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Abstract

A Smart Dust is a femto-spacecraft with an external surface coated with electrochromic material, which exploits
the solar radiation pressure to produce a propulsive acceleration. As the optical properties of the electrochromic
material change upon application of a suitable electric voltage, its propulsive acceleration may be modulated,
within some limits, without the use of any propellant. This paper analyzes the optimal trajectories of a Sun-
pointing Smart Dust, which provides a propulsive acceleration aligned with the Sun-spacecraft direction. In
particular, the paper describes the relative motion of a Smart Dust with respect to a conventional spacecraft
(the Mother Ship) that covers a heliocentric circular orbit of given radius. The Smart Dust is required to vary
periodically its angular position with respect to the Mother Ship using an optimal (minimum time) strategy.
This problem is addressed using an indirect approach and the optimal control law is obtained in a closed-form
solution. The results discussed in this paper ensure interesting improvements over existing models from the recent
literature, including the possibility of obtaining a generic phasing angle of the Smart Dust and to take into account
an optimal number of on-off switchings of the electrochromic control system.

Keywords: Sun-pointing Smart Dust, Spacecraft-on-a-chip, Electrochromic control, phasing maneuvers,
trajectory optimization

Nomenclature

a = SD propulsive acceleration, [ mm/s2]
A,B = auxiliary parameters
H = Hamiltonian function
H = Heaviside step function
r = Sun-SD distance, [ au]
t = time, [ days]
u, v = radial and transverse relative velocity, [ km/s]
β = SD lightness number
λi = adjoint variable associated with the i-th state
µ� = Sun’s gravitational parameter, [ au3/day2]
φ = phasing angle, [ deg]
ρ = relative radial distance, [ au]
ω = angular velocity, [ rad/s]

Subscripts

0 = initial
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c = circular MS orbit
f = final
max = maximum
min = minimum
off = ECS off
on = ECS on

Superscripts

? = optimal
· = time derivative

1. Introduction

Recent advances in the semiconductor industry have promoted the miniaturization of components used
for space applications [1] and inspired the concept of spacecraft-on-a-chip, that is, a Femto Spacecraft
(FS) with dimensions comparable to that of a common microchip [2, 3, 4]. A FS presents very interesting
characteristics, such as low manufacturing costs as well as cheap launch costs due to a likely employment as
a piggy-back payload on more conventional space vehicles. Actually, a number of FSs could also be deployed
by the same Mother Ship (MS), as suggested by the recent KickSat project [5] in which more than 100 FSs,
with a characteristic dimension of about 3 cm, have been installed inside a 3U CubeSat. In this context,
an interesting application is to operate those FSs within a formation (that is, maintaining precise spacing
and orientation relative to each other), in order to create an artificial large sensor, such as an antenna, for
achieving objectives that would be impossible to reach with a single, conventional, spacecraft.

An interesting and intrinsic feature of a FS consists in its large value of area-to-mass ratio [6, 7]. As a
result, the dynamics of a FS is highly affected by the solar radiation pressure, which is usually considered
as a perturbation force for a conventional spacecraft. In this sense, the trajectory of a FS can be analyzed
with mathematical models that are usually used for describing the dynamics of a solar sail, as thoroughly
discussed by Atchison and Peck [8]. However, the main limitation of such a millimeter-scale solar sail without
moving parts is in its reduced maneuver capabilities due to a lack of thrust vector control [8]. Indeed, a FS
designed to (passively) exploit the photon momentum transfer to obtain thrust, typically provides an outward
propulsive acceleration directed along the Sun-FS line. In particular, the propulsive acceleration magnitude
of this Sun-pointing FS depends on the Sun-FS distance, the area-to-mass ratio, and the thermo-optical
characteristics of the reflective surface [9].

An advanced way to create an active control means consists in covering the FS external surface with
electrochromic material [10, 11, 12], which varies its optical properties on application of a suitable electric
voltage. Exploiting such a property, Vulpetti et al. [13] have recently investigated the performance of an
electrochromic actuator for station-keeping attitude maneuvers of a Sun-pointing solar sail. The same elec-
trochromic material may be used to cover the FS external surface. In that case, these kinds of FSs, which
are usually referred to as Smart Dusts (SDs) [14], are able to actively change the propulsive acceleration
magnitude by altering the reflectivity coefficient of the electrochromic material. In particular, the reflec-
tivity coefficient of the external surface may take two admissible values only, corresponding to when the
Electrochromic Control System (ECS) is either switched off or on. The heliocentric dynamics of a Sun-
pointing SD may be analyzed by means of a linear systems approach, and the SD trajectory can be obtained
in a closed form using the approach discussed in Ref. [15].

