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ABSTRACT 

The acoustic attenuation inside the bandgaps is, together with the bandgap width, a fundamental design 

parameter for phononic crystal-based systems. We discuss approximate expressions for the maximum 

attenuation inside the bandgaps of one-dimensional longitudinal phononic crystals and its dependence on the 

acoustic contrast and fractional bandwidth. We provide different approximations at small and large fractional 

bandwidths, computed from the trace of the transmission matrix of the crystal elementary cell. We show that, 

for relatively small gaps, the attenuation is roughly proportional to the fractional bandwidth, in analogy with 

the flexural case. For larger gaps, a large attenuation can only be obtained for high (and possibly impractical) 

acoustic contrasts. We also derive asymptotic upper limits for the bandgap borders and show that high contrasts 

do not necessarily lead to wide bandgaps, a fact connected to geometrical phase inversion for the acoustic 

wave in the crystal. We finally compare the attenuation of flexural and longitudinal waves at fixed fractional 

bandwidth and derive regions of optimum attenuation for the two propagation modes. 

 

1 Introduction 

Phononic crystals (PnCs) are structures with a periodic modulation of their mechanical properties: stiffness, 

mass, or both. The propagation of acoustic waves in a PnC is affected by this periodicity and shows a 

frequency-selective behavior. As a result, the  frequency spectrum is divided into passbands, where the 

propagation is allowed, and bandgaps, where it is forbidden 1. 

PnCs with the simplest structure can be obtained by modulating the mechanical properties of a beam or bar 

structure, thereby obtaining a one-dimensional phononic crystal (1D PnC). One-dimensional crystals have 

been proposed in the context of several micro- and nano-electromechanical systems (M/NEMS) applications. 

MEMS-based PnC sensors exploiting both flexural 2 and longitudinal 3 modes have been proposed 

theoretically, PnC strips exhibiting full bandgaps have been used to suppress anchor losses in micro-

electromechanical (MEMS) resonators 4, heterostructure-based flexural waveguides for NEMS circuits have 

been proposed 5. At the nanometric scale, phonon-photon interaction has been demonstrated in the so-called 

optomechanical crystals 6. Nanometric periodicity also meets the wavelength of thermal phonons, making 2D 

crystals with complete bandgaps suited for thermal conductivity suppression 7,8. Furthermore, 2D crystals with 

complete bandgaps have also been used to realize cavity-based MEMS resonators 9. 

The introduction of a regular pattern of holes on the structural layer is the typical method to obtain a M/NEMS 

PnC 2–10. In this context, both capacitive and piezoelectric actuation have been exploited. Air gaps at the end 

of a bar have been used for capacitive excitation of longitudinal waves 3,10,11, while the same gaps placed under 
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beam-like structures have served for excitation of flexural waves 5. Piezoelectric transduction is another viable 

option, and typically excites both longitudinal and flexural waves at the same time 2,12. At the macroscopic 

scale, pass-band filters exploiting both longitudinal 13 and torsional 14 modes have been presented, and liquid 

sensing based on a cavity mode has been demonstrated 15. Furthermore, longitudinal PnCs have been fabricated 

and measured in order to study the topological properties of bands and interface states 16,17. 

The properties of both finite and infinite longitudinal PnCs have been investigated in several theoretical papers. 

The transmission matrix method is the most common approach to deal with longitudinal PnCs made of 

piecewise linear segments 18,19. For more complex geometries, expansion methods are employed 20.   Whatever 

the approach, the design of PnCs is typically focused on obtaining very large bandgap widths. However, 

attenuation in the frequency bandgap is also an important design parameter. For example, the efficiency of 

acoustic rejection in filtering applications depends on the attenuation that can be attained within the bandgap. 

In finite PnCs with small attenuation, an impractically long structure may be needed to reach the required 

attenuation. Having simple expressions for the attenuation can greatly simplify the evaluation of this trade-off 

in the synthesis of such structures. In this letter, we propose approximate expressions for the calculation of the 

attenuation constant of waves inside the bandgaps of longitudinal MEMS PnCs. To obtain adequate accuracy, 

two different models for small and large bandgaps are required. These asymptotic expressions are validated 

by comparison with results based on exact expressions for the dispersion relation. Results are discussed and 

compared with the ones of a similar study on flexural waves 21. 

