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Abstract In this paper, we establish a methodology for modeling relative motion between heliocentric displaced orbits 

by utilizing the Cartesian state variables in combination with a set of displaced orbital elements. Similar to classical 

Keplerian orbital elements, the newly defined set of displaced orbital elements has a clear physical meaning and 

provides an alternative approach to obtain a closed-form solution to the relative motion problem between displaced 

orbits, without linearizing or solving nonlinear equations. The invariant manifold of relative motion between two 

arbitrary displaced orbits is determined by coordinate transformations, obtaining a straightforward interpretation of the 

bounds, namely maximum and minimum relative distance of three directional components. The extreme values of these 

bounds are then calculated from an analytical viewpoint, both for quasi-periodic orbits in the incommensurable case and 

periodic orbits in the 1:1 commensurable case. Moreover, in some degenerate cases, the extreme values of relative 

distance bounds can also be solved analytically. For each case, simulation examples are discussed to validate the 

correctness of the proposed method. 

1 Introduction 
In recent years, non-Keplerian displaced orbits have attracted a considerable attention because of their unique 

advantages in astronomical missions [1-3], for example, in situ observation for Saturn’s rings, solar wind monitoring, 

and real-time stereo-graphic investigations of a planetary surface [4-6]. Displaced orbits can be generated by suitable 

orienting the thrust direction induced by the sun in such a way to balance the centrifugal and gravitational components 

of the acceleration [1]. Spacecraft flying along displaced orbits can be promoted by new kinds of low thrust propulsion 

systems such as solar sails [2] and electric sails [3]. As a matter of fact, these orbits are very difficult to reach with 

conventional (either chemical or electric) propulsion systems. However, using solar sails as an example, some missions 

require an extremely large reflector area that cannot be carried out from an engineering standpoint [9], leaving it 

impractical to compromise between technical requirement and industrial manufacture in a near future. To that end, it is 

necessary to introduce the concept of formation flying, distributing multiple sails in a relatively proximate region and 

enabling them to construct a larger virtual sensor so as to achieve greater resolution than a single one. Nevertheless, up 

to now, studies of relative motion between displaced orbits obtained using photonic solar radiation pressure are scarce 

in the literature. Further, the linearized dynamic model was adopted among several existing ones [7-9], which were 

inherently limited to small-distance and short-term missions. Therefore, it is useful to gain a nonlinear insight into the 

relative motion problem, especially for the large baseline formation flying. Moreover, there have been few published 
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works to explore the relative motion bounds and topology in the general case of two sails flying along displaced orbits, 

which are of great importance in space mission’s design and analysis, and therefore, they deserve a detailed study. 

Recognizing these open issues, we first manage to model solar sail relative motion between displaced orbits with 

Cartesian relative state variables in conjunction with a newly established set of displaced orbital elements. Analogous to 

Keplerian orbital elements, the new set of parameters defines the orientation of a displaced orbit with respect to an 

inertial reference frame, as well as its real-time motion in rotating frame. Besides, utilizing coordinate transformations 

that incorporate displaced orbital elements, a closed-form solution expressed in a rotating frame can be derived without 

linearizing or solving the corresponding nonlinear equations. For the relative motion between circular displaced orbits, 

the solution is time-explicit, which is useful to analyze the nature of relative motion. 

We also determine the relative motion invariant manifold, which is constituted by the parameterized general solution, 

and all possible orbits move along the manifold as they evolve. The invariant manifold presents a well-defined region in 

the configuration space with certain clear bounds, and the orbits moving on the manifold manifest periodicity for the 

commensurable case and quasi-periodicity (ergodicity) for the incommensurable case. The referred bounds in this paper 

are indeed extreme distances of radial, along-track and cross-track motion, as well as relative distance between two 

spacecraft flying along displaced orbits. The directional bounds are determined from an analytical viewpoint, both for 

the incommensurable case and 1:1 commensurable case, and the relative distance bounds can be calculated analytically 

in some degenerate cases. Analytical calculation of these bounds is essential for onboard on-off control when the 

relative distance arrives at the pre-set boundary, while the prediction of relative motion bounds by pure numerical 

integration is time consuming and may lead to time delays in inner communication. Moreover, to maintain a long-term 

cluster flight or loosed formation around displaced orbits, the designers may select proper elements to guarantee the 

limited-size mission requirement. 

2 Relative Motion Between Heliocentric Displaced Orbits 
To formulate the problem conveniently, first introduce the following related coordinate systems, seen in Fig. 1: 

1) I is a heliocentric inertial frame, centered at the Sun, denoted by O . The fundamental plane is the ecliptic plane, 

the unit vector X̂ is directed from the Sun’s center along the vernal equinox, Ẑ is normal to the fundamental plane, 

positive in the direction of the celestial north, and ˆ ˆ ˆY Z X= ´ . 

2) R is a rotating frame, centered at the spacecraft, denoted by S . The fundamental plane is the orbital plane with its 

origin o , the unit vector x̂ is in the radially outward direction, ẑ is normal to the orbital plane, positive in the direction of 

the angular momentum vector, and ˆ ˆˆy z x= ´ . 
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Fig. 1 Coordinate systems and related angles 

In this context, assume that the spacecraft flying along displaced orbit is propelled by a solar sail. A heliocentric 

circular displaced orbit can be obtained by directing the thrust vector so as to have a component normal to the displaced 

orbital plane. The sail orientation is defined by the unit vector n̂ normal to the reflecting surface, fixed in the rotating 

frameR . The performance is characterized by the dimensionless lightness number b , defined as the ratio of the 

propulsion acceleration to the solar gravitational acceleration, that is ( )21.529 g mb s -= × , wheres is the sail mass per 

unit area. For a given orbital angular velocity ω , a displaced orbital radius a , and a displacement H from the Sun, the 

following relationships should hold so as to keep equilibrium inR [4] 
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where 3rm*ω , 2 2r a H= + is the Sun-sail distance, andj is the angle related to the attitude of the sail. 