Recently, the linearized dynamics of a Sun-pointing SD, whose distance from the Sun is roughly constant,
has been studied using an analytical approach [16]. More precisely, assuming a SD to be deployed by a MS
placed on a circular heliocentric orbit, Ref. [16] analyzes the SD-MS relative motion as a function of the
generic number of working cycles (that is, the number of on-off switchings of the ECS). The analytical
results are then applied to a phasing mission case, where the SD is required to vary its angular position,
with respect to that of the MS, along the reference circular orbit. Actually, the closed-form control law
discussed in Ref. [16] refers to the simplified case in which the SD may be operated with a single working
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cycle only. In fact, according to Ref. [16], the general case in which the ECS completes several working
cycles requires an optimal (possibly numerical) approach for evaluating the mission phasing performance.

The aim of this paper is to deal with the phasing mission case using an optimal indirect approach, where
the minimum phasing time is obtained as a function of the given phasing angle, without any limitation on
the number of working cycles to be used. In particular, this paper shows that the optimal control law can
be obtained in a closed form, and the optimal phasing performance is calculated by solving a Two-Point
Boundary Value Problem (TPBVP) with three (scalar) unknowns only. In this sense, the model discussed in
this paper extends and completes the azimuthal repositioning problem of a Sun-pointing SD along circular
orbits introduced in Ref. [16].

The paper is organized as a follows. The next section describes the mission scenario and introduces the
mathematical model used to optimize the SD trajectory during the in-orbit repositioning phase, while the
SD dynamics is completed by the model discussed in the Appendix. The optimal control law is then used
to evaluate, in section 3, the minimum-time phasing trajectories for a set of SDs of given characteristics.
Finally, the last section contains some concluding remarks.

2. Problem description

The mission scenario to be analyzed is a special case of that discussed in Ref. [16]. Consider a MS that
covers a reference circular orbit of radius rc around the Sun. At time t0 , 0 a SD is released by the MS with
zero velocity relative to it. The SD is required to perform an orbit phasing [17] by minimizing the flight
time. More precisely, the problem is to move the SD along the reference circular orbit of a given angle φf
relative to the MS in the minimum time interval ∆t , tf − t0 ≡ tf . By definition, a spacecraft performs a
phasing ahead maneuver (or behind maneuver) when φf > 0 (or φf < 0). Accordingly, its position is ahead
(or behind) the position it would occupy at time tf if it were kept on the circular reference orbit, see Fig. 1.
In this case the SD can provide an outward radial propulsive acceleration only (that is, an acceleration
directed along the Sun-SD line). Therefore, in accordance with the results reported in Ref. [16], the SD is
able to carry out a phasing behind maneuver with φf < 0, see Fig. 1(b). A phasing ahead maneuver (see
Fig. 1(a)) is still possible by means of a drift behind maneuver with a phasing angle φf ∈ [−π, −2π] rad.
Such a maneuver, however, requires quite large flight times as will be shown later.

2.1. Mathematical preliminaries

When released by the MS, the SD is outward radially propelled with an acceleration magnitude

a = β
µ�

r2
with β ∈ {βmin, βmax} (1)

where µ� is the Sun’s gravitational parameter, r is the Sun-SD distance, and β > 0 is a design dimensionless
parameter that characterizes the SD performance. In analogy with the classical solar sail literature [9, 18],
β is referred to as SD lightness number, that is, the ratio of the propulsive acceleration magnitude to the
local Sun’s gravitational acceleration.

