguments of latitude corresponding to extreme value points.

Denoting

* *

@ @
A 2 tan—<, £ tan—L2 49
» 5o M > (49)

Egs. (47) and (48) are transformed into a set of quartic equations with two unknown variables A_and7_ .
(& =8 ) Ams +2(8 +E)An; =280, = (8, +86 ) Ay = (&, =& Ins +48, A0, +2(85 =& ) A, +25, +(&,+&,) =0 (50)

AN +28 AN - 28020 — &AL —E ] +4E, A, — 284 +2E +&, =0 (51)

or
A =x00 or 15 =zo0 (52)
Note that the mapping in Eq. (49) is discontinuous at the point@ =z andw,, = 7, which corresponds to the condition

of A, =+oo andn_=+oo. Given a favorable initial guess, Eqs. (50) and (51) can be solved in Matlab®. Accordingly,

@, and @, can be obtained from Eq. (49). Moreover, we should further check whether A, = £oo or7n, = £oo correspond

to the extreme value points by examining Eqs (47) and (48). Note that the number of solutions is infinite because of the
existing periodic terms in Eqs. (47) and (48). Substitutingw andw, into Eq. (28) yields the extreme values of x

components.
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For example, assume the displaced orbital elements of the two sails are given by Eq. (39). Solving Egs. (50), (51) and
(52) for A, andn, yields 4 possible solutions:
()“xl =0, = 1); (A, =01, = -1); ()“x3 =to0,n, = 1); (%4 =toon, = _1) (53)
The mean arguments of latitude corresponding to these solutions are obtained from Eq. (49):
o, =kr, @, =kr+n/2 (54)
where k € Z . Substituting @, and @, into Eq. (28) yields four normalized extreme value points:
=-1.4959956; %, =0.0101092; *; =-0.1040044; X, =-1.6101092 (55)
Fig. 7 shows the contour lines of normalized radial distance as a function of mean arguments of latitude of two sails,
assuming @, ,, € [0, 27[] , and “#*” denoting the extreme value points. The solutions given by Eq. (55) can be further

verified by Fig. 3.

4
@, /rad

Fig. 7 Normalized radial distance: a) 3-D view. b) Contour plot.

4.1.2 Along-track bounds

Likewise, to gain the bounds of along-track motion, the derivative of y with respect to @ . and @, must be set equal to

zero
OT.(k,2 oT.(k,2
a DZ ( )T (k,1)+ HDZ ( )T (k,3)=0 (56)
8wc ow, ow,
oy oT, (k1 oT, (k3
—aDzT (k, 2) ( ) DZT (k2)——"= ( ) (57)
ow, @,
which lead to
&, -sinw/. cosm,, +&, -sin@,.sinw,, —&, -cos@,. sinw,, +&, -Cosw. cos@,, +& -sinm, — & -cosw,. =0 (58)
&, -sinw. cosw,, +&, -sinw. sinw,, —&, - cosw . sinw,, +&, - cosw . cos@,, =0 (59)
Denoting
w* w*
A 2 tan—<, £tan—2 60
y 5 2 (60)

Eqgs. (58) and (59) are therefore transformed into a set of quartic equations with two unknown variables A, and 7, .

12



(& +& ) A, +2(& —& ) A, +28,20n, +(& —&) ) A) — (& +& )n; +4&,A,0, +2(&, +& ) A, 28,1, +(& -&)=0 (61)
EAN =28, 00 +28, A0, ~EAT —Em) +4E AN, +28,4 28, +& =0 (62)

or
A, =%00 or 1, =+00 (63)
The set of quartic equations Eqs. (61) and (62) can be solved to get 4, and 7, , hence @,., @, are obtained from Eq.(60).
However, we should further check whether 4, = +00 orn, = +00 correspond to the extreme value points by examining

Egs. (58) and (59). Substituting @, and @), into Eq. (28) yields the extreme values of y components.