2.1 Set of Displaced Orbital Elements 
In the classical two-body problem, the orbital motion in three-dimensional space can be described either by the state 

vector [ ] 3 3,Keplerian = Î ´S r v , or a set of orbital elements [ ] 2 4, ,Ω, ,Keplerian a,e i ω f= Î ´œ S , where and S denote 

the real number space and spherical space respectively. The state vector is convenient for onboard measurement, while 

the orbital elements provide a straightforward understanding of the orbital orientation with respect to the inertial frame, 

as well as real-time on-orbit location. However, for some Keplerian cases, the Eulerian anglesΩ ,ω may become 

undefined [11-13]. Since the displaced orbit is assumed circular in this paper, we shall define a new set of nonsingular 

displaced orbital elements Displacedœ to characterize the motion. 

First, locate the intersection of the orbital plane with planeP , which is parallel to the ecliptic plane and passes 

through the center o of the displaced orbit. The intersection is the line of nodes, and the point on that line where the 

orbit passes above the planeP from the below is called the ascending node. The unit vector directed from the center o

to the ascending node is denoted by N̂ , see Fig.1. The circular displaced orbital elements are defined as follows: 

a : displaced orbital radius; 

i : inclination, the angle between the orbital plane and the ecliptic plane, measured according to the right-handed rule, 

counterclockwise from the positive Ẑ axis to the normal to the orbital plane; 

Ω : right ascension of the ascending node, the angle measured from the positive X̂ axis to the line of nodes; 

v : mean argument of latitude, measured from N̂ to the position vector r . 

From Eq. (1), note that for a given pair of a and H , the angular velocity ω depends on the anglej . In this paper, j

is assumed to be fixed by means of a passive control [14]. The transformation procedure between the state vector

[ ],Displaced =S r v
I in frame I and the displaced orbital elements Displacedœ is as follows. 

1) Displaced Displacedœ S . 
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A. For a given pair b andj , calculateω and H from Eqs. (1) and (2). 

B. Calculate the state vector in the frameR : 

 [ ] [ ] [ ] [ ], 0, , 0, , 0T Ta H a= =r v
R R

ω   (3) 

C. Calculate[ ]r I and[ ]v I using the coordinate transformation ®R I . The directional cosines matrix is given by: 

 ( ) ( ) ( ) ( )Ω, , Ωz x zT i T T i Tv v® = - - -R I   (4) 

where 

 ( ) ( ) ( )
( ) ( )

( )
( ) ( )
( ) ()

1 0 0 cos sin 0
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0 sin cos 0 0 1

x zT T
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  (5) 

 
cos cosΩ sin cos sinΩ sin cosΩ cos cos sinΩ sin sinΩ
cos sinΩ sin cos cosΩ sin sinΩ cos cos cosΩ sin cosΩ

sin sin cos sin cos

i i i
T i i i

i i i

v v v v
v v v v

v v
®

é ù- - -
ê ú
ê ú+ - + -
ê ú
ê úë û

R I   (6) 

The state vector in the frame I is therefore expressed as 

 [ ] [ ] [ ] [ ],T T® ®= × = ×r r v vR I R II R I R
  (7) 

2) Displaced DisplacedS œ . 

A. Calculate the modulus of the state vector: 

 ,= × = ×r r r v v v   (8) 

B. Calculate a andω by combining Eqs. (1), (2) and (8), then determineω using the following equations: 

 0× =vω   (9) 

 a× =r ωω   (10) 

 =ωω   (11) 

C. Calculate i : 

 ( )ˆˆarccosi = ×Zω   (12) 

D. Calculate N̂ : 

 ( )ˆ ˆ ˆˆ ˆ= ´ ´N Z Zω ω   (13) 

E. CalculateΩ from Eq. (13): 

 ( )ˆ ˆΩ arccos= ×N X   (14) 

F. Calculatev utilizing Eq. (13): 

 ( )ˆˆarccosv = ×r N   (15) 

In essence, the introduction of the new set of displaced orbital elements is useful for modeling relative motion 

between displaced orbits and obtaining a closed-form solution to the relative motion problem, as will be shown in the 

next section. 

2.2 Nonlinear Equations Establishment 
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In this section, we shall study the relative motion modeling between two heliocentric displaced orbits. The sail that 

tracks a given reference orbit, is referred to as the chief (subscript C), and the other is called the deputy (subscript D). 

The fundamental equations of the two sails under Newtonian central-body gravitation and solar radiation pressure 

acceleration can be written as 

 ( )
2

2
2 3 4

ˆ ˆC
C C C C C

C C

d
β

dt r r
m m

= - + ×
r r n r n   (16) 

 ( )
2

2
2 3 4

ˆ ˆD
D D D D D

D D

d β
dt r r

m m
= - + ×

r r n r n   (17) 

Let D C= -r rρ denote the relative position and [ ]0, 2α πÎ be the thrust pitch angle between n̂and r , then the relative 

acceleration expressed in the frame I is obtained by subtracting Eq. (16) from Eq. (17) 

 
2

2 2
2 3 3 2 2

ˆ ˆcos cosD C D D D C C C
D C D C

d β α β α
dt r r r r

m m m m
= - + + -r r n nρ   (18) 

We can also utilize the following relationship 

 ( )
2

2 2 C C C C
d
dt

= + ´ + ´ ´ + ´
ρ

ρ ω ρ ω ω ρ ω ρ   (19) 

where the dot symbol represents a time derivative taken in the rotating frame. 

