
Analytical Solution of the Optimal Steering Law for Non-Ideal Solar Sail

Lorenzo Niccolai, Alessandro A. Quarta∗, Giovanni Mengali

Department of Civil and Industrial Engineering, University of Pisa, I-56122 Pisa, Italy

Abstract

This paper analyzes the problem of finding the optimal steering law for a flat solar sail whose propulsive ac-
celeration is described by an optical force model. In particular, the problem amounts to looking for the optimal
direction of the unit vector normal to the sail plane that maximizes the projection of the propulsive acceleration
along a given direction. Starting from the known results from the literature, according to which a close form
solution for the general case of not (fully) specularly reflecting sail cannot be retrieved, the propulsive acceleration
is approximated by a mathematical model that closely resembles the classical optical force model. Using this new
approach, the solution of the optimal steering law is shown to be written in an analytical form that is fully general
and extremely accurate. In this sense, the proposed mathematical model may effectively be used to analyze the
impact of the thermo-optical characteristics of the sail film on the optimal steering law within a wide range of
different mission scenarios.
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Nomenclature

A = function of θ and B, see Eq. (38)
As = sail area, [ m2]
a = propulsive acceleration, [ mm/s2]
ac = spacecraft characteristic acceleration, [ mm/s2]
a⊥, a‖ = components of the propulsive acceleration along n̂ and t̂, respectively, [ mm/s2]
ar, an = components of the propulsive acceleration along r̂ and n̂, respectively, [ mm/s2]
B = reduced force coefficient
Bb, Bf = non-Lambertian coefficients of the back and front sail surface
b1, b2, b3 = solar sail force coefficients
D = function of θ and B, see Eq. (40)
f = auxiliary function
J = performance index
m = spacecraft mass, [ kg]
n̂ = normal unit vector
P = plane spanned by r̂ and q̂
P⊕ = solar radiation pressure at r = 1 au, [ N/m2]
Q = polynomial in x
q̂ = fixed unit vector
r = Sun-spacecraft vector, with r = ‖r‖, [ au]
r⊕ = reference distance (1 au)
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s = specular reflection fraction of sail film
t̂ = unit vector parallel to the sail plane
x = auxiliary variable
α = cone angle, [ deg]
α? = optimal cone angle, [ deg]
α̃ = cone angle corresponding to a local maximum of J , [ deg]
ε = error parameter
ε = emissivity of sail film
η = reduction coefficient of the sail thrust in the η-perfect reflection model
θ = cone angle of q̂, [ deg]
θi = function of B, with i = 1, 2, 3, 4
ρ = reflection coefficient of sail film
φ = function of θ and B, see Eq. (39)

Subscripts

a = approximated
max = maximum
min = minimum
b = back surface
f = front surface

Superscripts

∧ = unit vector

1. Introduction

The solar sail concept represents one of the most promising innovations within the field of low thrust
propulsion systems, as is clearly demonstrated by the recent success of the Japanese mission IKAROS [1],
when a small solar sail was first deployed and then actively controlled in interplanetary space [2, 3]. The
renewed impulse received by the photonic-based space propulsion is also confirmed by two new planned
NASA missions that are going to be equipped with a solar sail [4, 5].

For these reasons, it is extremely useful to have suitable mathematical tools to be used during the mission
analysis of a solar sail-based spacecraft. In most cases the solar sail trajectory is analyzed within an optimal
framework, by looking for the steering law that maximises a given scalar performance index, which usually
coincides with the total flight time. The literature involving such a subject, starting from the pioneering
work by Zhukov and Lebedev [6], offers several examples [7, 8, 9] in which the optimal steering law is studied
as a function of the physical characteristics of the solar sail reflecting film, that is, of the so called sail force
model.

