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ABSTRACT. We consider a large family F of torus bundles over the circle, and we use recent work of
Li–Mak to construct, on each Y ∈ F , a Stein fillable contact structure ξY . We prove that (i) each Stein
filling of (Y, ξY ) has vanishing first Chern class and first Betti number, (ii) if Y ∈ F is elliptic then all
Stein fillings of (Y, ξY ) are pairwise diffeomorphic and (iii) if Y ∈ F is parabolic or hyperbolic then
all Stein fillings of (Y, ξY ) share the same Betti numbers and fall into finitely many diffeomorphism
classes. Moreover, for infinitely many hyperbolic torus bundles Y ∈ F we exhibit non-homotopy
equivalent Stein fillings of (Y, ξY ).

1. INTRODUCTION

The diffeomorphism classification of symplectic fillings has been previously considered by several
authors. For the standard definitions on symplectic structures, contact structures and their symplectic
fillings we refer the reader to [6, 18]. The first classification result for symplectic fillings is due to
Eliashberg [3], who proved that a symplectic filling of the standard contact S3 is diffeomorphic to a
blowup of B4. McDuff [16] extended Eliashberg’s result to the lens spaces L(p, 1) endowed with
their standard contact structures. Ohta and Ono [20, 21] determined the diffeomorphism types of
symplectic fillings of links of simple elliptic and simple singularities endowed with their natural
contact structures. Stein fillings up to diffeomorphisms were classified by the second author [12]
for all lens spaces with their standard contact structures, by Plamenevskaya–Van Horn-Morris [22]
on L(p, 1) with other contact structures and by Starkston [23] for certain contact Seifert fibered
3–manifolds. In this paper we study Stein and symplectic fillings of infinitely many contact torus
bundles over the circle.

Below we define a large family F of closed, oriented torus bundles over S1, and in Section 2 we
use recent work of Li–Mak [11] to construct a Stein fillable contact structure ξY for each Y ∈ F .
The following is our main result.

Theorem 1.1. Let Y ∈ F . Then, each Stein filling of (Y, ξY ) has vanishing first Chern class and
first Betti number. If Y is elliptic then (Y, ξY ) admits a unique Stein filling up to diffeomorphisms. If
Y is parabolic or hyperbolic then all the Stein fillings of (Y, ξY ) share the same Betti numbers and
fall into finitely many diffeomorphism classes.

As shown in Theorems 3.1 and 3.5, for some elliptic bundles and for parabolic and hyperbolic
bundles in F the results of Theorem 1.1 hold more generally for minimal, strongly convex symplectic
fillings rather than just for Stein fillings.

We are now going to describe the family F . We will denote by TA an oriented torus bundle over
S1 with monodromy specified by a matrix A ∈ SL2(Z). It is a well-known fact (cf. [19, Lemma 6.2])
that TA is orientation-preserving diffeomorphic to TB if and only if A is conjugate in SL2(Z)
to B. Moreover, −TA is orientation-preserving diffeomorphic to TA−1 . A torus bundle TA is
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called elliptic if | trA| < 2, parabolic if | tr(A)| = 2 and hyperbolic if | tr(A)| > 2. Given
(d1, . . . , dm) ∈ Zm, m ≥ 1, we define

(1) A(d1, . . . , dm) :=

(
dm 1
−1 0

)
· · ·
(
d1 1
−1 0

)
∈ SL2(Z).

By [19, Proposition 6.3], if two m–tuples d, d′ ∈ Zm as above are obtained from each other
by a cyclic permutation then TA(d) = TA(d′) and, by [19, Theorem 6.1] TA is hyperbolic with
tr(A) < −2 (respectively tr(A) > 2) if and only if TA = T−A(d) (respectively TA = TA(d))
for some d = (d1, . . . , dm) with di ≥ 2 for all i and di ≥ 3 for some i. Moreover, by the proof
of [19, Theorem 6.1] and [19, Theorem 7.3], if

d = (n1 + 3, 2, . . . , 2︸ ︷︷ ︸
m1

, n2 + 3, 2, . . . , 2︸ ︷︷ ︸
m2

, . . . , n` + 3, 2, . . . , 2︸ ︷︷ ︸
m`

), mi, ni ≥ 0,

then −T±A(d) = T±A(ρ(d)), where

(2) ρ(d) := (m1 + 3, 2, . . . , 2︸ ︷︷ ︸
n1

,m2 + 3, 2, . . . , 2︸ ︷︷ ︸
n2

, . . . ,m` + 3, 2, . . . , 2︸ ︷︷ ︸
n`

).

The following definition is inspired by a similar definition from [13]. A blowup of a sequence
(s1, . . . , s`) of nonnegative integers is one of the following sequences:

(s1, . . . , si−1, si + 1, 1, si+1 + 1, si+2, . . . , s`), i = 1, . . . , `− 1.

If a sequence s′ is obtained from the sequence s through a finite number of blowups, we also say
that s′ is a blowup of s. Given two sequences s, c of length `, we write s ≺ c if si ≤ ci for every
1 ≤ i ≤ `, and we say that d ∈ Zm is embeddable if s ≺ ρ(d) for some blowup s of (0, 0).

We define F to be the set of torus bundles Y over the circle such that one of following holds:
(1) Y is elliptic;
(2) Y is parabolic and Y = −TA(0,−n) with n ≤ 4;
(3) Y is hyperbolic and Y = −TA(−c) with c ≥ 3;
(4) Y is hyperbolic and Y = T−A(d) with d embeddable.

Combining Proposition 4.1 and Theorem 4.4 we obtain the following.

Theorem 1.2. Let Y be a torus bundle of type T−A(ε) with ε ∈ {−1, 0, 1}, TA(1) or T−A(d) with d
embeddable. Then, the contact structure ξY is the unique universally tight contact structure on Y
with vanishing Giroux torsion.

Theorem 1.2 has led us to formulate Conjecture 1 below. Before we can state it we need to
introduce some notation. Let (W,ω) be a symplectic 4–manifold. A collection D = C1 ∪ · · · ∪ Cn
of finitely many closed, embedded, symplectic surfaces in W intersecting transversely and positively,
and such that no three of them have a point in common will be called a symplectic divisor. When the
symplectic form ω is part of a Kähler structure on W and the surfaces Ci are smooth, complex curves,
we will call D a complex divisor. When each Ci is a 2–sphere the divisor will be called spherical.

Conjecture 1. Let (X,ω) be a closed symplectic 4–manifold obtained as a symplectic blowup of
CP2 with the standard Kähler form. Suppose that

D = C1 ∪ · · · ∪ Cn ⊂ X

is a circular, spherical symplectic divisor such that Ci ·Ci ∈ {0,+1} for some i ∈ {1, . . . , n}. Then,
any contact structure induced on the boundary of a concave neighbourhood of D is universally tight.
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The paper is organized as follows. In Section 2 we use the work of Li–Mak [11] to prove The-
orem 2.5, which says that, given a bundle Y ∈ F , there exists a compact, symplectic 4–manifold
with strictly ω–concave boundary (WY , ωY ) such that ∂WY = −Y and (WY , ωY ) embeds symplec-
tically in a (deformation of) a blowup of the complex projective plane. The symplectic 4–manifolds
(WY , ωY ) are used in Section 3 to classify, up to diffeomorphisms, the Stein fillings of the contact
3–manifolds (Y, ξY ), where ξY is the positive contact structure on Y induced by the ω–concave
structure on the boundary of WY . Theorem 1.1 follows combining Theorems 3.1, 3.2 and 3.5. In
Section 3 we also prove Proposition 3.6, showing the existence of infinitely many hyperbolic torus
bundles Y ∈ F such that (Y, ξY ) admits non-homotopy equivalent Stein fillings. In Section 4 we
identify the contact structures ξY for some elliptic and hyperbolic bundles by proving Proposition 4.1
and Theorem 4.4, which imply Theorem 1.2. We also give explicit constructions of Stein fillings for
(Y, ξY ) when Y is an elliptic torus bundle of type T−A(ε) with ε ∈ {−1, 0, 1}, or TA(1).

