Area of origin	Varieties	Drying	Temperature	Time	Kind of mill	
Caprese Michelangelo(1)	Marroncini, Pistolesi	Traditional	About 30°C	35/40 days	Grindstones powered by electriciy	
Caprese	Marroncini, Pistolesi	Traditional	30-40°C	35/40 days	Grindstones powered by electriciy	
Michelangelo (2)	'Castagne gialle'					
Caprese Michelangelo (3)	Marroncini, Pistolesi	Air drying oven	N.D.	From 7 to 15 days	Hammermill powered by electriciy	
Garfagnana (1)	Selvana, Mozza e Nerona	Traditional	28-30°C	40 days	Grindstones powered by water	
Garfagnana (2)	Cesarucche	Traditional	28-30°C	40 days	Grindstones powered by water	
Mugello (1)	Marrone Fiorentino	Traditional	N.D.	40 days	Grindstones powered by water	
Mugello (2)	Marrone Fiorentino	Traditional	N.D.	40 days	Grindstones powered by water	
Orsigna (1)	Calarese, Pastinese, Ceppa	Traditional	30°C	45 days	Grindstones powered by water	
Orsigna (2)	Calarese, Pastinese, Ceppa	No traditional	30°C	45 days	Grindstones powered by water	
Alta Maremma	Carpinese, Rossolina, Marrone	Traditional	40°C	30 days	Grindstones powered by water	
Lunigiana	Bresciana, Carpanese, Fosetta Marzolina, Moretta, Primaticcia Rigola, Rossella, Rossola	Traditional	N.D.	N.D.	Grindstones powered by electricity	
Amiata	Bastarda, Marrone, Cecia, Domestica	Traditional	N.D.	42 days	Grindstones powered by electriciy	

Table 1. Varieties of chestnuts and procedures for flour preparation in different areas of Tuscany

N.D. Not declared; Number in areas of origin (1) or (2) or (3) refers to different locations inside the area

Table 2: Main chemical composition of Marrone Fiorentino Chestnut flour.

	Sweet Flour
Moisture (g/100g)	5.4±0.9
Protein (g/100 g, dry weight)	4.0±0.4
Fat (g/100g, dry weight)	5.2±1.0
Saturated Fat (g/100g, dry weight)	0.8±0.2
Monosatured Fat (g/100g, dry weight)	2.4±0.4
Polysaturated Fat (g/100g, dry weight)	1.7±0.5
Sugars (g/100g, dry weight)	29.9±8.3
Starch (g/100g, dry weight)	41.8±5.5
Ash (g/100g, dry weight)	2.5±0.4

K (mg/100 g dry weight)	1076±269
Mg (mg/100 g dry weight)	77.3±21.6
Ca (mg/100 g dry weight)	5.7±2.1
Cu (mg/100 g dry weight)	0.6±0.1
Fe (mg/100 g dry weight)	1.6±0.7
Mn (mg/100 g dry weight)	1.9±0.5
Na (mg/100 g dry weight)	4.8±6.7
Zn (mg/100 g dry weight)	0.9±0.1

Data are means \pm SD (*n*=24)

Origin	Total Polyphenols (mg/kg gallic acid)		Total tocopherols (mg/kg)		γ -Tocopherol δ –tocopherol % %		α -tocopherol $\%$	Total SL (mg/kg)	
	mean	SD	mean	SD				mean	SD
Alta Maremma	182 ^{cd}	241	18 ^e	2	89	3	6	56	4
Amiata	223 abcd	129	83 bcd	2	96	3	1	49	6
Caprese Michel. (1)	2263 abcd	420	22 ^e	1	89	7	3	53	5
Caprese Michel. (2)	1688 ^d	115	103 ^{ab}	12	97	2	1	52	4
Caprese Michel. (3)	2520 ^{ab}	27	114 ^a	17	96	3	1	N.D.	
Garfagnana (1)	2602 ^{ab}	203	64 ^d	3	95	3	1	50	3
Garfagnana (2)	2015 bcd	269	64 ^d	5	95	3	1	49	1
Lunigiana	1689 ^d	140	102 ^{ab}	7	96	3	1	51	1
Mugello (1)	2799 ^a	297	90 ^{bc}	5	97	2	1	49	3
Mugello (2)	2556 ^{ab}	226	75 ^{cd}	5	96	2	1	48	3
Orsigna (1)	2190 abcd	74	82 ^{bcd}	9	94	4	1	52	2
Orsigna (2)	2452 ^{abc}	184	21 ^e	1	91	3	3	52	1

Table 3. Composition in total Polyphenols, Tocopherol and SLs in Tuscan chestnut sweet flour extract obtained from different areas of Tuscany

Mean values followed by the same letter are not significantly different (99% level of significance). SL: sphingolipids. N.D. Not determined

Table 4. Effect of total polyphenols or tocopherols on control C2C12 cells and on

Dexa- and serum starvation-induced atrophic cells

Cell treatments	Cell diameter (µm)		Number of myonuclei/cell		
	mean	SD	Mean	SD	
Vehicle	15	4	11	2	
Dexa	8 *	1	6*	2	
Dexa + Total Polyphenol extract	7 *	1	6*	2	
Dexa + Total Tocopherol extract	12 #	1	9 [#]	2	
Starvation (-FCS)	11 *	1	8	2	
Starvation + Total Polyphenol extract	9 * [§]	1	$6^{*^{\$}}$	1	
Starvation + Total Tocopherol extract	16	2	11	1	
Cycloheximide	9*	2	6*	1	

C2C12 myotubes were incubated with vehicle or with polyphenol or tocopherol extracts (100 nM) or cycloheximide (3 μ M) for 1 h before the addition of Dexa or serum-starved as indicated min Methods. Thirthy six hours later, cells were observed at phase contrast microscope. Data are reported as mean±standard deviation of at least three independent experiments. Student' *t* test *P<0.05 vs. control cells (vehicle), [#]P<0.05 vs. specific control (Dexa), [§]p<0.05 vs. serum-starved cells

Table 5. Effect of total polyphenols or tocopherol on $[{}^{3}H]$ -leucine incorporation in control cells and in cells induced to atrophy by Dexa-or serum starvation

Cell treatments	[³ H]-leucine incorporation (dpm/well)				
	Mean	SD			
Vehicle	1500	189			
+ Dexa	1350	250			
Starvation (- FCS)	780*	315			
Total Polyphenol extract	2570*	315			
Total Tocopherol extract	2875*	405			
Dexa+ Total Polyphenol extract	2175*	185			
Dexa+ Total Tocopherol extract	1895*§	205			
-FCS + Total Polyphenol extract	1120	200			
-FCS + Total Tocopherol extract	1065*	140			

C2C12 myotubes were incubated with vehicle or with polyphenol or tocopherol extracts (100 nM) for 1 hour before the addition of Dexamethasone (Dexa) or serum-starved as indicated in Methods. Thirthy six hours later, cells were treated with [3 H]-Leucine as reported in Methods. Data are reported as mean and standard deviation of at least three independent experiments. Student' *t* test *P<0.05 vs. control cells (vehicle), \$P<0.05 vs. specific control. –FCS: absence of fetal calf serum.

Figure 2A

Figure 2C

Figure 3B

Figure 3C

Dexa-treated-MT

Figure 4A

Figure 5

Figure 6A

