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Abstract—The hysteresis in the state-of-charge (SoC) vs.
open-circuit voltage characteristic of a lithium-iron-phosphate
(LiFePO4, LFP) battery is modelled with two approaches. The
first one is based on a first-order charge relaxation equation, the
second one is the Preisach model implemented with the Everett
function. The advantages and drawbacks of the methods are
discussed. Simulation results are compared for a 20 A h LFP
cell, stimulated with various SoC evolutions, allowing us to draw
minor loops in the SoC-OCV plane. The results are also compared
to experimental data.

I. INTRODUCTION

The design of the energy storage systems necessary in
many applications of the industrial fields, such as electric
transportation and utility grids, is becoming more and more
attracted by the Lithium-ion (Li-ion) batteries [1]. Among the
different variants of Li-ion batteries, lithium iron phosphate
(LiFePO4 or briefly LFP) is one of the most promising for
Electric Vehicle (EV) or hybrid EV applications, offering
high safety with a reasonable cost, lower than other lithium-
based batteries. LFP batteries are characterised by a flat Open-
Circuit Voltage (OCV) when the State-of-Charge (SoC) ranges
from 20 % to 80 %. Moreover, OCV exhibits a pronounced
hysteresis between the charge and discharge curves [2]–[3].

An accurate estimation of the battery SoC contributes to
increase the safety and life expectancy of the battery, as well as
to maximize the driving range of EVs and to reduce costs. SoC
estimation is indeed a fundamental function in an advanced
Battery Management System (BMS) [4]-[5]. SoC indicates the
residual energy of the battery and it is usually expressed as a
percentage of the battery capacity. Its knowledge allows one to
keep the battery within the optimal operating conditions and
to evaluate the remaining runtime of the overall system (e.g.,
the driving range of an EV). An accurate characterization of
the hysteresis and affordable models of the phenomenon are
required in order to obtain a precise estimation of the SoC and
parameters for an LFP battery with a model-based observer,
such as a filter [6]-[9].

Starting from the experimental data showing hysteresis in
the SoC-OCV characteristic of a 20 A h LFP cell, two deeply
different modelling approaches are compared in this paper.
The first one is the so-called One-State Hysteresis (OSH)
model, based on a fist-order relaxation equation. The battery

Fig. 1. Cell circuit output loop. The hysteretic voltage vH depends on the
SoC history.

static hysteretic response to a variation of SoC is contained
in the hysteresis major loop and follows the forcing term
in a “delayed” way (in fact, “delay” is the original meaning
of the Greek-derived word “hysteresis”) [3], [8]. The second
model is the classical Preisach model, originally proposed in
1935 for magnetic materials [10] and then formalized as a
fully-general mathematical tool in [11]. The Preisach model
has been effectively proposed and used for NiMH batteries
[12] and for Li-ion batteries [13]. The Preisach operator
is implemented by means of the so-called Everett function,
identified with a well-defined characterization procedure of
the battery (first-order reversal (FOR) branches). The aim of
this work is to draw a comparison of the two models.

II. MODELLING SOC − OCV HYSTERESIS

A. Equivalent Electric Circuit of a Li-ion Battery
Let us consider a cell having a nominal capacitance Qn and

let us call v the cell voltage and i the cell current, with the
passive sign convention. We also assume the cell temperature
constant and equal to the room temperature T . The cell SoC is
defined by a linear transformation of the charge Q stored in the
battery, such that SoC(Q = Qn) = 1 and SoC(Q = 0) = 0,
where Qn is the normalisation battery capacity.

The equivalent electrical model of a Li-ion cell that includes
the hysteresis voltage is shown in Fig. 1 [3]. The circuit is
based on a model widely adopted in the literature [14] and
it has been modified adding a voltage source accounting for
hysteresis. The cell voltage is:

v = OCVav + vH +R0i+ vRC1 + vRC2, (1)



in which OCVav is the average OCV as a function of SoC,
while R0, Rk and Ck are the cell parameters (k = 1, 2), and
vRCk is the solution of the following first-order equation:

dvRCk

dt
= −

1

RkCk

vRCk +
i

Ck

. (2)

It is worth noticing that the relaxation phenomena also occur
when the battery current i is equal to zero. In the following,
a static analysis of hysteresis is carried out, so that we can
safely assume vRCk = 0.

Finally, the voltage source vH in Fig. 1 represents the hys-
teretic voltage as a function of SoC, which is not necessarily
a single-valued function.