2 Model 

In a longitudinal PnC, the property of transmitting (or blocking) acoustic waves is contained in the dispersion 

function 𝑘(𝜔) giving the wavenumber 𝑘 as a function of the (angular) frequency. Propagating waves 

correspond to real wavenumbers, while imaginary wavenumbers give evanescent waves, i.e. blocked 

frequencies. The attenuation constant 𝛾(𝜔) at a specific frequency 𝜔 inside a bandgap, i.e. the inverse of the 

attenuation length, can be then simply given as 𝛾 = |𝐈𝐦(𝑘(𝜔))|. A simple method for estimating the 

attenuation capability of a bandgap is to consider the attenuation constant at the bandgap center, where its 

value is maximum or very close to it. 

To derive compact expression for 𝛾, we first define the geometry of the unit cell of a generic PnC, where the 

modulation of the acoustic contrast is obtained by regular perforations (Fig. 1, left). The PnC is composed by 

a generic number of repetitions of this unit cell, each of length l along the x axis. Each cell is composed by a 

full segment and a holed segment, and the related quantities are denoted by the f and h subscripts, respectively. 

Two dimensionless parameters define the cell geometry: 𝛼𝑥 is the length of the full segment normalized to the 

cell length, and 𝛼𝑦 is the area of the holed cross-section normalized to the full cross-section. The two 

parameters are comprised between 0 and 1. The perforation along y is best obtained with several small holes, 

so that we can assume that the holed segment behaves as an equivalent material of scaled density and stiffness, 

with a scale factor equal to 𝛼𝑦. A further advantage of having several small holes is that the surface-to-volume 

ratio is increased, a property exploited in PnC-based sensors 2,3. The cell geometry considered here is identical 

to the one presented in [21], where the propagation of flexural waves inside 1D PnCs was studied. For 

longitudinal waves, the structure is seen as a bar where deformations move the cross-sections along the main 

axis 22, as show in the right side of Fig. 1. 
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Figure 1. (left) Structure of the PnC cell and definition of 𝛼𝑥 and 𝛼𝑦; (right) sketch of its longitudinal deformation. 

At any cross-section, the behavior of the structure is described by two parameters: its axial stiffness (𝐸𝐴), i.e. 

the product of the Young’s modulus 𝐸 and the area of the cross section 𝐴, and the translatory inertia (𝜌𝐴), i.e. 

the product of the mass density 𝜌 and 𝐴. Because of the structure of the cell, both (𝐸𝐴) and (𝜌𝐴) are piecewise 

constant functions of 𝑥. The state of the PnC at the cross-section is described by a vector 𝐬(𝑥) = [𝑢(𝑥)  𝑛(𝑥)]T, 

where 𝑢(𝑥) is the longitudinal displacement and 𝑛(𝑥) the axial force. We normalize all quantities by 

introducing the following definitions: 

 𝜉 ≡
𝑥

𝑙
,   𝑈(𝜉) ≡

1

𝑙
𝑢(𝜉𝑙),     𝑁(𝜉) ≡

1

(𝐸𝐴)𝑓
𝑛(𝜉𝑙),     𝐒(𝜉) = [𝑈(𝜉)   𝑁(𝜉)]𝑇 (1) 

where 𝐒(𝜉) is a normalized state vector. With this normalization, the harmonic wave equation for longitudinal 

waves can be written as 

 
𝑑

𝑑𝜉
[
𝑈(𝜉)
𝑁(𝜉)

] = [
0

(𝐸𝐴)𝑓

(𝐸𝐴)

−𝛺2 (𝜌𝐴)

(𝜌𝐴)𝑓
0

] [
𝑈(𝜉)
𝑁(𝜉)

] = 𝐃 ∙ 𝐒(𝜉) (2) 

where 𝐃 is the dynamic matrix of the system. The normalized frequency 𝛺18 has also been introduced: 

 𝛺 ≡
𝜔

𝜔0
,     𝜔0 ≡

𝑐

𝑙
,     𝑐 ≡ √

𝐸

𝜌
 (3) 

with 𝜔 being the frequency. The quantity 𝑐 is the speed of longitudinal waves inside the bar (which, in our 

case, is independent of 𝑥). The matrix 𝐃 assumes two different values in the two segments of the cell: 

 𝑫𝒇 = [
0 1

−𝛺2 0
],      𝑫𝒉 = [

0 1/𝛼𝑦

−𝛺2𝛼𝑦 0
]. (4) 