The simplest sail force model, referred to as ideal model, consists in assuming the propulsive acceleration
equivalent to that obtained from a flat and specularly reflecting solar sail [10]. The ideal model can be refined
by taking into account the thermo-optical characteristics of the reflecting film, but retaining the fundamental
assumption of flat solar sail. This corresponds to the optical force model. The sail billowing effect due to
the solar radiation pressure is accounted for in the so called parametric force model [11], which relates the
thrust vector direction with the sail attitude orientation through an interpolation of numerical-experimental
data. However, the optical force model is the best compromise between accuracy and simplicity of the
model. In fact, the parametric model is not much used in a preliminary mission analysis for several reasons:
it is tailored on a specific sail configuration and requires specific experimental data, it is difficult to update
during the mission when, for example, the sail degradation effects must be taken into account, and it is more
complex to insert within an optimization algorithm.

The algorithms needed for calculating the optimal steering law in analytic form are extremely important,
since they assure a significant reduction of the computational time for simulating the spacecraft optimal
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trajectories, especially when the solar sail has medium or low performance. Even in the simplified case of a
flat solar sail, that is, neglecting any billowing effect, a fully analytical solution of the optimal steering law is
available only when the propulsive acceleration is assumed to be directed along the normal to the sail plane.
This happens, for example, in the ideal case of fully specular reflection of the impinging photons [7], or in the
case of imperfect reflectivity that simply reduces by a factor of η < 1 the magnitude of the solar radiation
pressure force (with respect to the ideal case) without altering its direction [12]. The simplified force models
are still used in optimization problems for mission applications, in order to reduce their complexity and
computational costs [13, 14]. However, as is thoroughly discussed in Ref. [9], when a more realistic reflection
model is used [15, 16, 17, 18], as it happens for the optical force model [11], the optimal control law cannot
be obtained in a completely analytical form. Even though the approach described in Ref. [9] has been shown,
along the years, to be a useful tool for analyzing the optimal performance of a solar sail with an optical force
model in various mission scenarios [19], the algorithm proposed in Ref. [9] has some intrinsic limitations. In
fact, the determination of the optimal direction of the normal to the sail plane, which must be calculated
at each simulation step, requires the use of a root-finding method.

The aim of this work is to start from the exact mathematical model of Ref. [9] and to introduce a suitable
approximation to the propulsive acceleration model such that the optimal steering law may be obtained in
a completely analytical form. It will be shown that the new solution turns out to be extremely accurate and
capable of describing the impact of the thermo-optical characteristics of the sail film on the optimal steering
law within a wide range of mission scenarios.

2. Solar sail propulsive acceleration model

The propulsive acceleration a of a flat solar sail, at a distance r from the Sun, can be conveniently
described by means of the optical force model [9, 11, 10] as

a =
2P⊕As
m

(r⊕
r

)2
(n̂ · r̂) [b1 r̂ + (b2 n̂ · r̂ + b3) n̂] (1)

where P⊕ = 4.563µN/m2 is the solar radiation pressure at a distance r = r⊕ , 1 au from the Sun, As is the
sail area, m is the solar sail-based spacecraft total mass, r̂ is the Sun-sail (radial) unit vector, and n̂ is the
unit vector normal to the sail plane in the direction opposite to the Sun, see Fig. 1.
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Figure 1: Flat solar sail characteristic angles.
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In Eq. (1), b1, b2, and b3 are the force coefficients, defined as

b1 =
1− ρ s

2
(2)

b2 = ρ s (3)

b3 =
Bf ρ (1− s)

2
+

(1− ρ) (εf Bf − εbBb)
2 (εf + εb)

(4)

where ρ is the reflection coefficient, s is the fraction of photons that are specularly reflected, Bf (or Bb) is
the non-Lambertian coefficient of the front (or back) sail surface, εf (or εb) the emissivity coefficient of the
front (or back) sail surface. Note that in the special case n̂ ≡ r̂ (i.e., for a Sun-facing sail) and r = r⊕, the
modulus of the propulsive acceleration is usually called spacecraft characteristic acceleration and is referred
to as ac. From Eq. (1), it is found that

ac =
2P⊕As
m

(b1 + b2 + b3) (5)

which represents the standard performance metric in the solar sail field. In particular, the value of ac depends
on the geometrical characteristics of the sail (through the sail surface), the thermo-optical characteristics of
the sail film and the spacecraft total mass.