B. Hysteresis

In order to model vH, two widely assessed methods are
used: the first one is the so-called One-State Hysteresis (OSH)
model [3], [8]. The hysteretic voltage is obtained by solving a
first-order relaxation equation characterized by one relaxation
parameter. The alternative approach adopted is the Preisach
model [10], [13].

Before introducing the hysteresis models, we make the
following assumptions: it is possible to define vH as a function
of the cell SoC, a function that depends on the SoC actual
value and the SoC history. It is also possible to define a
maximum hysteresis loop which “contains” any evolution
and, thus, trajectory in the plane SoC − vH (state-space for
hysteresis). The maximum hysteresis loop is defined by its
upper bound OCVup(SoC) and its lower bound OCVlw(SoC).
We also define the average open circuit voltage OCVav(SoC)
as:

OCVav(SoC) =
OCVup(SoC) + OCVlw(SoC)

2
. (3)

The OCVav as defined in (3) is calculated from the experi-
mental data and is plotted in Fig. 2. It is finally useful to define
the non-negative function E(SoC) representing the maximum
hysteresis value to be added or subtracted to the average value
OCVav:

E(SoC) =
OCVup(SoC)− OCVlw(SoC)

2
. (4)

The function E(SoC) is plotted in Fig. 3.

C. One-State Hysteresis Model

Any SoC variation causes the hysteresis term vH to vary
with inertia. One way to represent the inertia in SoC is to use
a first-order relaxation equation, as it happens for the voltage
relaxation in an RC circuit. In this case we have to take into
account that SoC variations might be negative, whereas time
variations are positive in the time domain equations. With this
idea in mind, we can write the differential equations describing
the model in the SoC − vH plane when dSoC ≥ 0:

dvH
dSoC

= −γ [vH − E(SoC)] for dSoC ≥ 0, (5)
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Fig. 2. Hysteresis major loop and average open circuit voltage defined by
(3), as functions of SoC [3].
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Fig. 3. Maximum positive hysteresis, defined according to (4) as a function
of SoC [3].

being γ > 0 and vH = +E the steady-state solution.
Conversely, when dSoC < 0, the steady-state solution is
vH = −E, and the relaxation equation must be written as:

dvH
dSoC

= γ [vH + E(SoC)] for dSoC < 0. (6)

In (5)-(6), 1/γ is an adimensional constant (a sort of “state-
of-charge constant”) analogous to the time constant used in
the time domain. Joining (5) and (6) we finally obtain:

dvH
dSoC

= −sgn(dSoC)γvH + γE(SoC). (7)

In order to obtain a time domain equation from (7), we
multiply both members by dSoC

dt
, obtaining:

dvH
dt

= −sgn(dSoC)
dSoC
dt

γvH + γ
dSoC
dt

E(SoC) (8)



Considering that i = Qn
dSoC
dt

, we have:

sgn(dSoC)
dSoC
dt

= sgn(i)
i

Qn

=
|i|

Qn

. (9)

Substituting (9) into (8) we get:

dvH
dt

= −
|i|

Qn

γ vH + sgn(i) γ
|i|

Qn

E(SoC) (10)

and, defining τH = Qn

γ|i| , we finally obtain:

dvH
dt

= −
vH
τH

+ sgn(i)
E(SoC(t))

τH
. (11)

A circuit interpretation of (11) is given in [3].

D. Preisach Hysteresis Model based on Everett Function
The basic idea of the Preisach model is that the hysteretic

response can be seen as the superposition of elemental relays’
responses. The elemental relay γαβ has two states: “up”
(γαβ = +1) and “down” (γαβ = −1). Two switching
thresholds allow the relay to change its state: SoC = α is the
switch-up threshold, while SoC = β is the “down” switching
threshold. When SoC goes beyond α, then the relay’s response
switches to +1. Conversely, when SoC goes below β, its
response turns to −1. Between these thresholds, the state
depends on the SoC history. If we write the superposition
of the relays responses in the integral form, we obtain that
the OCV can be expressed as a function of the independent
variable SoC(t) as:

OCV(t) =

∫
α≥β

μ(α, β)γαβ{SoC(t)} dαdβ, (12)

where the elemental relays are distributed according to the
density function μ, also called Preisach function.

Preisach theory is well assessed in the magnetic community.
One of the main results of this theory prescribes that hysteresis
must fulfill a necessary and sufficient condition in order to
be represented by the so-called Preisach operator reported in
(12). This condition consists of two properties: congruency and
wiping out [11]. Such properties are extensively described in
[11]. Here, we recall them very briefly.