Equation (2) can be solved for the transmission matrix 𝐓 of the unit cell, defined by the relation 𝐒(𝜉 + 1) =

𝐓 ⋅ 𝐒(𝜉). Its value is: 

 𝐓 = exp[𝛼𝑥𝑫𝒇(𝛺)]exp[(1 − 𝛼𝑥)𝐃𝒉(𝛺)] (5) 
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Where exp(𝐌) is the matrix exponential of 𝐌. The two eigenvalues of 𝐓 are the inverse of each other, and 

can be written as 𝑒±𝑖𝐾(Ω), with 𝐾(𝛺) being the dispersion function. Straightforward passages (see Appendix 

A for details) give: 

 𝐾 = −𝑖 ln (
1

2
(−𝐼𝐿 + √𝐼𝐿

2 − 4)) (6) 

where 𝐼𝐿 is an invariant of the matrix (equal to minus the trace of 𝐓). Its expression is: 

 𝐼𝐿(𝛼𝑥 , 𝛼𝑦, 𝛺) = −tr(𝐓) = −2 cos(𝛼𝑥𝛺) cos((1 − 𝛼𝑥)𝛺) +
1+𝛼𝑦

2

𝛼𝑦
sin(𝛼𝑥𝛺) sin((1 − 𝛼𝑥)𝛺) . (7) 

The expression of 𝐼𝐿 is also invariant under the substitution 𝛼𝑥 → 1 − 𝛼𝑥. As a result, we limit our study to 

𝛼𝑥 ∈ [0, 1/2]. A frequency is inside a bandgap if the corresponding wavenumber has nonzero imaginary part. 

It is immediate to verify from (6) that this happens in the (countably infinite) intervals of 𝛺 where |𝐼𝐿| > 2. 

The sign in the definition of 𝐼𝐿 was chosen (consistently with what we did for flexural crystals21) so that 

frequencies within an odd bandgap have 𝐼𝐿 > 2, those in even bandgaps have 𝐼𝐿 < −2. To compute the 

attenuation at the center of any of these intervals, it is convenient to define a normalized attenuation constant 

𝛤𝑛 as: 

 𝛤𝑛 =
|𝐈𝐦(𝐾(𝛺𝑛))|

𝛺𝑛
. (8) 

The attenuation constant 𝛾 is then 

 𝛾 = |𝐈𝐦(𝑘(ω𝑛))| = |
𝐈𝐦(𝐾(𝛺𝑛))

𝒍
| =

|𝐈𝐦(𝐾(𝛺𝑛))|

𝛺𝑛
𝜔𝑛√

𝜌

𝐸
= 𝛤𝑛

𝜔𝑛

𝑐
 (9) 

where 𝜔𝑛 is the center frequency of the 𝑛𝑡ℎ bandgap, and 𝛺𝑛 is its normalized value. In the following, 

analytical approximated expressions of the normalized attenuation constant 𝛤𝑛 are derived and discussed. 

For comparison with these asymptotic expressions, accurate numerical values of the attenuation were 

calculated with the same method proposed in 21. Briefly, for any point (𝛼𝑥, 𝛼𝑦) of the design space, the bandgap 

edges can be extracted by numerically solving for the roots of 𝐼𝐿(𝛼𝑥, 𝛼𝑦, 𝛺) = ±2. Once that the bandgap 

edges (and thus their central frequencies) are known, the normalized attenuation constant for each bandgap 

can be calculated by using (6)-(8). The numerical values of 𝛤𝑛 for the first three bandgaps are shown as red 

dotted curves in the contour plots of Fig. 2.  In the rest of the paper, we use these numerical values to assess 

the accuracy of our approximated models. 