As Cω is normal to the orbital plane, and in our case, C = 0ω , we can write 

 [ ] [ ] [ ]0, 0, 0, 0,
C

T T
C C Cv= = ω

R
ω   (20) 

The position vector of the chief is given by 

 [ ] [ ], 0,
C

T
C C Ca H=r

R
  (21) 

The relative position vector is written as 

 [ ] [ ], ,
C

Tx y z=
R

ρ   (22) 

Because we assume that the anglej is fixed in the frameR , the unit vector ˆCn is therefore 

 [ ] [ ]ˆ cos , 0, sin
C

T
C C Cj j=n

R
  (23) 

The unit vector ˆDn in the frame CR can be obtained through coordinate transformations: 

 [ ] ( ) ( ) [ ]ˆ Ω , , Ω , , cos , 0, sin
C DC

T
D C C C D D D D DT i T iv v j j® ®= × ×n I R R IR

  (24) 

Substituting Eqs. (19) - (24) into Eq. (18) yields a set of nonlinear differential equations expressed in the frame CR , 

written in terms of relative state in combination with displaced orbital elements: 
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where ( )ˆDn k is the k-th entry of vector[ ]ˆ
C

Dn R
, and 

[ ]
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where ( ),CT i j and ( ),DT i j are given in Eq. (6). Eq. (25) is the basic dynamic equation of relative motion between two 

heliocentric displaced orbits. In general, it is difficult to carry out the stability performance directly. One feasible 

approach is to study the stable region numerically for a given set of parameters. 

3. General Solution and Invariant Manifold of Relative Motion via Displaced Orbital 

Elements 

In this section, we shall derive a general solution to the relative motion problem using Eulerian transformations, 

instead of linearizing the problem, in order to avoid possible errors. To express the relative position in the chief ’s 

rotating frame CR , we may use the frame I as an intermediate bridge [15]. The first step is to transform the deputy’s 

position vector from frame DR to frame I , and then operate a similar transformation from frame I to frame CR . The 

second step is to obtain the relative position by subtracting the two position vectors expressed in the frame CR . In 

transformations, the related Eulerian angles areΩ , i andv respectively. The relative position vector ρ is therefore 

 [ ] ( ) ( ) [ ] [ ]Ω , , Ω , , , 0, , 0,
C DC

T T
C C C D D D D D C CT i T i a H a Hv v® ®= × × -ρ I R R IR

  (27) 

The components of the relative position vector ρ is written as 
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After some mathematical operations, Eq. (28) can be expressed in a compact form  

[ ]
1 2 4 3 5 6

4 3 1 2 6 5

7 8 9

cos cos cos sin sin cos sin sin cos sin
cos cos cos sin sin cos sin sin cos sin

cos sin
C
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(29) 

where 

 ( )1 cos Ω ΩC Dx -   (30) 

 ( )2 cos sin Ω ΩD D Cix -   (31) 

 ( )3 cos cos cos Ω Ω sin sinC D C D C Di i i ix é ù- +ë û   (32) 

 ( )4 cos sin Ω ΩC D Cix -   (33) 

 ( )5 sin sin Ω ΩD D D C DH a ix -   (34) 
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 ( )6 sin cos cos sin cos Ω ΩD D C D C D C DH a i i i ix é ù- -ë û   (35) 

 ( )7 sin sin Ω ΩC D Cix -   (36) 

 ( )8 cos sin cos sin cos Ω ΩC D D C C Di i i ix - -   (37) 

 ( )9 cos cos sin sin cos Ω ΩD D C D C D C DH a i i i ix é ù+ -ë û   (38) 

  The closed-form solution in the three-dimensional configuration space constitutes the invariant manifold Â , on 

which the relative motion will evolve all the time. The expression of ρ contains two angular coordinates,

( ) 1 1,C Dv v Î ´S S , and the invariant manifoldÂ is, most likely, a typical space with continuous surfaces of a cylinder, 

torus (toroid), sphere, or truncated cone [16], etc. Such a manifold has the appearance of a smooth surface and can be 

treated as a two-dimensional Euclidean space. 

There are two qualitatively different cases, depending on whether the natural frequencies are commensurable or not. 

For the commensurable case, the ratio of the frequencies is rational, satisfying C D p q=ω ω , where ,p qÎ , and

denotes the set of natural numbers. All possible orbits in this case are closed curves onÂ . In practice, the 1:1 

commensurability is more preferable in the engineering sense, because most of the formation flying missions require 

periodic relative motion on short time scales. For the incommensurable case where the ratio of the frequencies is 

irrational, the flow onÂ is referred to as two-periodic quasi-periodic. This type of orbit unfolds along a helix on the 

surface ofÂ , meandering over the whole region ofÂ . However, every orbit winds around endlessly, never intersecting 

itself and yet never quite closing. For this case, the orbit is termed dense onÂ : in other words, each orbit comes 

arbitrarily close to any given point onÂ . This is not to say that the orbit passes through each point; it just comes 

arbitrarily close [17]. 

Consider a chief heliocentric displaced orbit, paralleled to the ecliptic plane. Note thatΩ is undefined in this case, 

however, for the sake of simplicity in form and consistency in equations, we may treatΩ as a meaningless variable that 

can be set freely, without the need to introduce the mean longitude Ωl v= + to eliminate the singularity [11], as is 

usually done. Notably this is not a restrictive assumption, as the final results are independent ofΩ . 

We use the normalized variables by setting 1Cr m= = . Let 45 , 60C Dj j= = , and the displaced orbital elements of 

the two sails are given by 

 
[ ]
[ ]

,Ω , 0.8,0 ,0 ,

,Ω , 2 7 ,5 ,90 ,

C C C C C C

D D D D D D

a ,i

a ,i

v v

v v

é ù= = ë û
é ù= = ê úë û

œ

œ
  (39) 

where( )× denotes the normalized value. Using the parameters given above, we obtain 0.5C =ω , 0.5D =ω , 0.6CH = ,

3 7DH = , 30 2 49Cβ = , 8 7 25Dβ = . 