Utilizing the same displaced orbital elements by Eq. (39) and solving Eqs. (61), (62) and (63) yields four possible

solutions:
(A=t =1)s (R =Li, =-1) (As =L =1); (A =-Ln,=-1) (64)
Eq. (60) provides the corresponding mean arguments of latitude regarding to these solutions:
@, =kr+n/2, @), =kr+n/2 (65)
Substituting @,. and @, into Eq. (28) yields four normalized extreme value points:
7 =0.6959956; 3, =-0.8101092; 7, =-0.6959956; ¥, =0.8101092 (66)

Fig. 8 shows the contour lines of normalized along-track distance as a function of mean arguments of latitude of two
sails. It can be clear seen that the extreme value points given by Eq. (66) are exactly the along-track bounds exhibited in

Fig. 3.

a) b)

Fig. 8 Normalized along-track distance: a) 3-D view. b) Contour plot.

4.1.3 Cross-track bounds

To acquire the bounds of cross-track motion, the following relationship should hold

a(; DzaT c (k. )T(kl) HZ C(k3)T(k3) 0 (67)
& D(k D, +H, 3T, (k3) 2 2 D(k 28 (68)

o0, —%ZT (k,3)——"=

Note that
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Tek3) o o123
awc b it

Hence Egs. (67) and (68) become
&, -sinw,, +&; cosw, =0

Denoting

*

A w,
=tan—
n. >

Eq. (71) is therefore transformed into a quadratic equation with only one unknown variables 7. .
& —25m. —&, =0
or
N, =+o0
Eq. (72) is solved as

N

n. =
S

Then we obtain@,, from Eq. (71). Substituting@,,into Eq. (28) yields the extreme values of z components.

With the previously given displaced orbital elements, we have
My =L n,=-L
Substituting Eq. (75) into Eq. (71) yields
@), =kr+m/2
And the two normalized extreme value points are obtained by substituting @, into Eq. (28):

Z' =0.1180461; Z; =-0.0137210

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

Fig. 9 illustrates the variation of normalized cross-track distance as a function of deputy sail’s mean argument of

latitude. The extreme value points given by Eq. (77) are in accordance with the numerical representation, verifying the

correctness of the proposed method.

0.12

N
A e
o N

N : : : :
Uuq\ ————————— / ——————————
o\ f ]

AT am—
-0.02 1 1 1 1 il 1
0 1 2 3 4 5 8 7
@, [rad

Fig. 9 Normalized cross-track distance
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4.1.4 Relative distance bounds

Let p = ||p||, to seek for the extreme values of relative distance, the necessary conditions are

2
OP” e 0% 40y D 5. 9%
owm, ow, ow, ow,

2
OP 9% 40y X 45, 92
ow, ow, ow, Oow,

(78)

(79)

Unlike the method that calculates the extreme value points of radial, along-track and cross-track motion, Eqs. (78) and

(79) will result in an equation of degree 8, and in the general cases, the expression of relative distance is difficult to be

further simplified into a concise form. However, under some conditions, for example, wheni.,i, =07,9070rQ . =Q ,

the problem degenerates, and the search for extreme values of relative distance bounds can be transformed into seeking

for the solution of two simple equations. Utilizing the displaced orbital elements of the two sails given by Eq. (39), Egs.

(78) and (79) result in

-1, sin@ . sinw,, +1, COS@ . cOsw,, —1; sinw . =0

1, COST, COSW , —1, Sinw . sinw, +1, cosm, =0
where

L, £2a.a,cosi,, U, =-2a.a,, 1 =-2a.H,sini,, 1,=-2H_.a,sini,
Egs. (80) and (81) can be solved easily, and the mean arguments of latitude of extreme value points are
@, =kr, @, =kn+n/2
The relative distance bounds are
Fo N R R R R o M (T A D o M A B A R N
where
A 2 2 2 2 .
,=ac+ta, +H-.+H,-2H_H, cosi,

The normalized extreme value points are calculated from Eq. (84) as

P, =1.5006457; p, =0.0170430; p; =0.1573270; p, =1.6101677

(80)
(81)

(82)

(83)

(84)

(85)

(86)

Fig. 10 illustrates the contour lines of normalized relative distance as a function of mean arguments of latitude of two

sails, verifying the correctness of the presented method.
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Fig. 10 Normalized relative distance: a) 3-D view. b) Contour plot.