Some special cases can be obtained from Eq. (1). For example, when all of the photons are reflected
(ρ = 1) with specular reflection (s = 1), the force coefficients reduce to b1 ≡ b3 = 0 and b2 = 1. This
model provides the maximum theoretical propulsive acceleration of a solar sail and is usually referred to as
“ideal” sail force model. In that case [11], the modulus of the propulsive acceleration at a given distance r
from the Sun only depends on the square of the cosine of the cone angle α, defined as the angle between
r̂ and n̂. Another special case is obtained for a perfectly absorbing (ρ = 0) and uniform (εf = εb and
Bf = Bb) solar sail, whose force coefficients are b1 = 1/2 and b2 ≡ b3 = 0. In all of the other intermediate
cases, characterized by an incomplete reflection and/or a partial re-emission of the impinging photons, what
Forward [20] expressively call “grey” solar sails, the force coefficients depend on the physical characteristics
of the sail’s reflecting film. For example, the force coefficients corresponding to a sail film with a highly
reflective aluminum coated front side and a highly emissive chromium-coated backside are given Tab. 1.
These data come from a study developed at JPL in 1978 for a rendezvous mission (eventually ruled out) to

model ρ s Bf Bb εf εb b1 b2 b3
ideal 1 1 2/3 2/3 0 0 0 1 0

JPL-1978 0.88 0.94 0.79 0.55 0.05 0.55 0.0864 0.8272 −0.0055
JPL-2015 0.91 0.94 0.79 0.67 0.025 0.27 0.0723 0.8554 −0.0030

Table 1: Optical and force coefficients for a flat solar sail with an ideal [11] and an optical [10, 21] force model.

the Halley’s comet using a solar sail as the primary propulsive system [10]. The corresponding mathematical
model will now be referred to as JPL-1978 model.

The force coefficients of the JPL-1978 model have been assumed, along the years, as the reference data
for the performance estimation of a realistic solar sail. Recently [21], these data have been revised with
the aid of new experimental tests conceived in support of NASA’s solar sail missions NEA Scout [4] and
Lunar Flashlight [5]. The new values of the thermo-optical coefficients of the reflecting film and of the
force coefficients are summarized in Tab. 1. A solar sail with these new characteristics will be referred to as
JPL-2015 model. Using the data of Tab. 1, the coefficient b2 for both JPL-1978 and JPL-2015 configurations
is about 15% smaller than the same coefficient for an ideal sail. Also, b1 is about 1/10 of b2, while b3 is
very small, on the order of a few thousandths. Just this smallness of |b3| is at the heart of a new analytical
solution of the optimal control law that is discussed later on.

Before proceeding on, it is useful to note that the propulsive acceleration vector a can equivalently be
decomposed along two orthogonal directions, characterized by unit vectors n̂ (normal to the sail) and t̂
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(parallel to the sail plane). Accordingly, the propulsive acceleration can be written as

a = a⊥ n̂ + a‖ t̂ (6)

where, taking into account Eq. (1), it is found that

a⊥ =
2P⊕As
m

(r⊕
r

)2 [
(b1 + b2) cos2 α+ b3 cosα

]
(7)

a‖ =
2P⊕As
m

(r⊕
r

)2
b1 sinα cosα (8)

3. Known results for the optimal steering laws

A classical problem involving the optimal control of a flat solar sail consists of finding the orientation
of the normal unit vector n̂ (or that of the symmetry axis for an axially symmetric solar sail [22]) which
maximizes the projection of the propulsive acceleration a along a given unit vector q̂, see Fig. 1. A first
example of this kind of problem is obtained when a minimum-time transfer trajectory between two given
heliocentric orbits is sought using an indirect approach [7]. In that case the optimal control law is found by
maximizing, at any time, the projection of the propulsive acceleration along the direction of the Lawden’s
primer vector [23]. A second example comes from the problem of increasing the semimajor axis of the
solar sail osculating orbit by maximizing the projection of â along the direction of the spacecraft inertial
velocity [24, 25].