Using Eq. (28), the closed-form solution of relative position becomes 

 [ ]
( )

( )
( )

cos sin cos sin cos cos sin
sin sin cos cos cos sin sin

sin sin cos
C

D C D D C D D C D C

D C D D C D D C D

D D D D D C

x a i H i a
y a i H i
z a i H i H

v v v v v
v v v v v

v

é ùé ù - + + -ê úê ú
ê úê ú= = + -ê úê ú
ê úê ú + -ë û ë û

R
ρ   (40) 

Since the orbit is assumed circular, the mean arguments of latitude of the chief and deputy are written as 

 0

0

mod 2

mod 2
C C C

D D D

t

t

v v p

v v p

= × +

= × +

ω

ω
  (41) 
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where
0Cv and

0Dv are the initial mean arguments of latitude of the chief and deputy. It indicates that ρ can be expressed 

as an explicit function of time. This is of great importance and advantage in understanding the dynamic nature of 

relative motion between two displaced orbits. For example, it can be used to find the bounds of relative motion, as will 

be illustrated in Sec. 4. The components of the relative position vector in Eq. (40) can be further written as 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )

1 0 0 2 0 0 3 0 4

1 0 0 2 0 0 3 0

5 0 6

cos sin sin cos cos

sin sin cos cos sin

sin

C C D D C C D D C C

C C D D C C D D C C

D D

x t t+ t t+ t

y t t+ t t+ t

z t+

k v v k v v k v k

k v v k v v k v

k v k

= - + + + + + +

= + + + - +

= +

ω ω ω ω ω

ω ω ω ω ω

ω

  (42) 

where 

 1 2 3 4 5 6cos , , sin , , sin , cosD D D D D C D D D D Ca i a H i a a i H i Hk k k k k k- -   (43) 

Fig.2 shows the three-dimensional relative orbit (dotted line) lying on the invariant manifold Â (solid line). Since the 

ratio of the angular velocities 0.5C D =ω ω is an irrational number, the motion alongÂ is quasi-periodic. Fig.3 depicts 

the relative motion projected on x-y, x-z, and y-z planes respectively. It can be clearly seen that with the given conditions, 

the invariant manifoldÂ resembles a frustum of a cone with a curved rotation surface. 

 
Fig. 2 Three-dimensional quasi-periodic relative motion and the invariant manifold it lies on 

 
Fig. 3 Projections of quasi-periodic relative motion to x-y, x-z, and y-z planes 

If the thrust pitch angle of the deputy is changed such as to guarantee the commensurability of the two angular 

velocities, then the relative motion turns to be periodic. For example, assuming arctan2 3Dj = , the normalized 

angular velocity of the deputy sail becomes 0.5D =ω , equal to that of the chief, therefore satisfying 1:1 
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commensurability (resonance). Fig.4 illustrates ten 1:1 commensurable periodic relative orbits that are evenly 

distributed on the invariant manifoldÂ with equal initial phase (mean argument of latitude) differences. Fig.5 illustrates 

the projections to x-y, x-z, and y-z planes. 

 
Fig. 4 Three-dimensional 1:1 commensurable periodic relative motion and the invariant manifold it lies on

 
Fig. 5 Projections of 1:1 commensurable periodic relative motion to x-y, x-z, and y-z planes 

Changing the ratio of the frequencies C Dω ω , more types of commensurable periodic relative orbits are obtained. As 

is shown in Fig. 6, all closed curves starting onÂ remain onÂ for all time during the motion. 
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Fig. 6 Other types of commensurable periodic relative orbits 
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4. Bounds of Relative Motion 
As illustrated above, the relative motion between displaced orbits is always bounded, lying on invariant manifold Â . 

In this section, the upper and lower bounds of each single directional motion for the incommensurable case and 1:1 

commensurable case will be studied from an analytical point of view. 

4.1 Bounds of Incommensurable Relative Orbit 
Eq. (28) provides a parametric presentation of the relative motion invariant manifold between two displaced orbits. 

For the incommensurable case, the relative orbit is quasi-periodic and ergodic, so Eq. (28) can be used to seek for the 

extreme value points of the incommensurable relative orbit. 

4.1.1 Radial bounds 

To find the bounds of radial motion, the following relationship should hold 

 ( ) ( ) ( ) ( )
3 3

1 1

,1 ,1
,1 ,3 0C C

D D D D
k kC C C

T k T kx a T k H T k
v v v= =

¶ ¶¶
= + =

¶ ¶ ¶å å   (44) 

 ( ) ( ) ( ) ( )3 3

1 1

,1 ,3
,1 ,1 0D D

D C D C
k kD D D

T k T kx a T k H T k
v v v= =

¶ ¶¶
= + =

¶ ¶ ¶å å   (45) 

From Eq. (6), note that 

 ( ),3
0, 1,2,3D

D

T k
k

v
¶

= =
¶

  (46) 

Substituting Eq. (46) into Eqs. (44) and (45) results in 

 1 2 3 4 5 6sin cos sin sin cos sin cos cos sin cos 0C D C D C D C D C Cx v v x v v x v v x v v x v x v* * * * * * * * * *- × + × + × + × + × + × =   (47) 

 3 4 1 2sin cos sin sin cos sin cos cos 0C D C D C D C Dx v v x v v x v v x v v* * * * * * * *× - × - × - × =   (48) 

where Cv * , Dv * are the mean arguments of latitude corresponding to extreme value points. 