The wiping out property refers to the circumstance that only
the input “dominant” extrema are stored, while all the others
are “wiped out” by the dominant ones. In other words, only a
subset of the complete sequence of input extrema contributes
to the state of the system. In fact, wiping out is also the
most common mechanism for memory state updating and
it can confidently be assumed as satisfied in the case of a
battery. Conversely, the congruency property could only be
assumed as an approximation in the battery case (and, more
generally, in all practical cases of interest). Congruency means
invariance of minor loops between the same input extrema if
subjected to a vertical shift. The smaller the shift, the better
the approximation. In [13] it is shown that congruency is better
approximated when SoC is the input and OCV the output (and
not vice versa), leading to write the superposition integral as
in (12).

In order to identify the Preisach operator, one possibility is
to identify the Preisach function μ. We follow an alternative
approach, using the so-called Everett function associated to
the first-order reversal (FOR) hysteresis branches depicted in
Fig. 4. The FOR branches are minor hysteresis loops that

0 0.2 0.4 0.6 0.8 1
2.8

2.9

3

3.1

3.2

3.3

3.4

state of charge (SoC) 
ce

ll 
op

en
 c

irc
ui

t v
ol

ta
ge

 (O
C

V
)

Fig. 4. First-order reversal (FOR) branches measured (in discharge) with a
PCT characterization of a 20 A h LFP cell.

explore the hysteretic phenomenon with loops of decreasing
amplitude from branch to branch. In our case, ten FOR
branches are measured: they are uniformly-spaced with an
increase of approximately 10 % in SoC from branch to branch
(from full charge state SoC = 100 % down to 10 %), with a
SoC discretization step of 5 %. Temperature is kept constant
at 298 K (more details on the experimental procedure will
be given in the following Section). It is worth noting that
the branches are very close to one another, but they do not
overlap. Measuring FOR branches closer to each other would
be desirable, but the experiment is highly time-consuming and
would be unpractical. On the basis of the FOR branches, we
define the so-called Everett function E as a function of the
switching thresholds α and β, as it is done in [11]:

E(α, β) =
OCVα − OCVαβ

2
, (13)

which is half of the output increment at point β along a FOR
branch starting in α. The function could easily be rewritten in
the following way:

E(α, β) =

∫ α

β

dβ′

∫ α

β′

μ(α′, β′) dα′. (14)

Geometrically, the value of the integral in (14) is associated
to the upper-left vertex of the triangular domain of integration
T (α, β).

The direct use of (14) would require the numerical eval-
uation of the integral as well as the determination of μ by
deriving twice the experimental data. Geometrical considera-
tions [11] prove that the integral (14) can be rewritten as a



linear combination of the Everett function’s values:

OCV(t) = 2
∑
k

[E(αk, βk−1)− E(αk, βk)]− E0 (15)

where all the appearing αi and βj are the dominant ex-
trema constituting the hysteresis state of the battery and
E0 = E(100 %, 0 %). The main benefit associated with the
introduction of the Everett function is that the output is a
linear combination of a set of Everett function values, which
means a low computational burden.

III. RESULTS

A. Experiments on a LFP Battery

Pulsed Current Tests (PCT) have been performed on a LFP
cell having a rated capacity of 20 A h and charge/discharge
cutoff voltages of 3.65 V and 2.85 V, in order to obtain
the relationship between OCV and SoC [3], [15]. The cell’s
ambient temperature T is kept constant at 298 K in a thermal
chamber. Each PCT is preceded by an initialization procedure,
including a complete discharge/charge cycle. Then, the battery
is fed by a sequence of constant-current (CC) pulse steps
(with duration 30 min) determining a 5 % variation of SoC,
separated by rest steps (with duration 1 h), in which the current
is set to zero, so that the terminal voltage can relax toward
its asymptotical value. The CC pulse value is C/10 = 2 A
(one tenth of the rated capacity expressed in ampere-hours).
As soon as the charge/discharge cutoff voltage is reached,
charging/discharging proceeds in constant-voltage (CV) mode.
These final conditions define the full-charge (SoC=100 %)
and full-discharge (SoC=0 %) states and their corresponding
OCV values, OCV(100 %) and OCV(0 %). A few tens
of millivolts spreading of these values is observed among
different experiments, so that OCV(0 %) and OCV(100 %)
are defined by averaging the measured values.

TABLE I
SOC EVOLUTIONS.