In mathematical terms, for a given unit vector q̂, the problem of maximizing the projection of a (given by
Eq. (1)) along q̂ amounts to finding the unit vector n̂ that maximises, at any instant, the scalar performance
index J defined as

J , (n̂ · r̂) [b1 r̂ · q̂ + (b2 n̂ · r̂ + b3) n̂ · q̂] (9)

In the special case when q̂ ≡ r̂, J takes its maximum if n̂ = r̂, that is, for a Sun-facing solar sail. Indeed,
in that case Eq. (9) becomes an increasing function of the scalar variable n̂ · r̂ only. Another particular
situation happens when q̂ = −r̂. Equation (9) states that the maximum value of J is zero, and this is
obtained when n̂ is orthogonal to the Sun-sail line, i.e. when n̂ · r̂ = 0 and the propulsive thrust vanishes,
see Eq. (1).

The general case when q̂× r̂ 6= 0 is, instead, more involved. According to Ref. [9], a necessary condition
for maximizing J is that n̂ belongs to the plane P spanned by q̂ and r̂ and may be written as

n̂ =
sin(θ − α)

sin θ
r̂ +

sinα

sin θ
q̂ (10)

where the cone angles θ ∈ [0, π], and α ∈ [0, π/2] are defined as

α , arccos (n̂ · r̂) , θ , arccos (q̂ · r̂) (11)

Note that the limitation α < π/2 comes from the fact that the propulsive acceleration cannot have a radial
component pointing towards the Sun, whereas the direction of q̂ (and therefore θ) is free of such a constraint.
The problem is now to find the optimal sail cone angle α = α? that maximizes J . Substituting Eqs. (10)-(11)
into (9), the performance index reduces to

J = cosα [b1 cos θ + (b2 cosα+ b3) cos (θ − α)] (12)

For a given triplet {b1, b2, b3}, the optimal cone angle is [9]

α?(θ) =

α̃(θ) if J |α=α̃(θ) > 0

π/2 if J |α=α̃(θ) ≤ 0
(13)

where α̃(θ) is the sail cone angle that meets the necessary and sufficient conditions for a local maximum of
J , viz.

∂J

∂α

∣∣∣∣
α=α̃(θ)

= 0 ∩ ∂2J

∂α2

∣∣∣∣
α=α̃(θ)

< 0 (14)
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An analytical form of the function α̃(θ) is available for an ideal force model only, see Tab. 1, and the solution
was first discover by Sauer in 1976 [7]. It is given by

tan α̃(θ) =
−3 cos θ +

√
8 + cos2 θ

4 sin θ
if b1 = b3 = 0 (15)

Notably, a simplified version of this solution exists, since, using some trigonometrical identities, it can be
verified that

α̃(θ) =

θ − arcsin

(
sin θ

3

)
2

if b1 = b3 = 0 (16)

Unfortunately, for the general optical force model, i.e. when b1 6= 0 and b3 6= 0, the treatment of Ref. [9]
shows than an analytical solution in the form α̃ = α̃(θ) cannot be obtained from Eqs. (14). Indeed, the
solution of Eqs. (14) is

tan θ =
sin α̃

(
3 b2 cos2 α̃+ 2 b3 cos α̃+ b1

)
3 b2 cos3 α̃+ 2 b3 cos2 α̃− 2 b2 cos α̃− b3

(17)

while the condition J |α=α̃(θ) > 0 in Eq. (13) translates into

J |α=α̃(θ) > 0 if α̃ < arccos

(
−b1 b3 − 2 b2 b3 +

√
b21 b

2
3 − 4 b1 b23 b2 + 8 b21 b

2
2 + 4 b32 b1

4 b1 b2 + 2 b22

)
(18)

which constraints the maximum admissible value of α̃. For example, for a JPL-1978 model, Eq. (18) provides
α̃ < 72.6 deg, while for the JPL-2015 case the result is α̃ < 74.2 deg, see Tab. 1. In both cases these numbers
are well below the maximum admissible value of 90 deg, which can be reached by an ideal solar sail. In fact,
in the ideal case, substituting b1 = b3 = 0 in Eq. (18), it is found that J |α=α̃(θ) > 0 when α < 90 deg, which