 

Figure 2. Values of the normalized attenuation 𝛤𝑛  for the first, second and third bandgap (left to right). Red dotted lines 

are numerical values, blue lines the approximation for small bandgaps, green lines the approximation for large bandgaps. 
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3 Discussion 

3.1 Large bandgap approximation 

While a small contrast between the two segments (i.e. an 𝛼𝑦 close to one) always leads to narrow bandgaps, 

the opposite (i.e., large bandgaps for large contrasts) is not necessarily true. This can be verified with the aid 

of Fig. 3, which shows the borders of the first three bandgaps (computed with the method described above) as 

a function of 𝛼𝑥 for three different values of 𝛼𝑦, namely 0.3, 0.1, and 0.033. The graph clearly shows that there 

are critical values of 𝛼𝑥 for which the bandgaps disappear, irrespective of the value of 𝛼𝑦. The value 𝛼𝑥 = 0 

(and, symmetrically, 𝛼𝑥 = 1) correspond to the trivial case of homogeneous rods without discontinuities, 

where acoustic propagation is unrestricted. The other critical values of 𝛼𝑥 are located at the points of 

geometrical phase inversion16. 

To explore the case of large bandgaps, we then assume the necessary, though not sufficient, condition, that 

𝛼𝑦 ≪ 1. We note that in the limit 𝛼𝑦 → 0, the equation for the bandgap borders, |𝐼𝐿| = 2  tends to:  

 sin(𝛼𝑥𝛺) sin((1 − 𝛼𝑥)𝛺) = 0, (10) 

whose solutions are, trivially, the two families of hyperbolas 

 Ω =
𝑞

1−𝛼𝑥
𝜋,        Ω =  

𝑝

𝛼𝑥
𝜋             𝑞, 𝑝 = 1, 2, 3, … (11) 

These hyperbolas are plotted in Fig. 3 as solid black lines. The inversion points stand at the intersection of 

these hyperbolas which, for the nth bandgap, take place for 𝛼𝑥 = 𝑚/𝑛, with 𝑚 = 1, 2, … (𝑛 − 1). For 𝛼𝑦 → 0, 

the bandgaps expand to fill all frequencies and the propagation bands reduce to single points. A theoretical 

upper limit for the bandgap width can be obtained as the difference of two adjacent hyperbolas. This analysis 

shows that a best-case approximation for the normalized fractional bandwidth is 2/𝑛, with 𝑛 as the bandgap 

order, i.e. large fractional bandwidths are progressively harder to obtain at higher orders. 

 

Figure 3. First three bandgaps at three different 𝛼𝑦 values (0.033, 0.1, 0.3 for progressively darker red shades) as a 

function of 𝛼𝑥. Solid black lines mark the asymptotic bandgap borders (11), dashed black lines the approximate bandgap 

centers ((14)-(15)), green dotted lines the numerical bandgap centers for 𝛼𝑦 = 0.001. 
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Under the assumption of large bandgaps, the modulus of the invariant at the bandgap center 𝐼𝐿(𝛺n) is also 

large (i.e. much larger than 2). Under this assumption, the wavenumber (6) can be approximated to 

 𝐾 = {
 𝑖 ln (|𝐼𝐿|)     even bandgaps,

 𝜋 − 𝑖 ln (|𝐼𝐿|)     odd bandgaps.
 (12) 

The attenuation 𝛤𝑛 can then be written, from (7) and (12), and under the further assumption 𝛼𝑦 ≪ 1, as 

 𝛤𝑛 =
1

𝛺𝑛
ln (

|sin(𝛼𝑥𝛺𝑛) sin((1−𝛼𝑥)𝛺𝑛)|

𝛼𝑦
). (13) 

To evaluate (13), estimations of the 𝛺𝑛’s are required. The simplest choice is to approximate 𝛺𝑛 with its value 

for 𝛼𝑦 → 0, which can be easily computed as the average of the asymptotic bandgap borders as determined by 

(11), leading to the following expressions: 

 𝛺2 = {

3𝜋

2(1−𝛼𝑥)
0 ≤ 𝛼𝑥 < 1/3

𝜋

2𝛼𝑥(1−𝛼𝑥)

1

3
≤ 𝛼𝑥 ≤ 1/2

       𝛺3 = {

5𝜋

2(1−𝛼𝑥)
0 ≤ 𝛼𝑥 < 1/4

𝜋(1+𝛼𝑥)

2𝛼𝑥(1−𝛼𝑥)
1/4 ≤ 𝛼𝑥 ≤ 1/2

 (14) 

This is a very good approximation for bandgap borders higher than one, as shown in Fig. 3 by the comparison 

between the approximated solution (solid green lines) and numerically computed values (dotted red lines). 