Denoting 

 tan , tan
2 2

C D
x x

v v
l h

* *

  (49) 

Eqs. (47) and (48) are transformed into a set of quartic equations with two unknown variables xl and xh . 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
4 6 1 5 3 4 6 4 6 2 5 1 3 4 62 2 4 2 2 0x x x x x x x x x x x xx x l h x x l h x l h x x l x x h x l h x x l x h x x- + + - - + - - + + - + + + =  (50) 

 2 2 2 2 2 2
2 3 1 2 2 4 3 1 22 2 4 2 2 0x x x x x x x x x x x xx l h x l h x l h x l x h x l h x l x h x+ - - - + - + + =   (51) 

or 

 orx xl h= ±¥ = ±¥   (52) 

Note that the mapping in Eq. (49) is discontinuous at the point C πv * = and D πv * = , which corresponds to the condition 

of xl = ±¥ and xh = ±¥ . Given a favorable initial guess, Eqs. (50) and (51) can be solved in Matlab R . Accordingly,

Cv * and Dv * can be obtained from Eq. (49). Moreover, we should further check whether xl = ±¥ or xh = ±¥ correspond 

to the extreme value points by examining Eqs (47) and (48). Note that the number of solutions is infinite because of the 

existing periodic terms in Eqs. (47) and (48). Substituting Cv * and Dv * into Eq. (28) yields the extreme values of x 

components. 
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For example, assume the displaced orbital elements of the two sails are given by Eq. (39). Solving Eqs. (50), (51) and 

(52) for xl and xh yields 4 possible solutions: 

 ( ) ( ) ( ) ( )1 1 2 2 3 3 4 40, 1 ; 0, 1 ; , 1 ; , 1x x x x x x x xl h l h l h l h= = = = - =±¥ = =±¥ = -   (53) 

The mean arguments of latitude corresponding to these solutions are obtained from Eq. (49): 

 , 2C Dkπ kπ πv v* *= = +   (54) 

where kÎZ . Substituting Cv* and Dv* into Eq. (28) yields four normalized extreme value points: 

 1 2 3 41.4959956; 0.0101092; 0.1040044; 1.6101092x x x x* * * *= - = = - = -   (55) 

Fig. 7 shows the contour lines of normalized radial distance as a function of mean arguments of latitude of two sails, 

assuming [ ], 0,2C D πv v Î , and “* ” denoting the extreme value points. The solutions given by Eq. (55) can be further 

verified by Fig. 3. 
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Fig. 7 Normalized radial distance: a) 3-D view. b) Contour plot. 

4.1.2 Along-track bounds 

Likewise, to gain the bounds of along-track motion, the derivative of y with respect to Cv and Dv must be set equal to 

zero 

 ( ) ( ) ( ) ( )
3 3

1 1

, 2 ,2
,1 ,3 0C C

D D D D
k kC C C

T k T ky a T k H T k
v v v= =

¶ ¶¶
= + =

¶ ¶ ¶å å   (56) 

 ( ) ( ) ( ) ( )3 3

1 1

,1 ,3
,2 ,2 0D D

D C D C
k kD D D

T k T ky a T k H T k
v v v= =

¶ ¶¶
= + =

¶ ¶ ¶å å   (57) 

which lead to 

 4 3 2 1 6 5sin cos sin sin cos sin cos cos sin cos 0C D C D C D C D C Cx v v x v v x v v x v v x v x v* * * * * * * * * *× + × - × + × + × - × =   (58) 

 2 1 4 3sin cos sin sin cos sin cos cos 0C D C D C D C Dx v v x v v x v v x v v* * * * * * * *× + × - × + × =   (59) 

Denoting 

 tan , tan
2 2

C D
y y

v v
l h

* *

  (60) 

Eqs. (58) and (59) are therefore transformed into a set of quartic equations with two unknown variables yl and yh . 
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( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
1 5 6 4 2 5 1 1 5 3 4 6 2 1 52 2 4 2 2 0y y y y y y y y y y y yx x l h x x l h x l h x x l x x h x l h x x l x h x x+ + - + + - - + + + + - + - =  (61) 

 2 2 2 2 2 2
3 2 4 3 3 1 2 4 32 2 4 2 2 0y y y y y y y y y y y yx l h x l h x l h x l x h x l h x l x h x- + - - + + - + =   (62) 

or 

 ory yl h= ±¥ =±¥   (63) 

The set of quartic equations Eqs. (61) and (62) can be solved to get yl and yh , hence Cv * , Dv * are obtained from Eq.(60). 

However, we should further check whether yl = ±¥ or yh = ±¥ correspond to the extreme value points by examining 

Eqs. (58) and (59). Substituting Cv * and Dv * into Eq. (28) yields the extreme values of y components. 

Utilizing the same displaced orbital elements by Eq. (39) and solving Eqs. (61), (62) and (63) yields four possible 

solutions: 

 ( ) ( ) ( ) ( )1 1 2 2 3 3 4 41, 1 ; 1, 1 ; 1, 1 ; 1, 1y y y y y y y yl h l h l h l h= = = = - = - = = - = -   (64) 

Eq. (60) provides the corresponding mean arguments of latitude regarding to these solutions: 

 2, 2C Dkπ π kπ πv v* *= + = +   (65) 

Substituting Cv* and Dv* into Eq. (28) yields four normalized extreme value points: 

 1 2 3 40.6959956; 0.8101092; 0.6959956; 0.8101092y y y y* * * *= = - = - =   (66) 

Fig. 8 shows the contour lines of normalized along-track distance as a function of mean arguments of latitude of two 

sails. It can be clear seen that the extreme value points given by Eq. (66) are exactly the along-track bounds exhibited in 

Fig. 3. 
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Fig. 8 Normalized along-track distance: a) 3-D view. b) Contour plot. 

4.1.3 Cross-track bounds 

To acquire the bounds of cross-track motion, the following relationship should hold 

 ( ) ( ) ( ) ( )
3 3

1 1

,3 ,3
,1 ,3 0C C

D D D D
k kC C C

T k T kz a T k H T k
v v v= =

¶ ¶¶
= + =

¶ ¶ ¶å å   (67) 

 ( ) ( ) ( ) ( )3 3

1 1

,1 ,3
,3 ,3 0D D

D C D C
k kD D D

T k T kz a T k H T k
v v v= =

¶ ¶¶
= + =

¶ ¶ ¶å å   (68) 

Note that 
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 ( ),3
0, 1,2,3C

C

T k
k

v
¶

= =
¶

  (69) 

Hence Eqs. (67) and (68) become 

 7 8sin cos 0D Dx v x v* *× + =   (70) 

Denoting 

 tan
2

D
z

v
h

*

  (71) 

Eq. (71) is therefore transformed into a quadratic equation with only one unknown variables zh . 