Acknowledgements. The authors wish to thank Youlin Li for suggesting that Theorem 3.5, originally
proved for Stein fillings, might hold more generally for minimal, strongly convex symplectic fillings.
The present work is part of the authors’ activities within CAST, a Research Network Program of the
European Science Foundation. Both authors were partially supported by the PRIN–MIUR research
project 2010–11 “Varietà reali e complesse: geometria, topologia e analisi armonica”, the first author
was partially supported by the FIRB research project ”Topologia e geometria di varietà in bassa
dimensione” and by an ERC Exchange Grant.

2. CONSTRUCTION OF SYMPLECTIC CAPS

In this section we prove that for each torus bundle Y belonging to the family F of Section 1,
there exists a compact, symplectic 4–manifold with strictly ω–concave boundary (WY , ωY ) such that
∂WY = −Y and (WY , ωY ) embeds symplectically in a (deformation of) a symplectic blowup of the
standard symplectic CP2. We call a symplectic 4–manifold (WY , ωY ) as above a symplectic cap of
Y . Our main tool to construct the symplectic 4–manifolds WY will be the following theorem by Li
and Mak.

Theorem 2.1 ([11, Theorem 1.3]). Let D ⊂ (W,ω0) be a symplectic divisor. If the intersection
form of D is not negative definite and the restriction of ω0 to the boundary of a closed regular
neighborhood of D is exact, then ω0 can be deformed through a family of symplectic forms ωt on
W keeping D symplectic and such that, for any neighborhood N of D, there is an ω1–concave
neighborhood of D inside N .

In the proof of Theorem 2.5 we will apply Theorem 2.1 to certain suitable spherical complex
divisors in blowups of the complex plane CP2 endowed with their standard Kähler structure. We will
obtain the divisors that we need by blowing up the following two basic configurations of immersed
complex spheres in CP2:

(3`) three complex lines in general position;
(`C2) a line and a smooth conic in general position.

Regular neighborhoods of Configurations (3`) and (`C2) are 4–dimensional plumbings given, in the
notation of Neumann [19], by the graphs of Figure 1.

Elliptic bundles. Let TA be a torus bundle with | tr(A)| < 2. It follows from the proof of [19,
Proposition 2.1] (see [19, page 307]) that there are exactly six such torus bundles up to orientation-
preserving diffeomorphisms, i.e. T±A(ε), with ε = −1, 0, 1 (here we are using Notation (1)). We
claim that these bundles are the oriented boundaries of the six 4–dimensional plumbings given by
Figure 2. Indeed, the proof of [19, Theorem 6.1] shows that the bundle given by the graph on the left
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•+1

•+1

•+1

(3`)

+

+

+
•

• +4

+1

(`C2) + +

FIGURE 1. Plumbing graphs of the two basic configurations

•ε− 1

•+1

•0

+

+

+
•

•ε− 2

−1

+ +

FIGURE 2. Plumbing graphs for elliptic torus bundles, ε = −1, 0, 1.

•

• n

0

+ +

FIGURE 3. Plumbing graphs for parabolic bundles, n ∈ Z.

of Figure 2 has monodromy

A(1− ε, 0,−1) =

(
ε −1
1 0

)
= −A(−ε),

while the monodromy of the bundle given by the graph on the right is

A(1, 2− ε) =

(
1− ε −ε+ 2
−1 −1

)
=

(
1 −1
0 1

)
A(−ε)

(
1 −1
0 1

)−1

.

Lemma 2.2. For ε ∈ {−1, 0, 1} the graph on the left-hand side of Figure 2 is dual to the intersection
graph of a spherical complex divisor D ⊂ CP2#(3− ε)CP2, while the graph on the right-hand side
of Figure 2 is dual to the intersection graph of a spherical complex divisor D ⊂ CP2#(8− ε)CP2.

Proof. (1) Let the `1, `2, `3 be the three generic lines of the basic configuration (3`) inside CP2 with
the Fubini–Study form. Blow up CP2 at one generic point of `2 and at 2− ε generic points of `3, and
let D ⊂ CP2#(3− ε)CP2 be the proper transform of `1 ∪ `2 ∪ `3.

(2) D is obtained as the proper transform of the configuration `C2 in CP2 blown up at two generic
points of the line and at 6− ε generic points of the conic. �

Parabolic bundles. Arguing as in the proof of [19, Theorem 6.1] and using Notation (1) it is easy to
check that the boundary of the plumbing given by the graph of Figure 3 is a (parabolic) torus bundle
with monodromy A(0,−n) = − ( 1 n

0 1 ).

Lemma 2.3. For every integer n ≤ 4 the graph of Figure 3 is dual to the intersection graph of a
spherical complex divisor D ⊂ CP2#(5− n)CP2.
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Proof. When n ≤ 4 the graph of Figure 3 is the intersection graph of the proper transform of the
basic configuration (`C2) in CP2, obtained by blowing up at 4− n generic points of the conic C and
one generic point of the line `. �

Hyperbolic bundles. Let TA by a hyperbolic bundle with tr(A) < −2. As explained in Section 1,
TA = T−A(d), where d = (d1, . . . , dm) ∈ Zm, di ≥ 2 for all i and di ≥ 3 for some i, and
−T−A(d) = T−A(ρ(d)), where ρ(d) = (c1, . . . , c`) is defined by Equation (2). Moreover, by [19,
Theorem 7.1] T−A(ρ(d)) is the boundary of the 4–dimensional plumbing given by Figure 4. Using

• • • • •
−c1 −c2 −c3 −c`−1 −c`

· · ·+ + +

−

FIGURE 4. Plumbing graphs for −TA with TA hyperbolic and tr(A) ≤ −3.

Neumann’s plumbing calculus (i.e. [19, Proposition 2.1]) it is easy to check that when ` > 1 the
bundle −TA = T−A(ρ(d)) is also the oriented boundary of the plumbing given by the graph on the
left of Figure 5, while when ` = 1 it is given by the graph on the right of the same figure (observe
that in this case c1 ≥ 3 by (2)).

• • • • •
+1 −c1 + 1 −c2 −c`−1 −c` + 1

· · ·+ + +

+ •

•−c1 + 2

+1

+ +

FIGURE 5. Alternative plumbing graphs for −TA with tr(A) ≤ −3.

Lemma 2.4. Let d = (d1, . . . , dm) ∈ Zm with di ≥ 2 for all i, di ≥ 3 for some i and let
(c1, . . . , c`) = ρ(d). Suppose that either d is embeddable or ` = 1. Then, there is a spherical
complex divisor in a blowup of CP2 whose dual intersection graph equals the graph on the left of
Figure 5 if d is embeddable and the graph on the right of the same figure if ` = 1.

Proof. When ` = 1 the graph on the right of Figure 5 is dual to a spherical complex divisor
D ⊂ CP2#(c1 + 2)CP2 consisting of the proper transforms of the line and the conic of the basic
configuration (`C2). This is easily shown as in the proof of Lemma 2.3.

When d is embeddable the graph on the left of Figure 5 is dual to a spherical complex divisor inside
a blowup of CP2 consisting of the proper transforms of the three lines of the basic configuration (3`).
In order to see this, consider the configuration D0 = (3`) of three lines in general position in CP2,
and let ` be one of the lines. The line ` will correspond to the sphere with self-intersection +1 in
the final divisor. Associate the string s0 = (0, 0) to D0 and define inductively configurations Dk,
k ≥ 0, as follows. By assumption there is a sequence of blowups s0  s1  · · ·  sn = s. For
each k = 0, . . . , n− 1 the blowup sk  sk+1 determines in a natural way a symplectic blowup at a
nodal point of Dk not lying on `. We define Dk+1 as the total transform of Dk. The self-intersection
of the i–th sphere in Dk is −ski , except for i = 1 and i = k + 1, in which case the self intersection is
−ski + 1. Finally, for each i we blow up ci − si times at generic points of the i–th component of Dn

and take the resulting proper transform. �
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Existence of the symplectic caps. We are now ready to apply Theorem 2.1 in order to establish the
following theorem, which is the main result of this section.