The lightness number β depends on the area-to-mass ratio and the thermo-optical characteristics of
the external reflective surface (the surface that reflects the incoming photons). As long as the degradation
effects [19, 20, 21] on the reflecting surface of a Sun-pointing FS are neglected, β is a constant of motion.
If instead the external surface is coated with electrochromic material (thus obtaining a SD), the lightness
number may take two different values according to whether the ECS is either switched off (in that case β =
βmin > 0) or on (β = βmax > βmin). Typical values of {βmin, βmax} are given by Colombo and McInnes [14]
for a low (SD1), medium (SD2), and high (SD3) performance SD, see Tab. 1. In all cases the maximum

SD1 SD2 SD3

βmin 0.0134 0.0251 0.0420
βmax 0.0241 0.0451 0.0756

Table 1: Lightness number of a low (SD1), medium (SD2), and high (SD3) performance SD. Table adapted from Ref. [16] with
data taken from Ref. [14].
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Figure 1: Conceptual scheme of the mission scenario.

propulsive acceleration magnitude is much below one tenth the local solar gravitational acceleration, so it
is reasonable to assume that the SD-Sun distance remains close to rc (the initial value) for all the phasing
trajectory. The heliocentric SD dynamics may therefore be described with the linearized model discussed
in Ref. [16], which follows the set of equations introduced by McInnes [22] for a solar sail-based mission
scenario. In particular, the soundness of the approximate model discussed in Ref. [22] has been checked in
Ref. [23] using a set of non-linear equations of motions.

With reference to the conceptual scheme shown in Fig. 2, the SD linearized equations of motion along
the heliocentric circular orbit of radius rc are

ρ̇ = u (2)

φ̇ =
v

rc
(3)

u̇ = 2ω v + 3ω2 ρ+ β
µ�

r2
c

(4)

v̇ = −2ω u (5)
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where ω =
√
µ�/r3

c is the MS (constant) angular velocity, ρ , r − rc is the SD-MS relative radial distance
(with |ρ| /rc � 1), φ is the SD-MS relative angular coordinate, and u (or v) is the radial (or transverse)
component of the SD-MS relative velocity.

Sun
fixed direction

c
r

t�

MS

SD

�
to

S
u
n

to
S
un

�

MS orbit

initial position

SD

to
S

u
n

max 2
r

�
� �

SD

to
S

u
n

min 2
r

�
� �

ECS off ECS on

Figure 2: Reference frame. Figure adapted from Ref. [16].

The previous equations of motion may be solved in closed analytical form once the control law β = β(t) is
given (recall that β = {βmin, βmax}). This allows the SD-MS relative trajectory to be found, as is thoroughly
discussed in Ref. [16]. The main results are summarized in the Appendix and represent the starting point
for the optimal control problem discussed in the next section.

2.2. Trajectory optimization

While the MS tracks a circular Keplerian orbit, the phasing problem is to vary the SD angular position
(relative to the MS) of a given angle φf in the minimum time interval ∆t = tf . This amounts to finding the
optimal time-variation of the SD lightness number β = β(t) that minimizes the time tf necessary to transfer
the SD from its initial state, given by Eq. (A.2), to a final state defined as

ρ(tf ) = 0 , φ(tf ) = φf , u(tf ) = v(tf ) = 0 (6)

see Fig. 1. Note that, from Eq. (A.5), the condition v(tf ) = 0 is naturally met when ρ(tf ) = 0. Accordingly,
the scalar constraints, to be enforced at the final time tf , are reduced to three, or

ρ(tf ) = 0 , φ(tf ) = φf , u(tf ) = 0 (7)

The problem is therefore to maximize the performance index

J , −tf (8)
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which can be tackled with an indirect approach [24, 25]. To that end, the Hamiltonian function H is defined
as

H , λρ u+
λφ v

rc
+ λu

(
2ω v + 3ω2 ρ+ β

µ�

r2
c

)
− 2λv ω u (9)

where {λρ, λφ, λu, λv} are the adjoint variables associated with the SD state {ρ, φ, u, v}. The time deriva-
tives of the adjoint variables are given by the Euler-Lagrange equations

λ̇ρ = −∂H
∂ρ

= −3ω2 λu (10)

λ̇φ = −∂H
∂φ

= 0 (11)

λ̇u = −∂H
∂u

= 2ω λv − λρ (12)

λ̇v = −∂H
∂v

= −2ω λu −
λφ
rc

(13)

with initial conditions

λρ(t0) = λρ0 , λφ(t0) = λφ0
, λu(t0) = λu0

, λv(t0) = λv0 (14)

where {λρ0 , λφ0
, λu0

, λv0} are four unknown parameters whose values are the output of the TPBVP. Note
that, according to Eq. (9), the Hamiltonian does not explicitly depend on time and, therefore, H is a constant
of motion [24], that is, H(t0) = H(tf ). Therefore, enforcing the transversality condition

H(tf ) = 1 (15)

and taking into account Eqs. (9) and (A.2), viz.