However, for the first bandgap, the fact that the lower border reaches zero for 𝛼𝑦 → 0 leads to an excessive 

error with respect to the numerical case. In this case we choose a different expression: 

 Ω1 ≈
𝜋

1+(1−2𝛼𝑥)2, (15) 

which captures more accurately the actual behavior for 𝛼𝑥 close to 1/2. Equation (15) is also plotted as a dashed 

black line in Fig. 3. Substituting the approximate expressions for Ω𝑛 into (13), we finally compute the 

attenuation as a function of both 𝛼𝑥 and 𝛼𝑦. The corresponding curves are plotted in Fig. 2 as solid green lines. 

Again, a close approximation of actual numerical values is obtained for large bandgaps, i.e. for small 𝛼𝑦 and 

far from the values of 𝛼𝑥 where the bandgaps close, i.e. in the homogeneous limit (𝛼𝑥 = 0, 𝛼𝑥 = 1), and at 

inversion points (𝛼𝑥 = 𝑚/𝑛, with 𝑚, 𝑛 integers, 𝑚 < 𝑛). 

3.2 Small bandgap approximation 

On the other hand, a small acoustic contrast always leads to small bandgaps. In this case, we determine that 

the normalized attenuation constant 𝛤𝑛 is, in the limit of infinitesimally small deviations from the homogenous 

rod, proportional to the fractional bandwidth:  

 𝛤𝑛 ≈
1

2

∆𝛺𝑛

𝛺𝑛
 (16) 

where ∆𝛺𝑛 is the normalized width of the bandgap (a proof of (16) is given in Appendix B). Using this 

approximation, the problem of estimating the attenuation constant is transformed to the one of estimating 

bandgap edges. This problem can be solved for small deviations from the homogenous case (𝛼𝑦 = 1) by using 

the perturbation method adopted by Nielsen and Sorokin19. By setting 𝛼𝑦 = 1 − 𝜖 and expanding up to the 3rd 

order with respect to 𝜖, the following relationship is obtained: 

 
∆𝛺𝑛

𝛺𝑛
≈  2𝜖|sin(𝑛𝜋𝛼𝑥)|

1+
𝜖

2
+

1

12
𝜖2(4+2 cos(2𝑛𝜋𝛼𝑥)−3(1−𝛼𝑥)𝛼𝑥(1+3 cos(2𝑛𝜋𝛼𝑥)))

𝑛𝜋−
𝜖2

4
(1−2𝛼𝑥) sin(2𝑛𝜋𝛼𝑥)

. (17) 
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The corresponding analytical values for the first three gaps are plotted (blue solid curves) in Fig. 2 against 𝛼𝑥 

and 𝛼𝑦. A comparison with the numerically computed values (red dotted curves) show that there is good 

agreement up to relatively high values of contrast, with 0.4 < 𝛼𝑦 < 1 being a reasonable range. A relationship 

similar to (16), i.e. 𝛤𝑛 ≈ ∆𝛺𝑛/4𝛺𝑛 holds for flexural PnCs21. An important consequence of this fact is that, for 

the same fractional bandwidth ∆𝛺𝑛/𝛺𝑛, the normalized in-gap attenuation in longitudinal PnCs is about twice 

as large as the one in flexural PnCs. For 𝛼𝑦 < 0.4, this approximation progressively fails, and the attenuation 

is larger than implied by (16). This is in contrast with the flexural case, where the equivalent approximation 

holds down to very low values of 𝛼𝑦. 

3.3 Comparison with flexural crystals 

In the limit of small bandgaps, an insightful comparison of the attenuations can be established between flexural 

and longitudinal crystals. Specifically, it is interesting to compare the attenuation for PnCs with the same 

fractional bandwidth, to assess how a flexural and longitudinal PnC with the same bandgap compare from the 

point of view of attenuation. For flexural waves, a small bandgap approximation for the attenuation 

(corresponding to (16) for longitudinal waves) exists21:  

  𝛤𝑛𝐹 ≈
1

4

∆𝛺𝑛

𝛺𝑛
 (18) 

where 𝛤𝑛𝐹 ≐ |𝐈𝐦 (𝐾𝑓(𝛺𝑛𝐹))| √𝛺𝑛𝐹⁄  is the normalized attenuation constant for flexural waves21. By equating 

the fractional bandwidths in (16) and (18), and exploiting the normalization coefficients, a denormalized 

expression is found:  