Theorem 2.5. Let Y be a torus bundle over S1. Then, Y admits a symplectic cap WY which is a
closed regular neighborhood of a spherical complex divisor D in a deformation of a blowup of CP2

with its standard Kähler form, if one of the following conditions is verified:

(1) Y is elliptic and Y = TA(ε), with ε ∈ {−1, 0, 1}; in this case D has intersection graph dual
to the graph on the left of Figure 2;

(2) Y is elliptic and Y = T−A(ε), with ε ∈ {−1, 0, 1}; in this case D has intersection graph
dual to the graph on the right of Figure 2;

(3) Y is parabolic and Y = −TA(0,−n) with n ≤ 4; in this case D has intersection graph dual
to the graph of Figure 3;

(4) Y is hyperbolic and Y = −TA(−c) with c ≥ 3; in this case D has intersection graph dual
the graph on the right of Figure 5;

(5) Y is hyperbolic Y = T−A(d) with d embeddable; in this case D has intersection graph dual
to the graph on the left of Figure 5.

Moreover, for each of the bundles Y specified above we have b1(Y ) = 1, and the contact 3–manifold
(Y, ξY ) admits a Stein filling diffeomorphic to the complement of a regular neighborhood of the
corresponding spherical symplectic divisor D constructed in one of Lemmas 2.2, 2.3 or 2.4.

Proof. We would like to apply Theorem 2.1 to the complex divisors D appearing in Lemmas 2.2, 2.3
and 2.4. Recall that D is contained in a blowup X of the standard Kähler CP2. It is easy to check
using e.g. the statement of [19, Proposition 2.1] that −TA(ε) = T−A(−ε) for each ε ∈ {−1, 0,+1}.
Thus, in view of the three lemmas and the discussions preceding them, to apply Theorem 2.1 it
suffices to show that (i) the restriction of the Kähler form ω0 to the boundary of a closed regular
neighborhood of D is exact and (ii) for each graph Γ mentioned in the statement the corresponding
intersection matrix QΓ is not negative definite. Viewing TA as the union of two copies of a 2–torus
times an interval and applying Mayer–Vietoris yields the exact sequence

· · · −→ Z2 ⊕ Z2

(
I I
A I

)
−→ Z2 ⊕ Z2 −→ H1(TA;Z) −→ Z −→ 0.

This immediately implies:
H1(TA;Z) ∼= Z⊕ coker(A− I).

Since A ∈ SL2(Z), A − I can be singular only if A is parabolic with tr(A) = 2. But we are
considering only parabolic bundles of the form TA(0,−n), and tr(A(0,−n)) = tr(− ( 1 n

0 1 )) = −2,
therefore in all our cases coker(A− I) is a torsion group. This shows that b1(Y ) = 1 for each torus
bundle given in the statement. Let W be a closed regular neighborhood of the divisor corresponding
to TA and given by one of Lemmas 2.2, 2.3 and 2.4. By construction we have ∂W = −TA, and the
homology exact sequence of the pair (W,TA) contains the exact sequence

· · · −→ H2(TA;Z) −→ H2(W ;Z)
QΓ−→ H2(W,TA;Z) −→ H1(TA;Z) −→ H1(W ;Z) −→ 0.

From this sequence we deduce

H1(TA;Z) ∼= Z⊕ coker(QΓ),

and therefore coker(QΓ) ∼= coker(A− I). Since coker(A− I) is a torsion group we conclude that
QΓ is nonsingular, hence the map H2(TA;Z) → H2(W ;Z) vanishes. This implies that if [F ] ∈
H2(TA;R) is the class carried by a torus fiber of the fibration TA → S1 and i∗ : H2(TA;R) →
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H2(X;R) is the map induced by inclusion, we have i∗([F ]) = 0. Therefore, when we evaluate on
[F ] the restriction of [ω0] ∈ H2(X;R) to H2(TA;R) we get

〈i∗[ω0], [F ]〉 = 〈[ω0], i∗[F ]〉 = 0.

Since H2(TA;R) is generated by [F ] we conclude i∗([ω0]) = 0, i.e. the restriction of ω0 to TA is
exact. Finally, QΓ is never negative definite, as one can easily check by looking at the corresponding
intersection graph Γ. We can therefore apply Theorem 2.1 as explained at the beginning. Theorem 2.1
implies that there is a one-parameter family of symplectic forms on X which interpolates between the
Kähler form ω0 and a symplectic form ω1, with the property that any neighborhood of D contains an
ω1–concave neighborhood. Since X is compact, a Moser-type argument produces a diffeomorphism
φ : X → X such that φ∗ω1 = ω0. Pushing forward via φ the integrable complex structure J0

compatible with ω0 yields an integrable complex structure J1 compatible with ω1. Setting Y = TA,
we obtain a symplectic capWY from any ω1–concave neighborhood ofD. Moreover, the complement
X ′ in X of the interior of WY , endowed with the complex structure J1, is a strictly pseudo-convex
surface in the sense of [2]. By [2, Theorem 2’] there is a small deformation of X ′ which is a Stein
filling of (Y, ξY ). This concludes the proof. �

3. FILLINGS

In this section we prove Theorem 1.1. The theorem will follow combining Theorems 3.1, 3.2
and 3.5 below. At the end of the section we prove Proposition 3.6, which shows that the family
{(Y, ξY ) | Y ∈ F} contains infinitely many contact hyperbolic torus bundles admitting non-homotopy
equivalent Stein fillings with even intersection forms and the same Betti numbers.

Theorem 3.1. Let Y be a torus bundle over S1 such that one of the following holds:
(1) Y is elliptic and Y = TA(ε) with ε ∈ {−1, 0,+1};
(2) Y is hyperbolic and Y = −TA(−c) with c ≥ 3;
(3) Y is hyperbolic and Y = T−A(d) with d embeddable.

Then,
• each minimal, strongly convex symplectic filling of (Y, ξY ) has vanishing first Chern class

and first and third Betti numbers;
• in Cases 1 and 2 the contact 3–manifold (Y, ξY ) admits a unique minimal, strongly convex

symplectic filling up to diffeomorphisms;
• in Case 3 all the minimal, strongly convex symplectic fillings of (Y, ξY ) share the same

second Betti number and fall into finitely many diffeomorphism classes.

Proof. Cases 1, 2 and 3 of the statement correspond respectively to Cases 1, 4 and 5 of Theorem 2.5.
In all cases the dual intersection graph of the symplectic divisor D ⊂ WY contains at least three
vertices, one of which has weight +1. This latter vertex corresponds to an embedded symplectic
sphere S ⊂WY with self-intersection +1.