4.2 Bounds of 1:1 Commensurability Relative Orbit

To find the bounds of incommensurable relative orbit, the mean arguments of latitude of the two sails are treated as
variables that are independent of each other, due to their ergodic nature. However for the commensurable case, time is
the only variable. To determine the bounds of directional components, the following relationship should hold:

op _ Op '8wc+ op Ow,

=0y, (87)
ot Ow, Ot Ow, Ot
where t = [tx,ty,tz JT. Consider the 1:1 commensurable case, so that
W, =W, =W 88)
=% (

Therefore, Eq. (87) results in

A <) I < S < (89)
Denote

Je 2 tan 20y A tan% (90)
where@ ., andw, are defined in Eq. (41), and

w A Wt: A wt,
=  =tan——, y, =tan—= 91
R 5 X 3 oD

X, = tan

where?; t; and ¢, represent the times corresponding to extreme value points of directional components. Substituting Egs.

(41), (42), (90) and (91) into Eq. (89) leads to

OO LiF0, x40, ), +0, =0 (92)
r4xi+r3xi +‘L')(§ +T0,+7,=0 (93)
Cxl+lx.+¢,=0 (94)

Because the expressions of the coefficients o, , 7, and {; are too complex, they are given in Appendix.

Solving Eqgs. (92), (93) and (94) yields the times corresponding to extreme points. Hence the bounds of radial,
along-track and cross-track motion can be calculated respectively according to Egs. (41) and (42).
Likewise, to calculate the relative distance bounds, the following expression should be satisfied
op’ _ op® Ow, ; op* Ow,
ot Ow, Ot Ow, Ot

=0 (95)

Recalling Eq. (88), we have

op’ ) op’ _

0 (96)
ow, Ow,

Utilizing the displaced orbital elements of the two sails given by Eq. (39) and substituting them into Eq. (92), we

obtain

K +AlKS +8(K2 —Kl)z . 1+K‘32 iy A(KS +8(K2 —Kl)z 97)

Xx - -
Z(KZ_KI) Z(Kz_K1)2
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After some mathematical operations, the normalized times corresponding to extreme value points of radial motion are

calculated from Eq. (91) as

—i; +4JK; +8(k, —K1)2

~E

tx_max = % 2k77: + arCSin 4(K2 - Kl ) (98)
_ \/ﬁ
f; min = % (2k+1)7f—arcsin Ky K5 + (Kz K1) 09)
- w 4(’(_2 _ K] )

Substituting Eqgs. (98) and (99) into Eq. (42) yields the normalized bounds of radial motion X and X, o

Fig. 11 shows the variation of radial distance within one period, namely 7 € [0, 47:]. Egs. (98) and (99) result in

f;max =0.1003653 ,f:ﬁmm = 6.1828200, and the radial bounds are X, =-0.7428709 ,% . =-0.8571291.
074 =
0.76 \ /
-0.78 \ /!
s 08 \ /
-0.82 ‘\ /
-0.84 \/
-0.86 =
0 2 4 6 8 10 12 14
i
Fig. 11 The variation of radial distance.
Likewise, Eq. (93) leads to
Xy = +1 (100)
The normalized times corresponding to extreme value points of along-track motion are calculated from Eq. (91) as
f: i =l~[2k+§jn (101)
o= ) 2
Ty in = %(21( +1)n (102)
o ) 2

The normalized bounds of along-track motion y___and y_. are obtained by substituting Eqs. (101) and (102) into Eq.
(42).
Fig. 12 illustrates the variation of along-track distance within one period. From Egs. (101) and (102), we obtain

P o = 9.4247780, 7"

y y_min

=3.1415927 , and the along-track bounds are y,, = 0.8101092, 7 . =0.6959956.
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[\

0.76 /
0.74 \ /
0.72

yir o
-
—

0.68

0 2 4 6 8 10 12 14

i
Fig. 12 The variation of along-track distance.