 𝛾𝐹 =
31/4

√2
√

𝑐

𝑡 𝜔𝑛
𝛾𝐿 (19) 

where 𝑡 is the thickness and 𝛾𝐹 and 𝛾𝐿 are the attenuations per unit length for flexural and longitudinal waves, 

respectively. A insightful way to present this result is to define 𝑡𝑒 as the thickness at which the two are equal 

(𝛾𝐹 = 𝛾𝐿), compute it from (19) and plot it as a function of the target central frequency 𝜔𝑛. The expression for 

𝑡𝑒, which also depend on the speed of waves 𝑐 in the material, is:  
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Figure 4. Structural thickness giving equal attenuation for flexural and longitudinal waves (𝛾𝐹 = 𝛾𝐿) as a function of 

the target central frequency of the bandgap for different structural materials. 

 

 𝑡𝑒 =
√3

2

𝑐

𝜔𝑛
. (20) 

A family of lines describing various materials used in applications (monocrystalline silicon, polycrystalline 

silicon-germanium, aluminum, and poly methyl methacrylate or PMMA) are shown in Fig. 4. Below the lines 

there are the design points where flexural attenuation is larger than longitudinal attenuation, the opposite is 

true above the lines. Moving towards the GHz domain (which is of interest in radio-frequency filtering 

applications), data show that a longitudinal design offers a better rejection. 

4 Conclusions 

In this work, we developed simplified analytical expressions for the in-gap attenuation constant of longitudinal 

N/MEMS PnCs for the two cases of large bandgap and small bandgap structures and validated these 

expressions against the attenuation constant obtained numerically from the transmission matrix theory. We 

then showed that, for small bandgaps, the attainable attenuation essentially only depends on the bandgap width-

to-center ratio (i.e., the fractional bandwidth). For large bandgaps, larger attenuations can be obtained at 

relatively small acoustic constraints (which are technologically easier to obtain), as long as the design avoids 

structures close the inversion points for the propagation of longitudinal waves. Furthermore, we compared the 

attenuation of longitudinal and flexural waves at fixed fractional bandwidth, and showed that two different 

domains exist for better attenuation between the two propagation modes, with longitudinal PnCs favored at 

high frequency and large device thickness. All these results will prove useful in efficient synthesis of micro- 

to nanoscale PnCs. 

Appendix A 
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Wave number expression. The characteristic polynomial 𝑃(𝜆) of the transmission matrix 𝐓 of the unit cell 

(see equation (5)) can be written as 

 𝑃(𝜆) = 𝜆2 + 𝐼𝐿𝜆 + 1. (A.1) 

where  𝐼𝐿 is the invariant of equation (7), equal to minus the trace of 𝐓. The two eigenvalues are obtained by 

solving 𝑃(𝜆) = 0, giving 

 𝜆1,2 =
1

2
(−𝐼𝐿 ± √𝐼𝐿

2 − 4). (A.2) 

By rewriting such eigenvalues in exponential form 𝜆1,2 = 𝑒±𝑖𝐾, where 𝐾 is Bloch wavenumber describing the 

propagation of longitudinal waves inside the PnC, we obtain (6). 

Appendix B 

Relationship between fractional bandwidth and normalized attenuation. Following a similar derivation 

of the one presented in [21], we demonstrate equation (16) in the limit of small deviations from an 

homogeneous rod, i.e. a bar with uniform cross section and material properties along its axis.  Such a structure 

has a linear dispersion relation of the form 

 𝐾 = ±𝛺. (B.1) 

Without loss of generality, we assume that a periodicity is introduced in a homogeneous rod by a perturbation 

parameter 𝛿𝛼, with 𝛿𝛼 = 0 being the homogeneous case. A change in 𝛼 can be related to a change in geometry, 

density, stiffness or their combination. The condition for 𝐾 to be real, i.e., for 𝛺 to be outside of a bandgap is  

 −2 ≤ 𝐼𝐿(𝛿𝛼, 𝛺) ≤ 2. (B.2) 

We limit our derivation to the case of odd bandgaps were 𝐼𝐿(𝛿𝛼, 𝛺) > 2. In the homogeneous case (S.4) is 

always verified, but 𝐼𝐿 assumes the value 2 in a numerable set of values 𝛺𝑛0 of the frequency. A perturbation 

of the homogeneity (i.e., a change in 𝛿𝛼) opens a bandgap around any of these frequencies. We define 