implies that Eq. (16) is valid for any α within its admissible range of variation.
The algorithm for calculating the optimal steering law, which is thoroughly discussed in Ref. [9], can be

summarized as follows. For a given value of θ, the value of α̃ is first found from Eq. (17) using a numerical
approach. The corresponding optimal cone angle α? is calculated from Eq. (13) taking into account the
constraint of Eq. (18). Finally, the optimal direction of n̂ is obtained from Eq. (10) with the substitution
α = α?. As stated, such a procedure requires the numerical solution of a root-finding problem for each
value of θ, and can therefore become computationally expensive when the optimal thrust direction must be
calculated many times. This happens, for example, when the optimal trajectory of a low-performance solar
sail is sought, since the computation of n̂ must be repeated for each integration step of the equations of
motion. A possible simplification of the procedure can be obtained when the thermo-optical characteristics
of the sail are given, that is, when the triplet {b1, b2, b3} is fixed. In that case the function α̃ = α̃(θ) can
be obtained by interpolation from Eq. (17), but this approach introduces some unavoidable errors in the
evaluation of n̂. Also, it is not very flexible, as the interpolating function must be changed whenever a force
coefficient is changed. This may occur, for example, due to a variation of the reflecting film material [26],
or to the availability of new experimental measurements [21], or even to the sail degradation effects during
the mission [27, 28].

For these reasons the next section describes a new approach that allows the optimal sail cone angle to
be calculated in an analytical form. This result is based on a suitable simplification of the functional J that
has only a very minor effect on the estimate of the optimal direction of n̂.

4. Analytical solution of the optimal steering law

As stated in the previous section, an analytical solution of the optimal steering law for a solar sail is
possible only in the case of an ideal force model. In the general case when the three force coefficients
b1, b2 and b3 are all different from zero, the obstacle against an analytic version of the optimal steering
law is represented by the difficulty of inverting Eq. (17) in the form α̃ = α̃(θ). However, it will now be
shown that this problem becomes analytically solvable provided a suitable approximation is introduced in
the mathematical (force) model. Such an approximation is based on the fact that the reflecting film of
a conventional solar sail is designed such to draw the sail performance up to that of an ideal (perfectly
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reflecting) solar sail. Clearly, this remark does not apply to solar sails whose surface contains electrochromic
material [29, 30] with optical properties that can be varied on application of a voltage. The use of those
materials is useful for different applications, including the possibility of varying the modulus of the propulsive
thrust without changing the solar sail attitude [31, 32, 33], or that of generating suitable torques for attitude
control, as recently shown by the Japanese solar sail demonstrator IKAROS [34, 35, 36].

Returning to a conventional solar sail, its performance approaches that of an ideal sail provided the force
coefficient b2 is much greater than b1 and b3 (recall that for an ideal sail b2 is the only coefficient different
from zero). This is confirmed by the data reported in Tab. 1 where in both cases involving the JPL sail the
ratio b1/b2 is about 0.1, while the ratio |b3/b2| is a few thousandths only. This last remark is now used for
a suitable simplification of the sail force model. To this end, note that Eq. (1) can be equivalently rewritten
in terms of a component ar along the radial direction r̂, and a component an along the normal n̂ to the sail
nominal plane, that is, a = arr̂ + ann̂, with

an =
2P⊕As
m

(r⊕
r

)2
f cosα (19)

where f is an auxiliary function defined by

f , b2 cosα+ b3 (20)

Assuming that the cone angle is not close to its maximum value of 90 deg, an excellent approximation of
f can be easily found. Recalling that |b3/b2| is very small, one would be tempted to simply neglect b3
compared to b2 and set

f ' f0 , b2 cosα (21)

However, a better approximation exists. This is given by

f ' fa , (b2 + b3) cosα (22)

which is obtained by formally replacing b3 with b3 cosα in Eq. (20). The superiority of the approximation
fa with respect to f0 can be verified by introducing the relative error, defined as

ε ,

∣∣∣∣∣a(a)n − anan

∣∣∣∣∣ (23)

where a
(a)
n is the approximate form of an, obtained by substituting either f0 or fa in place of f into Eq. (19).