H(t0) = λu0 β0
µ�

r2
c

(16)

the value of λu0
is obtained as

λu0
=

r2
c

µ� β0
(17)

where β0 = β(t0) is the initial value of the SD lightness number, that is, the initial value of the control
variable.

The Euler-Lagrange equations (10)–(13) with the initial conditions given by Eqs (14) can be solved with
standard methods, and the result is

λρ = λρ0 [4− 3 cos(ω t)] +
6λφ0

rc
[ω t− sin(ωt)]− 3ω λu0

sin(ωt)− 12ω λv0 sin2

(
ωt

2

)
(18)

λφ = λφ0 (19)

λu = −λρ0
ω

sin(ωt) +
2λφ0 [cos(ωt)− 1]

ω rc
+ λu0

cos(ωt) + 2λv0 sin(ωt) (20)

λv =
4λρ0
ω

sin2

(
ωt

2

)
+
λφ0

ω rc
[3ωt− 4 sin(ωt)]− 2λu0

sin(ωt) + λv0

[
1− 8 sin2

(
ωt

2

)]
(21)

Note that λφ is a constant of motion and its value coincides with λφ0
, see Eqs. (11) and (19). In particular,

the right-hand side of Eq. (20) plays an important role in the definition of the optimal control law. In fact,
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from the Pontryagin’s maximum principle, the optimal control law β = β(t), to be selected in the domain
of feasible values of lightness number β ∈ {βmin, βmax}, is such that, at any time, the Hamiltonian H is an
absolute maximum. Since H is a linear function of β, see Eq. (9), the optimal control law is

β(t) = β?(t) ,

βmin if λu(t) < 0

βmax if λu(t) ≥ 0
(22)

Recalling that β0 > 0, from Eqs. (17) and (22) the initial value of the SD lightness number is

β0 = βmax (23)

and, therefore, the initial value of the adjoint variable λu is

λu0 =
r2
c

µ� βmax
(24)

Equation (23) states that the ECS is to be switched on at the beginning of the phasing maneuver. Taking
into account Eq. (24), the expression of λu(t) given by Eq. (20) can be rewritten in a more compact form as

λu(t) =
r2
c

µ� βmax
cos(ωt) +A [cos(ωt)− 1] + B sin(ωt) (25)

where A and B are two constant parameters depending on λρ0 , λφ0 and λv0 , viz.

A ,
2λφ0

ω rc
, B , 2λv0 −

λρ0
ω

(26)

Note that, when A and B are fixed, the optimal control law is fully obtained by substituting Eq. (25) into
Eq. (22). In other terms, the TPBVP associated with the minimum time problem consists in finding the
triplet {A, B, tf} such that the boundary conditions of Eqs. (7) are all met.

In general, the TPBVP can be solved by means of a hybrid numerical technique that combines the use
of genetic algorithms to obtain a rough estimate of the adjoint variables, with gradient-based and direct
methods to refine the solution [26]. In this case, however, the analytical solution of the SD heliocentric
dynamics at the final time can be calculated by Eqs. (A.4) for an assigned control law β = β(t). The
associated TPBVP can therefore be translated into the solution of a system of three non-linear scalar
equations. This is possible using the following approach: 1) Make a first guess of the unknowns parameters
{A, B, tf}; 2) Calculate the set of time instants ti, with i > 1, in which λu(ti) = 0, by evaluating the roots
of the right-hand side of Eq. (25) in the interval t ∈ [0, tf ]; 3) Find the time instants toni

(or toffi
) in which

the ESC is switched-on (or switched-off) using the equation

ti =

toni
if λ̇u(ti) > 0

toffi
if λ̇u(ti) < 0

(27)

where the time derivative λ̇u(t) is obtained from Eq. (25) as

λ̇u(t) = − ω r2
c

µ� βmax
sin(ωt)−Aω sin(ωt) + B ω cos(ωt) (28)

4) Find the final value of ρ(tf ), φ(tf ), and u(tf ) using Eqs. (A.4); 5) Check whether the final constraints of
Eqs. (7) are met and, if necessary, return to step 2 with a different set of {A, B, tf}.