 2
8 7 82 0z zx h x h x- - =   (72) 

or 

 zh = ±¥   (73) 

Eq. (72) is solved as 

 
2 2

7 7 8

8
z

x x x
h

x
± +

=   (74) 

Then we obtain Dv * from Eq. (71). Substituting Dv * into Eq. (28) yields the extreme values of z components. 

With the previously given displaced orbital elements, we have 

 1 21; 1;z zh h= = -   (75) 

Substituting Eq. (75) into Eq. (71) yields 

 2D kπ πv * = +   (76) 

And the two normalized extreme value points are obtained by substituting Dv* into Eq. (28): 

 1 20.1180461; 0.0137210z z* *= = -   (77) 

Fig. 9 illustrates the variation of normalized cross-track distance as a function of deputy sail’s mean argument of 

latitude. The extreme value points given by Eq. (77) are in accordance with the numerical representation, verifying the 

correctness of the proposed method. 
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Fig. 9 Normalized cross-track distance 
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4.1.4 Relative distance bounds 

Let r = ρ , to seek for the extreme values of relative distance, the necessary conditions are 

 
2

2 2 2 0
C C C C

x y zx y zr
v v v v

¶ ¶ ¶ ¶
= × + × + × =

¶ ¶ ¶ ¶
  (78) 

 
2

2 2 2 0
D D D D

x y zx y zr
v v v v

¶ ¶ ¶ ¶
= × + × + × =

¶ ¶ ¶ ¶
  (79) 

Unlike the method that calculates the extreme value points of radial, along-track and cross-track motion, Eqs. (78) and 

(79) will result in an equation of degree 8, and in the general cases, the expression of relative distance is difficult to be 

further simplified into a concise form. However, under some conditions, for example, when , 0 ,90C Di i = orΩ ΩC D= , 

the problem degenerates, and the search for extreme values of relative distance bounds can be transformed into seeking 

for the solution of two simple equations. Utilizing the displaced orbital elements of the two sails given by Eq. (39), Eqs. 

(78) and (79) result in 

 1 2 3sin sin cos cos sin 0C D C D Ci v v i v v i v- + - =   (80) 

 1 2 4cos cos sin sin cos 0C D C D Di v v i v v i v- + =   (81) 

where 

 1 2 3 42 cos , 2 , 2 sin , 2 sinC D D C D C D D C D Da a i a a a H i H a ii i i i- - -   (82) 

Eqs. (80) and (81) can be solved easily, and the mean arguments of latitude of extreme value points are 

 , 2C Dkπ kπ πv v* *= = +   (83) 

The relative distance bounds are 

 1 0 1 3 4 2 0 1 3 4 1 0 1 3 4 1 0 1 3 4r i i i i r i i i i r i i i i r i i i i* * * *= + + + = - + - = - - + = + - -   (84) 

where 

 2 2 2 2
0 2 cosC D C D C D Da a H H H H ii + + + -   (85) 

The normalized extreme value points are calculated from Eq. (84) as 

 1 2 3 41.5006457; 0.0170430; 0.1573270; 1.6101677r r r r* * * *= = = =   (86) 

Fig. 10 illustrates the contour lines of normalized relative distance as a function of mean arguments of latitude of two 

sails, verifying the correctness of the presented method. 
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Fig. 10 Normalized relative distance: a) 3-D view. b) Contour plot. 

4.2 Bounds of 1:1 Commensurability Relative Orbit 
To find the bounds of incommensurable relative orbit, the mean arguments of latitude of the two sails are treated as 

variables that are independent of each other, due to their ergodic nature. However for the commensurable case, time is 

the only variable. To determine the bounds of directional components, the following relationship should hold: 

 3 1
C D

C D

v v
v v ´

¶ ¶¶ ¶ ¶
= × + × =

¶ ¶ ¶ ¶ ¶
0

t t t
ρ ρ ρ   (87) 

where , ,
T

x y zt t té ù= ë ût . Consider the 1:1 commensurable case, so that 

 C D= =ω ω ω   (88) 

Therefore, Eq. (87) results in 

 0
C D C D C D

x x y y z z
v v v v v v
¶ ¶ ¶ ¶ ¶ ¶

+ = + = + =
¶ ¶ ¶ ¶ ¶ ¶

  (89) 

Denote 

 0 0tan , tan
2 2
C D

C Dγ γ
v v   (90) 

where
0Cv and

0Dv are defined in Eq. (41), and 

 tan , tan , tan
2 2 2

yx z
x y z

tt tχ χ χ
** *ωω ω

  (91) 

where xt
* , yt

* and zt
* represent the times corresponding to extreme value points of directional components. Substituting Eqs. 

(41), (42), (90) and (91) into Eq. (89) leads to 

 4 3 2
4 3 2 1 0 0x x x xχ χ + χ χs s s s s+ + + =   (92) 

 4 3 2
4 3 1 0 0y y y yχ χ χ χt t t t t+ + + + =   (93) 

 2
2 1 0 0z zζ χ ζ χ ζ+ + =   (94) 

Because the expressions of the coefficients is , it and iζ are too complex, they are given in Appendix. 

Solving Eqs. (92), (93) and (94) yields the times corresponding to extreme points. Hence the bounds of radial, 

along-track and cross-track motion can be calculated respectively according to Eqs. (41) and (42). 