A comparison between the errors induced by approximations of Eqs. (21) and (22) is shown in Fig. 2,
where the value of b3 in Eq. (22) is −0.0030, equal to that corresponding to a JPL-2015 model, see Tab. 1.
Clearly, the approximation with fa is better than that with f0 for all cone angles. Replacing therefore f
with fa in Eq. (19), and noting that

ε ≡
∣∣∣∣fa − ff

∣∣∣∣ =

∣∣∣∣ (b3/b2) (cosα− 1)

(b3/b2) + cosα

∣∣∣∣ (24)

the impact of the relative error on the obtainable results can be parameterized as a function of the ratio
b3/b2, see Fig. 3(a). The figure shows that as long as |b3/b2| < 0.01 and α < 80 deg, the relative error ε is
less than 5%. Assuming, for example, α ≤ 75 deg, for a JPL-1978 model the error is less than 2%, while for
the JPL-2015 case it is below 1%, see Fig. 3(b). Finally note that the approximation (20) does not affect
the component ar along the radial direction r̂, which indeed remains unchanged.

There is an interesting, physical, interpretation of the approximation f ' fa that deserves some com-
ments. In fact, when b3 is replaced with b3 cosα as per Eq. (20), the component of the propulsive acceleration
normal to the sail plane, see Eq. (7), becomes

a⊥ =
2P⊕As
m

(r⊕
r

)2
η cos2 α (25)

where
η , b1 + b2 + b3 (26)
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Figure 2: Relative error ε obtained with approximation f0 (dotted line) and fa with b3 = −0.0030 (solid line) as a function of
cone angle α.

Notably, Eq. (25) coincides with the sail acceleration of the so called η-perfect reflection (η-PR) model [12].
The new approximate model, which will be referred to as η-optical reflection (η-OR) model, is therefore
mathematically described by Eq. (6), where a⊥ is given by Eq. (25) and a‖ is obtained from Eq. (8). The
η-OR model represents an improvement of the η-PR model, which does not account for the sail acceleration
component parallel to the sail plane, and is nearly coincident with the optical force model, the only (minor)
difference between the two models being in the cosα that multiplies b3 in the a⊥ component. The advantage
of the η-OR is that, unlike the classical optical force model, the former allows an analytical solution of the
optimal control law to be found, as is now shown.

4.1. Optimal cone angle

When Eq. (22) is substituted into Eq. (12), the functional to be maximized takes the following new
expression

J

b2 + b3
' Ja , cosα [B cos θ + cosα cos (θ − α)] (27)

where

B ,
b1

b2 + b3
(28)

is a sort of reduced force coefficient that relates the approximate functional Ja with the thermo-optical
characteristics of the reflecting film. In the spirit of approximation (22), and observing that b2 + b3 > 0, the
cone angle α?a that maximizes Ja turns out to be an estimate of the optimal cone angle α? that maximizes
J .

From a mathematical viewpoint, for a given value of B, the function α?a = α?a(θ) must meet the same
conditions given by Eqs. (13)-(14) when J is formally substituted with Ja, α? with α?a, and α̃ with α̃a, where
α̃a = α̃a(θ) is the solution of the necessary condition ∂Ja/∂α = 0. The advantage of using Ja instead of J
is that it is possible to obtain a simple analytic expression of α̃a as a function of θ. To prove this claim,
first note that cosα ≥ 0 within the range of variation of the cone angle. Therefore, Ja satisfies the following
relation

Ja(α) > 0 when tan θ < −cos2 α+B

cosα sinα
(29)

with
∂Ja
∂α

= 3 sin θ cos3 α− 3 cos θ sinα cos2 α− 2 sin θ cosα−B cos θ sinα (30)
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(a) Level curve of ε, see Eq. (24).
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Figure 3: Relative error ε as a function of cone angle α and the ratio b3/b2.