We first deal with Cases 1 and 3. If we blow up symplectically WY at a nodal point of D
away from S, the total transform D̃ ⊂ ŴY := WY #CP2 contains at least four spheres. Notice
that the boundary of the symplectic cap ŴY is still strongly ω–concave and the contact structure
induced on the boundary is still ξY . Let P be a minimal, strongly convex symplectic filling of
(Y, ξY ). Since the boundary of ŴY is strongly ω–concave, we can construct a closed symplectic
4–manifold (X,ω) by symplectically gluing the cap ŴY and P together along Y after possibly
rescaling the symplectic form on one of the two pieces. Since D̃ ⊂ ŴY , X contains an embedded
symplectic +1-sphere S. Hence, by [16, Theorem 1.1 and Corollary 1.6] X is symplectomorphic to
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a symplectic blowup of CP2 endowed with the standard Kähler form, in such a way that S represents
the hyperplane class. Since b1(Y ) = b1(ŴY ) = 1 and b1(X) = b3(ŴY ) = 0, the Mayer–Vietoris
exact sequence of homology groups associated to the decomposition X = ŴY ∪ P shows that
b1(P ) = b3(P ) = 0. We can choose an ω–tame almost complex structure J on X which makes all
the symplectic spheres in D̃ pseudo-holomorphic. Let S′ ⊂ D̃ be one of the two symplectic spheres
intersecting S. By construction D̃′ := D̃ \ S′ consists of a chain of k symplectic spheres for some
k ≥ 3; their self-intersection numbers are (1, 1− b1,−b2, . . . ,−bk). By [12, Theorem 4.2] there is a
sequence of symplectic blowdowns of X to CP2 such that D̃′ blows down to the union of two lines
`∪ `′ ⊂ CP2. Moreover, at each step the almost complex structure descends, and, since P is minimal,
the exceptional divisor that we blow down either intersects the configuration positively once or
belongs to the configuration. During this process the sphere S′ blows down to a smoothly embedded
symplectic sphere intersecting both ` and `′ exactly once, hence S′ blows down to a line. It follows
that D̃ blows down to a generic configuration C of three generically embedded symplectic spheres
which are pseudo-holomorphic with respect to an almost complex structure tamed by the standard
Kähler form on CP2. By a theorem of Gromov [9] (see also [23, Lemma 2.7]) the embedding of such
three symplectic spheres in general position is unique up to isotopy. Therefore, up to isotopy we may
assume that C coincides with a basic configuration (3`) of three complex lines. This means that the
configuration D̃ is obtained from (3`) via a sequence of blowups. Since the homology class carried
by the divisor (3`) is Poincaré dual to c1(CP2), we conclude that c1(X) is Poincaré dual to [D̃]. In
particular, c1(P ) = 0, the total number of blowups must be N = 9 − [D̃]2, and the second Betti
number of P is determined to be b2(P ) = N + 1− b2(WY ). The homology classes carried by the
symplectic spheres comprising D̃ are determined as in [12, Theorem 4.2], up to a little proviso: one
needs to pay attention to the way S′ intersects the other sphere S′′ which intersects S nontrivially.
Since we made sure that D̃ contains at least four spheres, S′ and S′′ intersect trivially. This implies
that if we denote by h the hyperplane class and by ei the classes of the exceptional divisors, since both
[S′] and [S′′] are of the form h+

∑
ciei and there exists exactly one index i such that the coefficient

ci in both expressions is nonvanishing (and equal to −1). Indeed, one can check that the exceptional
divisor corresponding to ei comes from blowing up two lines of (3`) at their intersection point, and
that there is a divisor in D̃ carrying a class ei −

∑
j 6=i xjej for some xj ≥ 0. But there are clearly

finitely many possible sequences of blowups compatible with the above construction, and exactly
one (up to reordering) in Case 1. It follows that the diffeomorphism type of the complement of a
neighborhood of D̃ ↪→ X ∼= CP2#NCP2 is uniquely determined in Case 1, and determined up to
finitely many possiblities in Case 3. This concludes the proof in Cases 1 and 3.

The proof in Case 2 is quite similar, so we just outline the differences with the previous cases.
In this case we do not blow up WY at the beginning, so we consider directly the closed symplectic
4–manifold X = WY ∪ P , where P is a minimal, strongly convex symplectic filling. By the
same argument as above, X is symplectomorphic to a blowup of CP2 and b1(P ) = b3(P ) = 0.
The symplectic divisor D is a union of smoothly embedded symplectic spheres S and S′, where
S · S = +1, S′ · S′ = −c1 + 2 with c1 ≥ 3 and [S] = h, where h is the hyperplane class of X .
Moreover, the adjunction formula for S′ and the fact that S · S′ = 2 imply [S′] = 2h−

∑
i ei, where

the classes ei are the exceptional classes. As before, this implies thatD blows down to a configuration
of two symplectic spheres in CP2, one representing h and the other 2h. But the moduli space of
smoothly embedded symplectic curves in the class 2h in CP2 is connected and each pair of points
determines a unique pseudo-holomorphic line [9], hence up to isotopy we may assume that D blows
down to a basic configuration (`C2). Since there is clearly a unique way (up to reordering) to blow
up (`C2) to get D, the diffeomorphism type of P is uniquely determined. Since the homology class
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carried by (`C2) is Poincaré dual to c1(CP2), we conclude as in Cases 1 and 3 that c1(X) is Poincaré
dual to [D] and c1(P ) = 0. �

Theorem 3.2. Let Y be an elliptic torus bundle over S1 of the form Y = T−A(ε), with ε ∈ {−1, 0, 1}.
Then, all Stein fillings of (Y, ξY ) have vanishing first Chern class and first Betti number, and they are
pairwise orientation-preserving diffeomorphic.

Proof. Let (P, J) be a Stein filling of (Y, ξY ). We start by arguing that c1(P ) = 0. By Honda’s
classification [10], there is only one isotopy class of contact structures without Giroux torsion on
an elliptic bundle Y . Since fillable contact structures have no Giroux torsion [5], both ξY and its
conjugate ξY belong to this isotopy class. Since J is another Stein structure on P which fills ξY ,
applying [14, Theorem 1.2] we conclude c1(P ) = 0.

The elliptic bundles Y of type T−A(ε) are considered in Case 2 of Theorem 2.5, which says that Y
has a symplectic cap WY and the corresponding divisor D has intersection graph Γ dual to the graph
on the right of Figure 2. Therefore, there are smoothly embedded symplectic spheres S1, S2 ⊂WY

with S1 · S1 = −1, S2 · S2 = ε− 2 and S1 · S2 = +2. The exceptional symplectic sphere S1 ⊂WY

allows us to write WY = W ′Y #CP2, where W ′Y is a symplectic cap of Y diffeomorphic to a closed
neighborhood of an immersed nodal symplectic sphere S′2 with self-intersection 2 + ε. Moreover, it
is easy to check that c1(W ′Y ) = PD(S′2).

Let X ′ be a closed symplectic 4–manifold obtained by gluing the symplectic cap W ′Y to P along
their common boundary. First of all we want to argue that b+2 (X ′) = 1. Smoothing the singularity of
S′2 we obtain a smoothly embedded 2–torus with self-intersection 2 + ε > 0 inside X ′. But such a
torus violates the adjunction inequality, which is known to hold for closed, symplectic 4–manifolds
with b+2 > 1. Therefore we must have b+2 (X ′) = 1.

Now we claim that c1(X ′) = PD(S′2) ∈ H2(X ′) (we are going to use Z coefficients throughout
the proof). Observe that each of the cohomology classes c1(X ′) and PD(S′2) both restrict as 0 to
H2(P ) and as c1(W ′A) to H2(W ′Y ). Therefore, in order to show that they are equal it suffices to
check that the map H2(X ′) → H2(P ) ⊕H2(W ′Y ) appearing in the Mayer–Vietoris sequence for
the decomposition X ′ = P ∪W ′Y is injective. This follows from the fact that the restriction map
H1(W ′Y ) → H1(Y ) is surjective. The latter is equivalent, by Poincaré duality and the homology
exact sequence of the pair (W ′Y , Y ), to the fact that the mapH2(Y )→ H2(W ′Y ) induced by inclusion
is the zero map, which follows immediately from the fact that S′2 · S′2 6= 0. Therefore the claim is
established.

Observe that, if ω is the symplectic form on X ′, the claim implies

c1(X ′) · [ω] =

∫
S′2

ω > 0.