The optimal control law given by Eq. (22) has been simulated in a number of phasing missions, as is
discussed in the next section.
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3. Mission application

The previous trajectory optimization has been applied to study the in-orbit repositioning problem of
a low performance (SD1), medium performance (SD2), and high performance (SD3) smart dust, whose
characteristics are summarized in Tab. 1. The MS is chosen to cover a reference heliocentric circular orbit
of radius rc = 1 au.

In order to validate the mathematical model, the phasing problem has been parametrically studied by
considering a number of different values of final phasing angle φf . According to Ref. [16], when the ECS is
always switched-on, the phasing angle φf reaches a minimum value (or a maximum value |φf |) given by

φfmin
= −4 k π βmax (29)

where k ∈ N+. The corresponding flight time is

tf = k Tc (30)

where Tc = 2π/ω is the MS orbital period. On the other hand, when the ECS is always switched-off, the
phasing angle reaches a maximum value (or a minimum value of |φf |) given by

φfmax
= −4 k π βmin (31)

where the flight time is given, again, by Eq. (30). For example, when k = 1 (the minimum admissible value
of k), the value of φfmin

and φfmax
is shown in Tab. 2.

SD1 SD2 SD3

φfmin [deg] -17.352 -18.072 -30.24
φfmax

[deg] -9.648 -32.472 -54.432

Table 2: Minimum (φfmin
) and maximum (φfmax ) value of the phasing angle when k = 1 and tf = Tc.

Assuming φf ∈ (φfmin
, φfmax

), where the pairs {φfmin
, φfmax

} are given in Tab. 2 as a function of the
SD performance, it is possible to evaluate the minimum flight time using the procedure described in the
previous section. The results are shown in Fig. 3 for the three SDs reported in Tab. 1. In particular, the
black circles placed in the figure at tf/Tc = 1 illustrate the cases in which the ECS is switched-on (or
switched-off) during the whole phasing maneuver. In all other cases, that is, when φf ∈ (φfmin , φfmax),
the phasing maneuvers is constituted by arcs with either β = βmax or β = βmin in accordance with the
optimal control law given by Eq. (22). Figures 3(a)–3(c) show that each SD is able to perform an orbit
phasing maneuver (with a minimum and a maximum value of φf given by Tab. 2) with an optimal flight
time less than one orbital period Tc of the MS. This represents a clear improvement of the (non optimal)
result discussed in Ref. [16], where a phasing maneuver with the same value of φf was obtained with a flight
time tf > Tc. The total time interval ∆ton in which the ECS is switched-on (that is, the sum of the time
intervals in which β = βmax) varies with the desired phasing angle φf , as is clearly illustrated in Fig. 4.
Finally, Fig. 5 shows the maximum value |ρ|max of the relative radial distance between SD and MS. Recall
that the linearized equations of motions have been obtained under the assumption that |ρ|/rc � 1, which is
indeed confirmed by the simulations.

The effectiveness of the discussed method may be better appreciated with a more complex mission, which
requires a total time greater than Tc. For exemplary purposes, consider the SD1 case, whose mission is to
be directed toward the L5 Lagrangian point. This may be seen as a special case of a phasing maneuver
in which the phasing angle to reach is equal to −60 deg. The simulation results are reported in Fig. 6. It
should be noted that the SD repeatedly approaches the MS trajectory without reaching it until the mission
end, when all of the boundary conditions of Eqs. (6) are simultaneously met. The total mission time is
1357 days, while the complexity of the control law, with a number of working cycles, is illustrated in Fig. 7.
Finally, it is worth noting that a phasing ahead condition may be obtained with a sufficiently long mission.
For example, the langrangian point L4, characterized by a phasing angle of 60 deg, may be reached through
a phasing behind trajectory with φf = −300 deg. This is clearly illustrated in Fig. 8, which shows the
trajectory tracked by a SD3. In this case the total mission time is 2098 days, while the corresponding control
law is reported in Fig. 9.
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Figure 3: Minimum phasing time tf as a function of the phasing angle φf (see Tab. 2) and the SD performance (see Tab. 1).
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Figure 4: Time interval ∆ton in which the ECS is switched-on as a function of the phasing angle φf .
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Figure 5: Maximum relative radial distance between SD and MS as a function of the phasing angle φf .
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Figure 6: Optimal phasing mission with φf = −60 deg for the SD1 case. The black square coincides with the SD deployment,
and the black star with the mission end.
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4. Conclusions