 𝛿𝐼𝐿(𝛿𝛼, 𝛿𝛺) = 𝐼𝐿(𝛿𝛼, 𝛺𝑛0 + 𝛿𝛺) − 2. (B.3) 

Inside the opening bandgap, 𝛿𝐼𝐿 is always positive. For small 𝛿𝐼𝐿 and odd bandgaps, (6) can be approximated 

with its first order Taylor series as 

 𝐾 ≈ 𝑛𝜋 ± 𝑖√𝛿𝐼𝐿(𝛿𝛼, 𝛿𝛺) , 𝑛 odd. (B.4) 

It is immediate that in the homogeneous case no bandgap opens, and thus 𝛿𝐼𝐿(0, 𝛿𝛺) ≤ 0. Furthermore, as a 

change in 𝛿𝛼 opens the bandgap, 𝛿𝐼𝐿(𝛿𝛼, 0) ≥ 0. The point (0,0) is then a saddle point for 𝛿𝐼𝐿(𝛿𝛼, 𝛿𝛺). We 

can now write the second order series expansion of 𝛿𝐼𝐿 around the point (0,0) 

 𝛿𝐼𝐿(𝛿𝛼, 𝛿𝛺) ≈
1

2
𝐼𝐿,𝛼𝛼 𝛿𝛼2 + 𝐼𝐿,𝛼𝛺 𝛿𝛼𝛿𝛺 +

1

2
𝐼𝐿,𝛺𝛺 𝛿𝛺2 (B.5) 

where we used comma notation for partial derivatives, and exploited the fact that, because of the existence of 

the saddle point, first order derivatives are zero. Substituting (B.5) in (B.4) 

 𝐾 ≈ 𝑛𝜋 ± 𝑖√
1

2
𝐼𝐿,𝛼𝛼  𝛿𝛼2 + 𝐼𝐿,𝛼𝛺 𝛿𝛼𝛿𝛺 +

1

2
𝐼𝐿,𝛺𝛺 𝛿𝛺2,  𝑛 odd. (B.6) 

Equation (B.6) is then an approximate expression for the dispersion relation near the opening bandgap, from 

which we can determine the normalized bandgap width ∆𝛺𝑛, its center 𝛺𝑛, and normalized attenuation 𝛤𝑛. 

Straightforward calculations give: 
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 ∆𝛺𝑛
2 = 4

𝐼𝐿,𝛼𝛺
2−𝐼𝐿,𝛼𝛼𝐼𝐿,𝛺𝛺

𝐼𝐿,𝛺𝛺
2 𝛿𝛼2 (B.7) 

 𝛺𝑛 = 𝛺𝑛0 −
𝐼𝐿,𝛼𝛺

𝐼𝐿,𝛺𝛺
𝛿𝛼 ≈ 𝛺𝑛0 (B.8) 

 𝛤𝑛
2 =

|𝐈𝐦(𝐾2(𝛺𝑛))|2

𝛺𝑛
2 =

𝐼𝐿,𝛼𝛺
2−𝐼𝐿,𝛼𝛼𝐼𝐿,𝛺𝛺

2|𝐼𝐿,𝛺𝛺|𝛺𝑛0
2 𝛿𝛼2. (B.9) 

The squared ratio between 𝛤𝑛 and the fractional bandwidth can thus be written as: 

 (
𝛤𝑛

∆𝛺𝑛
𝛺𝑛

)

2

=
1

8
|𝐼𝐿,𝛺𝛺|. (B.10) 

The values of 𝛺𝑛0 and 𝐼𝐿,𝛺𝛺 can be determined by equating (B.1) and (B.6) in the homogeneous (𝛿𝛼 = 0) case: 

 𝐾(0, 𝛿𝛺) = ±𝛺𝑛0 ± 𝛿𝛺 = 𝑛𝜋 ± 𝑖√(𝐼𝐿,𝛺𝛺/2) 𝛿𝛺2. (B.11) 

 

The left and right sides of (B.11) are now two approximations of the same dispersion relation. Comparison of 

the two gives: 

 𝛺𝑛0 = 𝑛𝜋,     𝐼𝐿,𝛺𝛺 = −2. (B.12) 

Finally, substitution of (B.12) in (B.10) gives 

 𝛤𝑛 =
1

2

∆𝛺𝑛

𝛺𝑛
. (B.13) 
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