Thus, we can apply Theorem [15, Theorem B], which says that if (X,ω) is a closed, symplectic
4–manifold with b+2 (X) = 1 and KX · [ω] < 0 then X is either rational (i.e. a blowup of CP2)
or ruled, i.e. a symplectic sphere bundle. We conclude that X ′ is either rational or ruled, and we
claim that X ′ cannot be ruled. In fact, suppose the contrary, and let B be the base. Observe that
χ(X ′) = χ(B)χ(S2) = 2χ(B). Moreover, from the Mayer–Vietoris sequence of the decomposition
X ′ = N ∪ (X ′ \ N), where N is a regular neighborhood of a fiber, it is easy to deduce that
1 ≤ b2(X ′) ≤ 2. Since the class of a symplectic fiber is nontrivial and of square zero, this
immediately implies σ(X ′) = 0. Therefore we have c1(X ′)2 = 3σ(X ′) + 2χ(X ′) = 4χ(B),
contradicting the fact that c1(X ′)2 = 2 + ε with ε ∈ {−1, 0, 1}. We conclude that X ′ must be
rational, i.e. symplectomorphic to an r–fold blowup of CP2. This implies c2

1(X ′) = 9 − r, with
r ∈ {6, 7, 8}, and therefore c1(X ′) = PD(S′2) = 3h−e1−· · ·−er, where h is the hyperplane class
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and the classes ei the exceptional classes. Arguing as in the proof of Theorem 3.1 we can deduce
that S′2 is the proper transform of an r–fold blowup of a nodal pseudo-holomorphic cubic in CP2.
Since the moduli space of pseudo-holomorphic nodal cubics is connected [4, Theorem 13], it follows
that the diffeomorphism type of P is determined, and given by the complement of a neighborhood of
the strict transform of a nodal holomorphic cubic in an r–fold blowup of CP2, with r ∈ {6, 7, 8}.
Finally, using the fact that b1(W ′Y ) = 1 and b1(X ′) = 0 and arguing as in the proof of Theorem 3.1
shows that b1(P ) = 0. �

Lemma 3.3. Let (X,ω) be a closed, symplectic 4–manifold containing the configuration Σ of two
transverse symplectic spheres described by the plumbing of Figure 3 for n = 4. If X \ Σ is minimal,
then either X = CP2#CP2 and Σ is the strict transform of the configuration (`C2) blown up at
a generic point of the line, or X = S2 × S2 and Σ is the union of S2 × {∗} and the graph of a
holomorphic map S2 → S2 of degree 2. In both cases the first Chern class of X vanishes on X \ Σ.

Proof. Let S1, S2 be the two symplectic spheres of Σ, with S1·S1 = 0, S1·S2 = +2 and S2·S2 = +4.
By [16, Corollary 1.5], the pair (X,S2) is an r–fold blowup of either (CP2, q) or (S2×S2,Γ), where
q is a conic, Γ is the graph of a holomorphic map S2 → S2 of degree 2, and the exceptional spheres
in X are all disjoint from S2. Call e1, . . . , er the exceptional homology classes.

If (X,S2) is a blowup of (CP2, q), let h be the homology class of a complex line in CP2, so that
[S2] = 2h. The conditions S1 · S2 = 2 and S1 · S1 = 0 imply [S1] = h −

∑
xiei, with exactly

one index i such that xi = 1, while xj = 0 for each j 6= i. By positivity of intersections [17]
each exceptional sphere is disjoint from Σ, and since X \ Σ is minimal this means that r = i = 1.
Moreover, the Poincaré dual of c1(X) equals [S1] + [S2], and the statement is proved in this case.

If (X,S2) is a blowup of (S2×S2,Γ) then [S2] = 2s+f , where s = [S2×{∗}] and f = [{∗}×S2].
We have [S1] = as + bf −

∑
xiei, with a, b, xi ≥ 0 by positivity of intersections. Imposing that

S1 · S2 = 2 we obtain a+ 2b = 2, therefore either (a, b) = (2, 0) or (a, b) = (0, 1). Imposing that
S1 · S1 = 0 we obtain that xi = 0 for each i. Finally, the adjunction formula excludes the case
(a, b) = (2, 0), hence [S1] = f , and positivity of intersections implies that each exceptional sphere
in X is disjoint from Σ. Therefore, since X \ Σ is minimal, in this case we have r = 0. As in the
previous case c1(X) = [S1] + [S2], and the statement is proved. �

Lemma 3.4. For n > 4 the configuration of two symplectic spheres described by the plumbing of
Figure 3 does not embed in any closed, symplectic 4–manifold.

Proof. Suppose by contradiction that there exists a closed symplectic 4–manifold (X0, ω0) containing
two embedded spheres S0

1 , S0
2 of self-intersection 0 and n respectively, with S0

1 · S0
2 = 2. Let (X,ω)

be the symplectic 4–manifold obtained by blowing up X0 at n − 4 generic points of S0
2 . Let

e1, . . . , en−4 be the corresponding exceptional classes, and S1, S2 the proper transforms of S0
1 and

S0
2 , respectively. Now S1 ·S1 = 0, S2 ·S2 = 4 and S1 ·S2 = 2. Notice that [S2] ·e1 = 1, and therefore

the homology class [S2] cannot be even. By Lemma 3.3, and since [S2] is not even, (X,ω) must be a
blowup of S2 × S2 with [S1] = f , [S2] = 2s+ f , where s = [S2 ×{∗}] and f = [{∗}× S2] and all
the exceptional spheres are disjoint from S1 ∪ S2. This contradicts the fact that [S2] · e1 = 1. �

Theorem 3.5. Let Y be a parabolic torus bundle over S1 of the form Y = −TA(0,−n) with n ≤ 4.
Then, all minimal, strongly convex symplectic fillings of (Y, ξY ) have vanishing first Chern class
and first and third Betti numbers, and second Betti number equal to 4 − n. Moreover, if n < 4
they are pairwise orientation-preserving diffeomorphic, while if n = 4 they fall into at most two
diffeomorphism classes.

Proof. Let P be a strongly convex symplectic filling of (Y, ξY ). Let WY be the symplectic cap
of Theorem 2.5, Case 3, and let X be the closed, symplectic 4–manifold obtained by gluing WY
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and P together. The spherical symplectic divisor D is contained in X , and therefore X contains a
symplectic sphere F having self-intersection 0 and a symplectic sphere C of self-intersection n, with
F · C = 2. Thus, according to [16, Theorem 1.4 and Corollary 1.5], X is symplectomorphic to a
symplectic blowup of a symplectic S2–bundle p : X0 → B, in such a way that F is mapped to a fiber.
Let e1, . . . , eN ∈ H2(X;Z) be the exceptional classes. Recall that a basis of the group H2(X;Z) is
given by the classes [S], [F ], e1, . . . , e`, where S is a section of p. Moreover, both [S] and [F ] are
orthogonal to the classes ei and [S] · [F ] = 1. Therefore we have [C] = 2[S] + a[F ] +

∑
i xiei for

some a, xi ∈ Z. We now claim that the base B of the fibration has genus g = 0. In fact, suppose by
contradiction that g > 0. Then, there exist α, β ∈ H1(B;R) such that 〈α ∪ β, [B]〉 6= 0. Viewing
H2(X0;R) as the subspace of H2(X;R) consisting of those classes which vanish on e1, . . . , e`, we
have

〈p∗(α) ∪ p∗(β), [C]〉 = 〈p∗(α) ∪ p∗(β), 2[S] + a[F ]〉 =

= 〈α ∪ β, p∗(2[S] + a[F ])〉 = 2〈α ∪ β, [B]〉 6= 0.

On the other hand, since C is a sphere the group H1(C;R) vanishes, therefore

〈p∗(α) ∪ p∗(β), [C]〉 = 0.