Likewise, to calculate the relative distance bounds, the following expression should be satisfied 

 
2 2 2

0C D

C Dt t t
v vr r r

v v
¶ ¶¶ ¶ ¶

= × + × =
¶ ¶ ¶ ¶ ¶

  (95) 

Recalling Eq. (88), we have 

 
2 2

0
C D

r r
v v

¶ ¶
+ =

¶ ¶
  (96) 

Utilizing the displaced orbital elements of the two sails given by Eq. (39) and substituting them into Eq. (92), we 

obtain 

 ( )
( )

( )
( )

2 22 2 2
3 3 2 1 3 3 3 2 1

2
2 1 2 1

8 8
1

2 2
xχ

k k k k k k k k k

k k k k

+ + - + + -
= ± +

- -
  (97) 
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After some mathematical operations, the normalized times corresponding to extreme value points of radial motion are 

calculated from Eq. (91) as 

 ( )
( )

22
3 3 2 1

_ max
2 1

81 2 arcsin
4xt kπ

k k k k

k k
*

ì üé ù- + + -ï ïê úï ï= +í ýê ú
-ï ïê ú

ï ïë ûî þ
ω

  (98) 

 ( ) ( )
( )

22
3 3 2 1

_ min
2 1

81 2 1 arcsin
4xt k π

k k k k

k k
*

ì üé ù- + + -ï ïê úï ï= + -í ýê ú
-ï ïê ú

ï ïë ûî þ
ω

  (99) 

Substituting Eqs. (98) and (99) into Eq. (42) yields the normalized bounds of radial motion maxx and minx  

Fig. 11 shows the variation of radial distance within one period, namely [ ]0, 4t πÎ . Eqs. (98) and (99) result in

_ max 0.1003653xt
* = , _ min 6.1828200xt

* = , and the radial bounds are max 0.7428709x = - , min 0.8571291x = - . 

 
Fig. 11 The variation of radial distance. 

Likewise, Eq. (93) leads to 

 1yχ = ±   (100) 

The normalized times corresponding to extreme value points of along-track motion are calculated from Eq. (91) as 

 _ max
1 32

2yt k π* æ ö
ç ÷= +ç ÷
è øω

  (101) 

 _ min
1 12

2yt k π* æ ö
ç ÷= +ç ÷
è øω

  (102) 

The normalized bounds of along-track motion maxy and miny are obtained by substituting Eqs. (101) and (102) into Eq. 

(42). 

Fig. 12 illustrates the variation of along-track distance within one period. From Eqs. (101) and (102), we obtain

_ max 9.4247780yt * = , _ min 3.1415927yt * = , and the along-track bounds are max 0.8101092y = , min 0.6959956y = . 
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Fig. 12 The variation of along-track distance. 

Likewise, Eq. (94) results in 

 1zχ = ±   (103) 

The normalized times corresponding to extreme value points of cross-track motion are calculated from Eq. (91) as 

 _ max
1 12

2zt k π* æ ö
ç ÷= +ç ÷
è øω

  (104) 

 _ min
1 32

2zt k π* æ ö
ç ÷= +ç ÷
è øω

  (105) 

Substituting Eqs. (104) and (105) into Eq. (42) yields the normalized bounds of cross-track motion maxz and minz . 

Fig. 13 shows the variation of cross-track distance within one period. From Eqs. (104) and (105), we obtain

_ max 3.1415927zt
* = , _ min 9.4247780zt

* = , and the cross-track bounds are max 0.1180461z = , min 0.0137210z = - . 

 
Fig. 13 The variation of cross-track distance. 

In order to find the bounds of relative distance between two displaced orbits, substitute Eq. (96) into Eq. (42) to 

obtain 

 ( ) ( ) ( )( )2 2 2 2 2 2
3 4 5 6 1 3 1 5 2 4 2 4 12 2 1 2 1 2 1 2 0ς ς ς ς ςk k k k k k k k k k k k k- + - - + + - - + - - =   (106) 

where 

 ( )sinς tr
*ω   (107) 

Theoretically, Eq. (106) has four roots, but only two are meaningful: 
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1 20.6584719, 0.6501913ς ς= = -  

The normalized times corresponding to extreme value points of relative distance are calculated as 

 ( )_ max 1
1 2 arcsint kπ ςr

* = +
ω

  (108) 

 ( )_ min 2
1 2 1 arcsint k π ςr

* é ù= + +ë ûω
  (109) 

Fig. 14 shows the variation of relative distance within one period. From Eqs. (108) and (109), we obtain

_ max 1.4375732tr
* = , _ min 7.6988577tr

* = , and the relative distance bounds are max 1.1558096r = , min 1.0461162r = . 

 

Fig. 14 The variation of relative distance. 

5. Conclusions 
A new set of displaced orbital elements has been introduced to describe the position of displaced orbits, by means of 

which, the relative motion between heliocentric displaced orbits can be modeled in the chief sail’s rotating frame, and a 

closed form solution to the relative motion problem between displaced orbits were obtained. Utilizing the displaced 

orbital elements, the invariant manifold of relative motion can be determined. The orbits evolving on the manifold 

manifest periodicity for the commensurable case and quasi-periodicity (ergodicity) for the incommensurable case. 

The bounds of relative motion between displaced orbits have been calculated from an analytic point of view both for 

the incommensurable and 1:1 commensurable case. A few important conclusions can be drawn from these calculations. 

It was found that for the incommensurable case, there are four extreme values for the radial, along-track motion and 

relative distance, and two for the cross-track motion. For the 1:1 commensurable case, these values reduce to two. Some 

illustrative examples have been carried out to verify the effectiveness of the proposed theory. 

The derived expressions of quantitative relative distance bounds are of fundamental importance, because the 

knowledge of maximum distance is crucial for communication design whereas minimum distance is essential for 

collision avoidance. 

Acknowledgements 
This work was supported by the National Natural Science Foundation of China (No. 11472213) and Open Research 

Foundation of Science and Technology in Aerospace Flight Dynamics Laboratory of China (No. 2015afdl016). This 

work was also funded by Chinese Scholarship Council. 