This paper has studied, from an optimal viewpoint, the phasing maneuver of a Smart Dust that covers
a heliocentric circular orbit of given radius. The optimal control law is obtained in a fully analytical form
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Figure 9: Optimal control law for a phasing mission with φf = 60 deg using a SD3 spacecraft.

by means of an indirect approach. Starting from the recent results about the solution of the Smart Dust
linearized dynamics with a general control law, the new approach allows the solution of the associated two-
point boundary value problem to be found in an easy and efficient way. In particular, the paper illustrates a
practical method for calculating the adjoint variables, which is usually a difficult task in indirect problems.
The Smart Dust phasing maneuver is solved for a generic value of the phasing angle and as a function of
the Smart Dust performance. In addition, the control law defines the optimal number of on-off switchings
of the electrochromic control system. The obtained results complete the motion analysis of a Sun-pointing
Smart Dust in a heliocentric mission scenario. A future extension of the results should take into account
the presence of a possible circumferential component of the Smart Dust propulsive acceleration. However, a
situation in which the thrust is not aligned with the radial direction is difficult to obtain with a Smart Dust
as it requires a complex design of its mass distribution and external surface coating.

Appendix A. Smart dust trajectory equation

The linearized dynamics of a SD, see Eqs. (2)–(5), may be solved using the linear systems approach
discussed in Ref. [16]. A brief summary is below reported for the sake of completeness. Assuming the ECS
to be switched on (or off) at time toni (or toffi), with i ∈ N and toffi > toni , the time variation of the SD
lightness number β can be written as

β(t) = βmin + (βmax − βmin)

[
n∑
i=1

H(t− toni
)−

n∑
i=1

H(t− toffi
)

]
(A.1)

where n ≥ 1 is the number of working cycles of the electrochromic material (that is, the number of on-off
switchings of the ECS), whereas H(y) is the Heaviside step function, that is, H(y) = 0 if y < 0, and H(y) = 1
if y ≥ 0.

Since the SD at t0 = 0 leaves the MS with zero relative velocity, the initial conditions are

ρ(t0) = 0 , φ(t0) = 0 , u(t0) = v(t0) = 0 (A.2)
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The differential equations (2)–(5) with the control law (A.1) can be solved with standard methods, and the
result is


ρ(t)
φ(t)
u(t)
v(t)

 = (βmax − βmin)

n∑
i=1

H(t− toni)


rc [1− cos(ωt− ωtoni

)]

2 [sin(ωt− ωtoni
)− ωt+ ωtoni

]

ω rc sin(ωt− ωtoni)

2ω rc [cos(ωt− ωtoni)− 1]

+

− (βmax − βmin)

n∑
i=1

H(t− toffi)


rc [1− cos(ωt− ωtoffi

)]

2 [sin(ωt− ωtoffi
)− ωt+ ωtoffi

]

ω rc sin(ωt− ωtoffi)

2ω rc [cos(ωt− ωtoffi)− 1]

+ βmin


rc [1− cos(ωt)]

2 [sin(ωt)− ωt]

ω rc sin(ωt)

2ω rc [cos(ωt)− 1]

 (A.3)

Upon completion of the last working cycle, when the ECS is eventually switched off, the SD dynamics is
given by the following relationships


ρ(t)
φ(t)
u(t)
v(t)

 = βmin


rc [1− cos(ωt)]

2 [sin(ωt)− ωt]

ω rc sin(ωt)

2ω rc [cos(ωt)− 1]

+ (βmax − βmin)

n∑
i=1


−rc cos(ωt− ωtoni

)

2 [sin(ωt− ωtoni
) + ωtoni

]

ω rc sin(ωt− ωtoni)

2ω rc cos(ωt− ωtoni)

+

− (βmax − βmin)

n∑
i=1


−rc cos(ωt− ωtoffi

)

2 [sin(ωt− ωtoffi
) + ωtoffi

]

ω rc sin(ωt− ωtoffi)

2ω rc cos(ωt− ωtoffi)

 (A.4)

According to Eqs. (A.3) and (A.4), the time variation of v becomes

v(t) = −2ω ρ(t) (A.5)

and is therefore simply proportional to the (relative) radial distance ρ(t).
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