This contradiction shows that g = 0. That is, X0 fibers over CP1. Since there are two symplectic
fibrations over CP1 up to symplectomorphism, this means that X is either a blowup of CP2#CP2 or
a blowup of S2× S2. In the first case [F ] = h− e1 and [C] = ah−

∑
biei, where h is the class of a

line in CP2 and a > 0, bi ≥ 0 by positivity of intersections [17]. In the second case [F ] = f and
[C] = as+ bf −

∑
ciei, where s = [S2 × {∗}], f = [{∗} × S2] and by positivity of intersections

a, b, ci ≥ 0. Notice that in both cases we have b1(X) = 0. Since b1(WY ) = b1(Y ) = 1, the same
Mayer–Vietoris argument used in the proof of Theorem 3.1 shows that b1(P ) = b3(P ) = 0. When
n = 4 the statement follows directly from Lemma 3.3, therefore from now on we assume n < 4. Our
strategy will be to reduce the case n < 4 to the case n = 4.

We first analyze the case when X is a blowup of CP2#CP2. We have three equations satisfied by
n, a and the numbers bi. The first one comes from the self-intersection of C, the second one from
the adjunction formula and the third one from the fact that C intersects F twice. They are given,
respectively, by:

(3)

 n = a2 −
∑
b2i ,

3a−
∑
bi = n+ 2,

a− b1 = 2

Subtracting the third equation from the second in (3) we obtain

(4) 2a−
∑
i>1

bi = n.

The third equation in (3) implies that a2 − b21 = a2 − (a− 2)2 = 4a− 4. Substituting this into the
first equation in (3) we get

(5) 4a− 4−
∑
i>1

b2i = n.

Now we subtract twice Equation (4) from Equation (5), obtaining∑
i>1

(2bi − b2i ) = 4− n.
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Since n ≤ 4, the sum on the left-hand side must be nonnegative. For each index iwe have 2bi−b2i ≤ 1,
and equality holds if and only if bi = 1, therefore there must be at least 4− n indices i > 1 such that
bi = 1. If there were m > 4− n indices i1, . . . im such that bi1 = · · · = bim = 1, by blowing down
the corresponding exceptional spheres we would obtain a configuration C ′ ∪ F of symplectic spheres
in a closed symplectic 4–manifold contradicting Lemma 3.4. Therefore there must be exactly 4− n
indices i > 1 for which bi = 1. It follows that for all other indices j we have bj ∈ {0, 2}. However,
by positivity of intersections, bj = 0 corresponds to an exceptional divisors ej disjoint from C ∪ F ,
against our assumption of minimality on the filling P . On the other hand, if bj = 2 and j > 1 then
the class h− e1 − ej is a represented by an exceptional sphere disjoint both from C and F , again
contradicting the minimality of P .

We conclude that total number of of exceptional classes is exactly N = 5−n, and that a = b1 + 2
and b2 = · · · = bN = 1. Substituting these values in the second equation of (3) we obtain a = 2 and
b1 = 0. Summarizing, in this case X is symplectomorphic to CP2#(5− n)CP2 and the spheres F
and C are represented respectively by classes h− e1 and 2h− e2 − · · · − e5−n. Moreover, from the
Mayer–Vietoris sequence we get b2(P ) = 4− n.

Recall that in the second case, i.e. when X is a blowup of S2 × S2, we have [F ] = f and
[C] = as+ bf −

∑
ciei, where s = [S2 × {∗}], f = [{∗} × S2] and by positivity of intersections

a, b, ci ≥ 0. In fact, the minimality of P implies ci > 0 for each i. Keeping in mind that the canonical
class of S2 × S2 is Poincaré dual to −2s− 2f , the analogues of Equations (3) are

(6)

 n = 2ab−
∑
c2
i ,

2a+ 2b−
∑
ci = n+ 2,

a = 2.

Manipulating the equations as in the previous case we obtain∑
i≥1

(2ci − c2
i ) = 4− n,

from which we deduce that ci ∈ {1, 2} for each i. Finally, we observe that if ci = 2, the class
f − ei is represented by an exceptional sphere disjoint from C ∪ F , contradicting the minimality
of P . Therefore ci = 1 for each i and b = 1. We conclude that X is symplectomorphic to
(S2 × S2)#(4 − n)CP2 and the classes of F of C are given by f and 2s + f − e1 − · · · − e4−n
respectively. As before, the Mayer–Vietoris sequence yields b2(P ) = 4− n.

As in the proof of Theorem 3.1, up to isotopy we may assume that D = F ∪ C is the strict
transform of a configuration (`C2) or S2 × {∗} ∪ Γ, each of which carries a homology class Poincaré
dual to c1(X). Therefore, in each of the two cases the complement K in X of a regular neighborhood
of the configuration D is determined up to diffeomorphisms and the restriction of c1(X) to K
vanishes. This implies that the symplectic filling P belongs to one of the two diffeomorphism classes
above and that c1(P ) = 0.

In order to finish the proof it suffices to show that if n < 4 the complements of regular neighbor-
hoods of the configuration in the two cases are diffeomorphic.

Observe that CP2#2CP2 contains an exceptional sphere R representing the characteristic class
h − e1 − e2 and a symplectic sphere T with [T ] = h − e1 and T ∩ R = ∅. This implies that
CP2#2CP2 is a symplectic blowup of a a spin, symplectic 4–manifold Z containing a symplectic
sphere of square zero. By the results of [16], Z is diffeomorphic to S2 × S2. This shows that there
is a symplectomorphism ψ : CP2#2CP2 → (S2 × S2)#CP2, sending the class h− e1 − e2 to the
exceptional class e and the class h− e1 to f . It is easy to check that ψ must also send the homology
class 2h − e2 to the homology class 2s + f − e. Gromov’s results [9] imply that, up to isotopy,
ψ maps the strict transform of a line representing the class h− e1 to the strict trasforn of a sphere
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{∗} × S2 representing the class f , and the strict transform of a conic representing the class 2h− e2

to the strict transform of a graph Γ representing the homology class 2s+ f − e. Clearly, for each
m ≥ 2 there is a symplectomorphism between CP2#mCP2 and S2 × S2#(m − 1)CP2 with the
same properties. This shows that the complements of regular neighborhoods of the configuration in
the two cases are diffeomorphic to each other, and concludes the proof. �

In view of Theorem 3.1, it is natural to wonder how many diffeomorphism types of strongly
convex, minimal symplectic fillings a given contact hyperbolic torus bundle (Y, ξY ) may have. We
do not answer this question in general, but we are able to establish the following result.

Proposition 3.6. There exist infinitely many contact hyperbolic torus bundles (Y, ξY ) admitting
non-homotopy equivalent Stein fillings.

Proof. Let us denote by Γ(1, 1− c1,−c2, . . . ,−c`−1, 1− c`) the graph on the left of Figure 5. Inside
a blowup CP2#CP2 of the standard Kähler CP2 we can easily find a spherical complex divisor
D(1, 0,−1, 0) having dual intersection graph Γ(1, 0,−1, 0) and whose complex spheres represent
homology classes h, h− e1, e1 and h− e1, where h is the hyperplane class and e1 is the exceptional
class. Blowing up at the appropriate nodal point of the divisor and taking its proper trasform we
get a spherical complex divisor D(1,−1,−1,−2, 0) inside CP2#2CP2 with dual intersection graph
Γ(1,−1,−1,−2, 0). Blowing up again we get a divisorD(1,−1,−2,−1,−3, 0) inside CP2#3CP2,
whose spheres represent the classes h, h− e1 − e2, e2 − e3, e3, e1 − e2 − e3 and h− e1, where the
classes ei are the exceptional classes. Now we blow up in two different ways. First we blow up in
such a way as to obtain a divisor D1 = D(1,−2,−1,−3,−1,−3, 0) ⊂ CP2#4CP2, with spheres
representing the classes:

h, h− e1 − e2 − e4, e4, e2 − e3 − e4, e3, e1 − e2 − e3 and h− e1.

Then, we blow up so as to obtain a divisor D2 = D(1,−1,−3,−1,−2,−3, 0) ⊂ CP2#4CP2, with
spheres representing the classes:

h, h− e1 − e2, e2 − e3 − e4, e4, e3 − e4, e1 − e2 − e3 and h− e1.