Likewise, Eq. (94) results in

x. =+l (103)
The normalized times corresponding to extreme value points of cross-track motion are calculated from Eq. (91) as
£ =%(2k+l}r (104)
- @ 2
£ min =%(2k+§jn (105)
- w 2

Substituting Eqs. (104) and (105) into Eq. (42) yields the normalized bounds of cross-track motion Z,__ and Z_ .
Fig. 13 shows the variation of cross-track distance within one period. From Egs. (104) and (105), we obtain

I e =3.1415927 .27 . =9.4247780, and the cross-track bounds are Z,, = 0.1180461,Z , =-0.0137210.
0.12 :
b N
0.08 / \
0.06 / 1
0.04
0.02 \ /

0 /
0.02 i —
0 2 4 6 8 10 12 14

zfr N
s

—_-)

Fig. 13 The variation of cross-track distance.
In order to find the bounds of relative distance between two displaced orbits, substitute Eq. (96) into Eq. (42) to

obtain

“2K,1,¢ +2(K gk — K Ky )16 +2(1<12 +x? —Kzz)g 1-¢% +2(k,k, —K‘4K1)(1—2§2) =0 (106)
where
% sin(a7") (107)

Theoretically, Eq. (106) has four roots, but only two are meaningful:
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¢, =0.6584719, ¢, =-0.6501913

The normalized times corresponding to extreme value points of relative distance are calculated as

[ o = %(2](71‘ +arcsing, ) (108)
[ o = %[(2k+1)n+arcsingz] (109)

Fig. 14 shows the variation of relative distance within one period. From Egs. (108) and (109), we obtain

i =1.4375732 " =7.6988577 , and the relative distance bounds are p,,,, =1.1558096 5., =1.0461162 .

p _max s “p_min

1.16

\

1/ \

1.04

0 2 4 6 8 10 12 14
t

Fig. 14 The variation of relative distance.

5. Conclusions

A new set of displaced orbital elements has been introduced to describe the position of displaced orbits, by means of
which, the relative motion between heliocentric displaced orbits can be modeled in the chief sail’s rotating frame, and a
closed form solution to the relative motion problem between displaced orbits were obtained. Utilizing the displaced
orbital elements, the invariant manifold of relative motion can be determined. The orbits evolving on the manifold
manifest periodicity for the commensurable case and quasi-periodicity (ergodicity) for the incommensurable case.

The bounds of relative motion between displaced orbits have been calculated from an analytic point of view both for
the incommensurable and 1:1 commensurable case. A few important conclusions can be drawn from these calculations.
It was found that for the incommensurable case, there are four extreme values for the radial, along-track motion and
relative distance, and two for the cross-track motion. For the 1:1 commensurable case, these values reduce to two. Some
illustrative examples have been carried out to verify the effectiveness of the proposed theory.

The derived expressions of quantitative relative distance bounds are of fundamental importance, because the
knowledge of maximum distance is crucial for communication design whereas minimum distance is essential for

collision avoidance.
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Appendix: Relevant Coefficients in Eqs. (92), (93) and (94)
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The coefficients o, ~0,,7, ~ 7,,{, ~{,in Egs. (92), (93) and (94) are given by
04 = (‘:4 —S _52)_2(‘51 +&s _‘gz)yc _2(‘31 _‘:3)3’0 +(52 -5, _‘56)7’; +(‘§z +&¢ _‘54)3’2' +4(‘52 _‘54)7’07’0
_2(53 +&s _51)VCV§) _2(53 _51)72}’0 +(‘§4 +& _éz)yéyé
0, = 2(54 — & _52)(% +VD)+2(§1 +Ss _53)(1_3’5 _ZVCVD)+2(‘§1 _53)(1_72 _2}’0)’0)
+2(5, -4, _ge)(ycyzz) _VD)+2(§2 +& _54)(7’27’0 _Vc)+4(52 _54)(3’33’0 +Pe¥p = Ve _VD)
¥2(8 +& -8 ) (2070 +7 =707 )+ 2(E = &) (2remn +78 = 727n ) = 2(Ea 80 = &) (vrn +7e7p)