In the special case of θ = π/2, the previous equation states that ∂Ja/∂α = 0 if α = arccos
√

2/3.
Recalling that α ∈ [0, π/2], and using the substitution

α , arctanx with x ≥ 0 (31)

Eqs. (29) and (30) can be rewritten in terms of the new auxiliary variable x as

Ja(x) > 0 when tan θ < −B x− B + 1

x
(32)

and
∂Ja
∂α

= −
cos θ

[
B x3 + 2 tan θ x2 + (B + 3) x− tan θ

]√
(x2 + 1)

3
with θ 6= π/2 (33)
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respectively. From the last relation, the necessary condition ∂Ja/∂α = 0 amounts to looking for the positive
real roots of the following third order polynomial

Q(x) , B x3 + 2 tan θ x2 + (B + 3) x− tan θ with θ 6= π/2 (34)

In general, the three roots x1, x2, and x3 of Q(x) can be found analytically [37] as a function of tan θ (recall
that θ 6= π/2) and of the reduced force coefficient B as

x1 = A cos

(
φ

3

)
+D (35)

x2 = A cos

(
φ+ 2π

3

)
+D (36)

x3 = A cos

(
φ+ 4π

3

)
+D (37)

where

A , 2

√
4 tan2 θ

9B2
− 1

B
− 1

3
(38)

φ , arccos

 tan θ
(
45B2 + 54B − 16 tan2 θ

)
2

√(
4 tan2 θ − 9B − 3B2

)3
 (39)

D , −2 tan θ

3B
(40)

To simplify the discussion, it is useful to introduce the following notations related to Eqs. (38) and (39)

θ1 , arctan

[√
3B (B + 3)

2

]
(41)

θ2 , arctan


√

84B +
√

3 (B + 2) (11B + 6)3 + 59B2 − 36

8

 (42)

θ3 , π − θ2 (43)

It can be verified that: a) if θ > θ3, no positive real root exists for Q(x); b) if π/2 < θ ≤ θ3, there are two
positive real roots, x1 and x3, with x3 ≤ x1; c) if θ1 < θ < π/2, the only positive real root is x1; d) if θ ≤ θ1,
the only positive real root is x3.

With reference to the roots of Eq. (34), the existence of either three real roots, or a single real root and
two complex conjugate roots, depends on the value of A and φ in Eqs. (38)-(39). In fact, A ∈ R if the
argument of the square root in Eq. (38) is nonnegative, while φ ∈ R if the argument of the inverse cosine is
real and less than one. Also note that the inequality tan θ < −B x− (B + 1)/x of Eq. (32) can be rewritten
as a function of x only, by calculating Q(x) = 0 through Eq. (34) and solving for tan θ. The result is

B x3 + (B + 3)x

1− 2x2
< −B x− B + 1

x
(44)

The equivalent version of Eq. (32) is therefore

Ja(x) > 0 ∩ Q(x) = 0 if x <

√
B2 +B

B
(45)
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This last result can be conveniently translated into a relation that involves θ, that is

Ja(x) > 0 ∩ Q(x) = 0 if θ < θ4 (46)

where
θ4 , π − arctan

[
2
√
B2 +B

]
(47)

In other terms, Eq. (46) states that when θ < θ4, the positive real roots of Q(x) = 0 provide a positive value
of Ja.

Observing that π/2 < θ4 ≤ θ3, and bearing in mind Eq. (31), the following analytical solution for the
cone angle α?a that maximizes Ja is eventually obtained

α?a(θ) =



arctan(x3) if θ ≤ θ1

arctan(x1) if θ1 < θ < π/2

arccos
√

2/3 if θ = π/2

arctan(x3) if π/2 < θ ≤ θ4

π/2 if θ4 < θ ≤ π

(48)

where x1 and x3 are given by Eqs. (35) and (37) as a function of {tan θ,B}, whereas θ1 and θ4 are given by
Eqs. (41) and (47) as a function of B only. Note that in the ideal case when B = 0 the condition about the
sign of Ja, given by Eq. (32), is automatically satisfied, since x is positive. Also, when B = 0 the order of
polynomial Q(x) reduces to two, see Eq. (34). In fact, in the ideal force model case, the only positive real
root of Q(x), corresponding to a local maximum of Ja, is

x =
−3 +

√
9 + 8 tan2 θ

4 tan θ
(49)

which, taking into account Eq. (31), coincides with the classical result of Eq. (15).