Finally, we suitably blow up another five times at smooth points of both D1 and D2, so that upon
taking proper transforms we obtain two distinct divisors D(0)

1 and D(0)
2 inside CP2#9CP2 with the

same dual intersection graph Γ(1,−2,−3,−3,−2,−3,−2).
Let P (0)

i , for i = 1, 2, denote the closure of a regular neighborhood W (0)
i of D(0)

i . We claim that
P

(0)
1 and P (0)

2 are not homotopy equivalent. For the rest of this proof, whenever we mention homology
groups we shall always implicitly use integer coefficients. Using the definition of W (0)

i one can check
that the second homology group H2(W

(0)
i ) is free of rank 7. Let X be the complex projective plane

blown up nine times. Using the Mayer–Vietoris sequence for the decomposition X = W
(0)
i ∪ P (0)

i

one can check that H2(P
(0)
i ) is free Abelian of rank 4, and that its image j∗(H2(P

(0)
i )) under the

map induced by the inclusion j : P
(0)
i → X is isometric, as an intersection lattice, to H2(P

(0)
i )/〈T 〉,

where 〈T 〉 denotes the free, rank-1 subgroup generated by the class of the torus fiber in the boundary
(pushed in the interior), which coincides with the kernel of the intersection pairing on H2(P

(0)
i ). This

implies that the isometry class of the intersection lattice j∗(H2(P
(0)
i )) is determined by the homotopy

type of P (0)
i . We claim that j∗(H2(P

(0)
1 )) and j∗(H2(P

(0)
2 )) are not isometric to each other, which in

turn implies that P (0)
1 and P (0)

2 are not homotopy equivalent. To prove the claim we shall use the fact
that, for i = 1, 2, j∗(H2(P

(0)
i )) is isometric to the lattice Λ

(0)
i orthogonal to the image of H2(Wi)
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under the map induced by the inclusion Wi ⊂ X . To see this fact one may observe that, given any
a ∈ H2(X) orthogonal to all the homology classes of the spheres belonging to the divisor Di ⊂Wi,
one can represent a by a smooth, oriented surface disjoint from Di, and therefore a ∈ j∗(H2(Pi)).

We now set out to compute the determinant of Λ
(0)
i . The classes of the spheres of D(0)

1 are

h, h− e1 − e2 − e4, e4 − e5 − e6, e2 − e3 − e4, e3 − e7, e1 − e2 − e3, h− e1 − e8 − e9,

while the classes of the spheres of D(0)
2 are

h, h− e1 − e2 − e5, e2 − e3 − e4, e4 − e6 − e7, e3 − e4, e1 − e2 − e3, h− e1 − e8 − e9.

A direct calculation shows that the sublattice Λ
(0)
1 of H2(CP2#9CP2) orthogonal to the classes of

D
(0)
1 has integral basis:

α1 = e5 − e6, α2 = e1 + e3 − e4 − e5 + e7 − e8, α3 = e8 − e9.

On the other hand, the sublattice Λ
(0)
2 orthogonal to the classes of D(0)

1 has integral basis:

β1 = e6 − e7, β2 = −3e1 − 2e2 − e3 − e4 + 5e5 − e6 + 3e9, β3 = e8 − e9.

This shows that the lattices Λ
(0)
1 and Λ

(0)
2 are both even. The intersection matrix (αi · αj) has

determinant −20, while the intersection matrix (βi · βj) has determinant −180, therefore Λ1 and Λ2

are not isometric, and P (0)
1 and P (0)

2 are not homotopy equivalent. Moreover, applying Theorem 2.1
and the results of [2] as in the proof of Theorem 2.5 shows that P (0)

1 and P (0)
2 can be endowed with

structures of Stein fillings of (−T−A(3,3,3,2,3,3), ξ−T−A(3,3,3,2,3,3)
).

This example belongs to an infinite family of examples obtained as follows. We blow up at N ≥ 1

generic points of the sphere of D(0)
1 representing e2 − e3 − e4, and at N generic points of the sphere

of D(0)
2 representing e4 − e6 − e7. Taking proper transforms we get spherical complex divisors

D
(N)
i ⊂ CP2#(N + 9)CP2 having dual intersection graphs Γ(−1,−2,−3,−3 −N,−2,−3,−2)

and determining Stein fillings P (N)
i , i = 1, 2. Arguing as for D(0)

i , we get that the orthogonal lattice
Λ

(N)
1 has integral basis

α1, α2, α3, α4 = e9 − e10, α5 = e10 − e11, . . . αN+6 = eN+8 − eN+9,

while Λ
(N)
2 has integral basis

β1, β2, β3, β4 = e9 − e10, β5 = e10 − e11, . . . βN+6 = eN+8 − eN+9.

Then, an inductive computation yields

det(αi · αj) = (−1)N+1(9N + 20) and det(βi · βj) = (−1)N+19(9N + 20).

This shows that P (N)
1 and P (N)

2 are non-homotopy equivalent and carry structures of Stein fillings of
the same contact hyperbolic bundle for each N ≥ 0. �

4. IDENTIFYING THE CONTACT STRUCTURES

In this section we use Honda’s classification [10] of tight contact structures on torus bundles
over the circle (see also [7]) to identify the contact structures ξY for elliptic bundles of the form
Y = T−A(ε), with ε ∈ {−1, 0, 1} and Y = TA(1), as well as for the hyperbolic bundles of
Theorem 1.1(4). We also give explicit constructions of Stein fillings for (Y, ξY ) when Y is elliptic as
above.
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Proposition 4.1. Let Y be an elliptic torus bundle of the form Y = T−A(ε), with ε ∈ {−1, 0, 1} or
Y = TA(1). Then, the contact structure ξY is the unique tight contact structure on Y with vanishing
Giroux torsion. Moreover, ξY is universally tight.

Proof. The bundles in question are associated to the monodromies

−A(−1) =
(

1 −1
1 0

)
, −A(0) =

(
0 −1
1 0

)
, −A(1) =

(−1 −1
1 0

)
and A(1) =

(
1 1
−1 0

)
.

Defining S = A(0) and T = ( 1 1
0 1 ), it is easy to check that the first monodromy is conjugate to

−(T−1S)2, the second and third ones are equal, respectively, to −S and −T−1S and the last one
to T−1S. Then, Honda’s classification [10] implies that on the associated bundles there is only
one isotopy class of tight contact structures without Giroux torsion, and that this isotopy class is
universally tight (there are no virtually overtwisted contact structures on these bundles). Since fillable
contact structures have no Giroux torsion [5], the contact structure ξY must be isotopic to the unique
tight contact structure on Y without Giroux torsion. �

It might be interesting to see an explicit construction of a Stein filling of (Y, ξY ) for the bundles
of Proposition 4.1. It follows from the proposition and the fact that fillable contact structures have
no Giroux torsion [5] that ξY is the unique Stein fillable contact structure on Y . Therefore, in order
to exhibit a Stein filling of (Y, ξY ) it suffices to construct a single Stein 4–manifold with boundary
X such that ∂X = Y . Starting from the obvious Kirby diagrams corresponding to the graphs of
Figures 2 and 3 and using Kirby calculus it is a simple matter to check that each of the torus bundles
T−A(ε), ε ∈ {−1, 0, 1}, is the boundary of the 4–dimensional plumbing given in Figure 6. In the

T−A(−1) : • • • • • • • •

•

−2 −2 −2 −2 −2 −2 −2 −2

−2

T−A(0) : • • • • • • •

•

−2 −2 −2 −2 −2 −2 −2

−2

T−A(1) : • • • • •

•

•

−2 −2 −2 −2 −2

−2

−2

FIGURE 6. Plumbings bounding the elliptic bundles T−A(ε), ε ∈ {−1, 0, 1}.

same way it is easy to check that the bundle TA(1) is the boundary of the smooth 4–dimensional
handlebody obtained by attaching a 4–dimensional 2–handle to the 4–ball along the right-handed
trefoil knot in S3 with framing 0. Using e.g. the results of [8] it is straightforward to check that each
one of the smooth 4–manifolds just described carries a Stein structure with boundary and therefore
gives a Stein filling of the corresponding torus bundle.
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We now consider hyperbolic bundles. Let Y by a hyperbolic torus bundle with Y = TA and
tr(A) < −2. Then, as explained in Section 1, Y = T−A(d), where d = (dm, dm−1, . . . , d1), di ≥ 2
for all i and di ≥ 3 for some i. Moreover, by [19, Theorem 6.1] Y is the oriented boundary of the
4–dimensional plumbing P−(d) given by the diagram of Figure 7.