Label SoC evolution (%)
(a) 100-0-100
(b) 100-25-75-25-100
(c) 100-40-60-40-100

Using the aforementioned procedure, three experimental
PCTs, described in Table I, are carried out. In all the cases,
the OCV experimental points are defined as the cell terminal
voltage value reached at the end of each rest step [2], [3].
SoC value is determined by integrating current samples with
the trapezoidal integration rule, and normalizing the charge
obtained to the rated capacity. The current integral is reset in
two points, when the battery reaches the full-charge and full-
discharge states as defined above. The SoC-OCV characteristic
of the LFP cell is rather flat, with OCV variation less than
0.2 V in the SoC range from 10 % to 90 %. Furthermore, the
same kind of test has been used to obtain the FOR branches
in Fig. 4, useful for the identification of the Preisach model.

B. Simulation Results

The two models described above have been used to repro-
duce the battery static OCV evolution, when the ΔSoC state
of charge steps defined in the experiments are applied as a
function of time. Three simulations are performed with the
same charge variation profiles obtained with PCT described
in Table I. The simulation initial condition is SoC = 100 %,
i.e., Qn = 20 A h.

The hysteresis parameter γ in the OSH model is considered
constant and it has been computed as a fitting parameter,
by minimising the rms error between the simulation results
and the experimental ones. The value that leads to the best
achievable results is γ = 17.45. Obviously, this procedure is
very sensitive with respect to the data to be fitted, and the
predictive capability of the method is thus limited in this case.
On the contrary, Preisach model is identified on the basis of
a very well defined training procedure, which ensures high
repeatability and robustness.

Numerical results are reported in Fig. 5-Fig. 7. The values
simulated with both OSH and Preisach models are plotted
together with the experimental results. The first plot in each
figure column shows the hysteretic behaviour in the SoC-OCV
plane. The evolution of the OCV is represented as a “time
simulation” (point-by-point OCV) in the second plot of each
column. These plots allow us to distinguish the behaviour
of branches that partially overlap. Finally, the last plot in
each column shows the point-by-point error for both models.
Table II collects the rms errors for OSH and Preisach model
(eOSH

rms and ePrms, respectively) and peak errors (eOSH
max and ePmax,

respectively) in the three cases analyzed.
The results of the two methods are approximately equivalent

in terms of rms error, as shown in Table II: they are always
within a few percent. For the case (a), both OSH and Preisach
models exhibit a pronounced local error in the full-discharge
zone. The error is mainly due to the definition of OCV at
SoC = 0 % reported above. However, this is not an issue
because a large OCV variation corresponds to a very small
SoC charge around full-discharge. Thus, the model prediction
does not lead to large SoC estimation errors in this zone.
Apart from the peak error at full-discharge, the errors with
which both the models reproduce the hysteretic behaviour of
the battery are satisfactorily low.

TABLE II
SIMULATION ERRORS NORMALIZED AT ΔOCV = 0.489 V

Case eOSH
rms ePrms eOSH

max ePmax

(a) 1.23 % 2.52 % 5.18 % 12.08 %
(b) 0.90 % 1.13 % 0.56 % 2.79 %
(c) 0.71 % 0.57 % 1.10 % 1.18 %

IV. CONCLUSIONS

The One State Hysteresis (OSH) and Preisach models have
been used to describe the hysteresis in the state-of-charge vs.
open circuit voltage characteristic of a lithium-iron-phospate
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Fig. 5. Evolution (a): major loop. (Top) Response to SoC history in the
SoC–OCV plane. (Middle) Point-by-point response to SoC history. (Bottom)
Point-by-point error.
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Fig. 6. Evolution (b): two nested minor loops. (Top) Response to SoC history
in the SoC–OCV plane. (Middle) Point-by-point response to SoC history.
(Bottom) Point-by-point error.
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Fig. 7. Evolution (c): two nested minor loops. (Top) Response to SoC history
in the SoC–OCV plane. (Middle) Point-by-point response to SoC history.
(Bottom) Point-by-point error.

battery. Both methods exhibit low rms errors with respect to
experimental data in the three cases analyzed.

The OSH model is attractive for its simplicity and capability
of capturing battery hysteretic effects with the use of a very
simple relaxation equation and a single relaxation parameter.
Nevertheless, the heuristic procedure used to find the relax-
ation parameter weakens this approach. On the other side,
Preisach model implemented in terms of Everett function is
characterized by a simple, well defined and reliable identi-
fication procedure based on the first-order reversal branches
extraction. One of the most promising feature of the Preisach
approach is the computationally affordable implementation
that relies on rather simple operations (trapezoidal integration)
on a well defined set of experimental data. The low com-
putational complexity makes this last method very promising
for an embedded implementation on low-cost BMS embedded
platforms.
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