Appendix: Relevant Coefficients in Eqs. (92), (93) and (94) 



20 

The coefficients 0 4~s s , 0 4~τ τ , 0 2~ζ ζ in Eqs. (92), (93) and (94) are given by 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2
4 4 6 2 1 5 3 1 3 2 4 6 2 6 4 2 4

2 2 2 2
3 5 1 3 1 4 6 2

2 2 4

2 2
C D D C C D

C D C D C D

γ γ γ γ γ γ

γ γ γ γ γ γ

s x x x x x x x x x x x x x x x x

x x x x x x x x

= - - - + - - - + - - + + - + -

- + - - - + + -
 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

2 2
3 4 6 2 1 5 3 1 3

2 2 2 2
2 4 6 2 6 4 2 4

2 2 2 2 2 2 2 2
3 5 1 3 1 4 6 2

2 2 1 2 2 1 2

2 2 4

2 2 2 2 2

C D C C D D C D

C D D C D C C D C D C D

C D D C D C D C C D C D C D

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ γ γ γ γ

s x x x x x x x x

x x x x x x x x

x x x x x x x x

= - - + + + - - - + - - -

+ - - - + + - - + - + - -

+ + - + - + - + - - + - +

 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )

2 2 2 2 2 2
2 4 6 2 1 5 3 1 3

2 2 2 2 2 2 2 2
2 4 6 2 6 4 2 4

2 2 2 2
3 5 1 3 1

4 2 2 2 2 2 2

1 4 1 4 4 1 2

2 2 2 2 2

C D C D C D C D C D D C C D C D

C D C D C D C D C C D D C D

C D C D C D C D C

γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ

s x x x x x x x x

x x x x x x x x

x x x x x

= - - + + + + - + - - + - + - -

+ - - - + + + - - + + - - - - +

+ + - + - - + - +( ) ( )( )2 2
4 6 22 4D D C C D C Dγ γ γ γ γ γ γx x x- - + + - + +

 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

2 2 2 2 2 2 2 2
1 4 6 2 1 5 3 1 3

2 2 2 2
2 4 6 2 6 4 2 4

2 2
3 5 1 3 1 4 6 2

2 2 2 2 2

2 2 4

2 1 2 2 1 2 2

C D C D D C D C D C C D C D

C C D D C D C D C D C D

C D C C D D C D

γ γ γ γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ

s x x x x x x x x

x x x x x x x x

x x x x x x x x

= - - + + + - + - + - + -

+ - - - + + - - + - + - -

+ + - - - + - - - - + - +

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2 2 2
0 4 6 2 1 5 3 1 3 2 4 6 2 6 4

2 4 3 5 1 3 1 4 6 2

2 2 2 2 2

4 2 2
C D C D C D C D

C D C D

γ γ γ γ γ γ γ γ

γ γ γ γ

s x x x x x x x x x x x x x x

x x x x x x x x x x

= - - + + - + - + - - + + -

+ - + + - + - + + -
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2
4 1 5 3 2 6 4 2 4 3 5 1 3 1 5 3 1

2 2 2 2
4 6 2 4 2 1 3 5

2 2 4

2 2
C D D C C D

C D C D C D

τ γ γ γ γ γ γ

γ γ γ γ γ γ

x x x x x x x x x x x x x x x x

x x x x x x x x

= + - - + - - - + + - + - - + -

- + - - - + - -
 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

2 2
3 1 5 3 2 6 4 2 4

2 2 2 2
3 5 1 3 1 5 3 1

2 2 2 2 2 2 2 2
4 6 2 4 2 1 3 5

2 2 1 2 2 1 2

2 2 4

2 2 2 2 2

C D C C D D C D

C D D C D C C D C D C D

C D D C D C D C C D C D C D

τ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ γ γ γ γ

x x x x x x x x

x x x x x x x x

x x x x x x x x

= + - + + + - - - + - - -

+ + - - + - - - + - + - -

+ + - + - + - + - - - - +

 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )

2 2 2 2 2 2
2 1 5 3 2 6 4 2 4

2 2 2 2 2 2 2 2
3 5 1 3 1 5 3 1

2 2 2 2
4 6 2 4 2

4 2 2 2 2 2 2

1 4 1 4 4 1 2

2 2 2 2 2

C D C D C D C D C D D C C D C D

C D C D C D C D C C D D C D

C D C D C D C D C

τ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ

x x x x x x x x

x x x x x x x x

x x x x x

= + - + + + + - + - - + - + - -

+ + - - + + - - - + + - - - - +

+ + - + - - + - +( ) ( )( )2 2
1 3 52 4D D C C D C Dγ γ γ γ γ γ γx x x- - + - - + +

 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

2 2 2 2 2 2 2 2
1 1 5 3 2 6 4 2 4

2 2 2 2
3 5 1 3 1 5 3 1

2 2
4 6 2 4 2 1 3 5

2 2 2 2 2

2 2 4

2 1 2 2 1 2 2

C D C D D C D C D C C D C D

C C D D C D C D C D C D

C D C C D D C D

τ γ γ γ γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ

x x x x x x x x

x x x x x x x x

x x x x x x x x

= + - + + + - + - + - + -

+ + - - + - - - + - + - -

+ + - - - + - - - - - - +

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2 2 2
0 1 5 3 2 6 4 2 4 3 5 1 3 1 5

3 1 4 6 2 4 2 1 3 5

2 2 2 2 2

4 2 2
C D C D C D C D

C D C D

τ γ γ γ γ γ γ γ γ

γ γ γ γ

x x x x x x x x x x x x x x

x x x x x x x x x x

= + - + + - + - + + - + - -

+ - + + - + - + - -
 

2
2 8 7 82 D Dζ γ γx x x= + -  

2
1 8 7 74 2 2D Dζ γ γx x x= + -  

2
0 8 7 82D Dζ γ γx x x= - -  
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