• • • • •
−dm −dm−1 −dm−2 −d2 −d1

· · ·+ + +

−

FIGURE 7. Plumbings P−(d) bounding the hyperbolic bundles T−A(d).

Lemma 4.2 ([7, 10]). T−A(d) carries (d1 − 1)(d2 − 1) · · · (dm − 1) tight, virtually overtwisted
contact structures up to isotopy and one universally tight contact structure with no Giroux torsion up
to contactomorphisms.

Proof. One can easily check that −A(d) = −T−d1ST−d2S · · ·T−dm−1ST−dmS, where S = A(0)
and T = ( 1 1

0 1 ). The results of [7, 10] are written in terms of such a factorization of −A(d), and they
immediately imply the statement (see e.g. the table on page 90 of [10]). �

Lemma 4.3. Let Y by a hyperbolic torus bundle with Y = T−A(d). Then, each virtually overtwisted
tight contact structure on Y admits a Stein filling P with b1(P ) = 1.

Proof. Figure 8 represents the front diagram of a Legendrian link L inside the standard contact
S2 × S1 viewed as S3 with a 3–dimensional 1–handle attached (see e.g. [8]). Recall that there is no
need to specify the over/under information at each crossing of the diagram, because the over-strand
is always the one with smaller slope. Label the components of the link L as L1, . . . , Lm from left
to right, with Lm being the component going over the 1–handle. Orient the components so that
lk(Lm, L1) = −1 and lk(Lj , Lj+1) = 1 for any 1 ≤ j < m, and Legendrian stabilize dj − 2 times
each component. For each index j, Lj becomes a Legendrian unknot (which we keep denoting
Lj) with tb(Lj) = −dj + 1. Since there are dj − 1 ways to stabilize an oriented Legendrian knot
dj − 2 times, for each j we get dj − 1 isotopy classes of such unknots, distinguished by their rotation
numbers. We can then attach a 4–dimensional Stein handle along each Lj to S2 × S1 viewed as
the boundary of B4 union a 4–dimensional 1–handle, obtaining

∏
j(dj − 1) Stein structures with

boundary on the smooth 4–dimensional plumbing P−(d). Notice that π1(P−(d)) = Z, and in
particular b1(P−(d)) = 1. We now want to argue that the

∏
j(dj − 1) Stein 4–manifolds we just

. . . .

FIGURE 8. The Legendrian link L

described yield distinct isotopy classes of contact structures on ∂P−(d) = T−A(d). Fix a choice of
stabilizations, or equivalently the m-tuple r = (r1, . . . , rm) = (rot(L1), . . . , rot(Lm)) of rotation
numbers of the components of L, and let Jr, ξr be the associated Stein structure on P−(d) and
induced contact structure on T−A(d), respectively. Also, let Sj be the homology class carried by
the oriented j-th sphere of the plumbing obtained by capping off an oriented disk bounding Lj with
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the core of the attached 4–dimensional 2–handle. Since 〈c1(Jr), Sj〉 = rj , by [14, Theorem 1.2]
the contact structures ξr, ξr′ corresponding to the two m-tuples r, r′ can be isotopic only if r = r′.
Thus, the collection {ξr}r consists of (d1 − 1)(d2 − 1) · · · (dm − 1) pairwise nonisotopic contact
structures on T−A(d), each admitting a Stein filling P with b1(P ) = 1. In view of Lemma 4.2, in
order to finish the proof it suffices to show that ξr is virtually overtwisted for every r. Consider the
double cover P̃−(d)→ P−(d) associated to the subgroup 2Z ⊂ Z = π1(P−(d)). If we denote with

d′ the string (d, d), it is easy to check that P̃−(d) = P+(d′), where P+(d′) is the plumbing described
by the diagram of Figure 9. Moreover, by the proof of [19, Theorem 6.1] we have ∂P+(d′) = TA(d′).

• • • • • •
−dm −dm−1 −d1 −dm −d2 −d1

· · · · · ·+ ++

+

FIGURE 9. The 4–dimensional plumbing P+(d′).

The Stein structure Jr on P−(d) pulls back to a Stein structure J̃r on P̃−(d), obtained by attaching
Stein handles along suitably oriented and stabilized components of the Legendrian link L′ =
L′1 ∪ · · · ∪ L′2m of Figure 10. With the orientations and stabilizations just described, L′i and L′i+m

. . . . . .

FIGURE 10. The Legendrian link L′

acquire the same rotation number ri for all i (where it is understood that L′2m+1 = L′1).
We want to compare the Stein structures Jr on P+(d′) with the Stein structures constructed by

Bhupal and Ozbagci on the same 4–manifold [1]. Let S′j ∈ H2(P+(d′)), j = 1, . . . ,m, be the
homology class carried by the oriented spheres obtained by capping off an oriented disk bounding L′j
with the core of the 4–dimensional 2–handle. Observe that S′j · S′j+1 = +1 for j = 1, . . . ,m − 1.
Now we choose further homology classes S′j ∈ H2(P+(d′)), j = m+ 1, . . . , 2m, carried by spheres
obtained by capping off disks as before, but we orient the spheres so that S′j · S′j+1 = 1 for every
i (where it is understood that S′2m+1 = S′1). This implies that the classes S′m+1, . . . , S

′
2m are

carried by spheres obtained by capping off oriented discs bounding −L′m+1, . . . ,−L′2m. Therefore
〈c1(J̃r), S

′
j〉 = rj if 1 ≤ j ≤ m, while 〈c1(J̃r), Sj〉 = −rj for m < j ≤ 2m. On the other hand,

according to [1, Proposition 11] for each universally tight contact structure on ∂P+(d′) = TA(d′)

there is a Stein structure J on P+(d′) such that 〈c1(J), S′j〉 = ε(dj − 2) for each j, where ε = ±1
is independent of j (to check the orientations of the spheres see [1, Figure 6]). Applying [14] we
conclude that, in order for the contact structure ξ̃r induced on TA(d′) to be universally tight, we
would need to have dj = 2 for each j. But this contradicts our assumption that dj ≥ 3 for at least
one j. Therefore, each ξ̃r is virtually overtwisted, and so is ξr. This concludes the proof. �

We are now ready to state our result for hyperbolic bundles.
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Theorem 4.4. Let Y by a hyperbolic torus bundle with Y = T−A(d) with d embeddable. Then, the
contact structure ξY is the unique universally tight contact structure on Y with vanishing Giroux
torsion.

Proof. By Theorem 2.5 the contact structure ξY is Stein fillable, and by [5] it has no Giroux torsion.
Suppose that ξY is virtually overtwisted. Then, by Lemma 4.3, (Y, ξY ) admits a Stein filling P with
b1(P ) = 1. But by Theorem 3.1 each Stein filling of (Y, ξY ) has vanishing first Betti number. This
shows that ξY is universally tight, and Honda’s classification [10] implies that on the underlying
bundle there is only one isotopy class of universally tight contact structures without Giroux torsion
(see e.g. the table of [10, Page 90]). �
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