0, =(& =& =&) (70 +70 +47c0 ) +2(& +& =& ) (0 + 275 = 20275 = ¥e7p )+ 2(& = &) (7 + 206 = 207 = 727
H(& =& =) (1= 47y +7275 )+ (& +E =& ) (1= 4veyp +70m ) +4 (& =€) (172 = 2vev0 =7 + 7077
28, +& =) (20270 + 767 = Ve =275 )+ 2(& =& ) (20e7h + 7270 = Vo = 27 )+ (&4 &6 =&, (Ve +75 +47c7 )

0, =2(&, -5 =& ) (7rn +7e75 )+ 2(8 +& =& ) (7 +2vevn —vemn ) +2(& &) (78 +20e70 — 277
+2(8, -4, _56)(% _VéVD)"'Z(éz +& _‘54)(3’0 _ché)+4(52 _‘34)(% +¥p = Ve¥p _ché)
+2(§3 +§5 _51)(1_2%3’0 _Vé)+2(§3 _51)(1_270% _Vé)_2(§4 +§6 _éz)(yc +yD)
Oy = 2(‘:4 — S _éz)yéyé +2(§1 +&s _és)ycyzz) +2(§| _53)737’0 +2(éz &, _és)yé +2(52 +& _54)7127
(8, ) 7ern +2(5 +& =& )7 +2(& —&)7p H(E, +5,-5,)
T = (51 +&; _53)_2(52 +&¢ _‘54)7’6 _2(52 _54)7’0 +(§3 +&5 _51)712) +(§3 -5 _és)yé +4(§3 _51)%)’0
_2(54 +& _éz)chJZ) _2(54 _52)7271) +(§1 - & _gs)yéyzza
T3 = 2(51 +&; _53)(% +VD)+2(§2 +& _54)(1_% _ZVCVD)"'z(éz _54)(1_}’12) _ZVCVD)
28 +8 =) (rern =70 )+ 2(& =& = &) (7270 =70 ) +4 (& = &) (1270 + 775 = Ve = 7p )
¥2(&+6=5) (20070 +7 = 1275 ) +2(E =€) (2remn +78 —727h )= 2(8 =& &) (vemn +7c73)

7, = (& +& &) (7o +75 47070 )+ 2(& +E = &) (1e + 200 = 20870 = e )+ 2(8& = &) (7 + 270 = 20075 = e )
H(& 4 =8 ) (1= 4peyy +7275 )+ (& =& =& ) (1= 47 +7e7m ) +4(& = &) (1=78 = 200 =75 47073
¥2(8, 48, =5 ) (2780 +7e7h = 1e =21 ) +2(&4 =& ) (20e7h + 700 =70 = 206 )+ (& =& =& ) (7% +75 +47e7p)

L= 2(51 +&s _53)(?%7’1) +Vc7’f))+2(éz +3 _54)(7’12) +29:7p _7%712))"'2(52 _€4)(Vé +29:7p _7’37’12))
28 +8 =) (7e =787 )+ 28 —& =) (7o = 7e7n ) +4(E =& ) (ve +70 = Verp = 7e7h )
28, +& =& (1= 2775 =78 )+ 2(8, = &) (1= 2007 =75 )~ 2(8 =&, =& ) (v +71)
Ty = 2(51 +&5 _gs)yéﬁ) +2(§2 +& _54)%3’123 +2(§2 _54)3’270 +2(§3 +&5 _‘51)3’2 +2(53 -§ _55))’;
+4(‘§3 _él)ycyD +2(€4 +&, _éz)yc +2(‘§4 _éz)VD +(‘§1 - &, _55)
G =8 +28y, _‘587’?)
¢ =4&y, +2§7V§ -2¢,

(o= 583’12) =28y, - &
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