5. Validation of the analytical results

The effectiveness of the analytical steering law discussed in the previous section is now checked by
comparing the values of α?a given by Eq. (48) with those obtained using the approach described in Ref. [9],
which requires the use of a numerical method for the solution of the necessary condition (14). For the sake of
example, we use the force coefficients of JPL-1978 and JPL-2015 cases reported in Tab. 1. The corresponding
values of the reduced force coefficients are B = 0.10514 for the JPL-1978 model and B = 0.084819 for the
JPL-2015 case. Figs. 4(a)-4(b) show the variation of the optimal cone angle as a function of θ.

The figures demonstrate that the proposed analytical model is able to accurately approximate the exact
results obtained using the approach of Ref. [9]. In particular, the maximum absolute difference in terms
of cone angle between the two models, for a given θ, is on the order of a few tenth degree only for both
example sails. The analytical model is also able to accurately predict the condition at which the optimal
cone angle takes the value of 90 deg. In fact, from Eq. (46), the discontinuity in the function α? = α?(θ) is
obtained at α? > 72.86 deg for a JPL-1978 model and at α? > 74.38 deg for the case of JPL-2015 model.
Notably, Fig. 4(b) illustrates, for the first time, the optimal control law for a flat solar sail with the optical
force model that takes into account the new force coefficients obtained by the recent experimental analyses
discussed by Heaton and Artusio-Glimpse [21].

The analytical control law has been further validated by simulating an optimal, heliocentric, orbital
transfer. In particular, the optimal control law developed in this paper has been applied to a two-dimensional
circular orbit-to-orbit Earth-Mars transfer using solar sails with optical force coefficients equal to the case
of JPL-1978 model with various values of characteristic accelerations. For all of the simulated transfers, a
direct interplanetary insertion of the solar sail at Earth with zero hyperbolic excess energy has been assumed.
Accordingly, the initial Sun-spacecraft distance is r0 = r⊕, whereas the spacecraft inertial velocity coincides
with the local circular velocity

√
µ�/r⊕, where µ� is the Sun’s gravitational parameter. Note that the
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Figure 4: Optimal cone angle α? as a function of θ evaluated through the exact method of Ref. [9] (solid line) and the analytical
approximate method (circle).

optimal transfer trajectory is simulated in an ephemeris-free model, i.e. by neglecting the actual position
of the two planets in their heliocentric orbits. The minimum times are shown in Fig. 5 by comparing the
results attainable with the exact procedure of Ref. [9] and those calculated with the new analytical control
law. The transfer times are nearly coincident, with maximum absolute differences (for a given value of ac)
that do not exceed a few hours when the total mission time is on the order of several hundreds days. In this
sense, the error is always less than 0.1%.
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Figure 5: Earth-Mars minimum-time transfers calculated with the exact method (solid line) and the analytical approximate
method (circle) for a JPL-1978 model.

6. Conclusions

A fully analytical solution of the optimal steering law for a flat solar sail has been discussed. The result
is based on the introduction of the so called η-OR model, in which the sail propulsive acceleration vector is
described by means of a component normal to the sail nominal plane, whose modulus coincides with that of
the η-PR model, and a component parallel to sail nominal plane, equal to that provided by an optical force
model. As a result, the η-OR model is shown to be an accurate approximation of the classical optical force
model.

The effectiveness of the analytical solution of the optimal steering law has been validated by direct
comparison with numerical data taken from the literature. The simulation results show that the minimum
transfer times calculated with the analytical steering law are nearly exact, with errors on the order of a few
hours only for missions of several hundred days.

The new method guarantees a substantial reduction of the complexity of the solar sail optimal control
problem, and is particularly useful when a variation of optical coefficients of the solar sail must be taken
into account during the preliminary mission design. The algorithm for calculating the optimal direction of
the propulsive acceleration is simple to be implemented within numerical routines and may be effectively
used to solve trajectory optimization problems with either global or local optimization methods.
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