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Abstract 

As well known the current collection quality assessment in railway systems with 

pantograph – catenary equipment is of great importance. Excessive electric arcing 

phenomena lead to wear of the system components, and, at the same time, can be an 

index of wear status. 

In this paper the authors investigate the possibility of detecting arcing events in the 

pantograph – catenary collection system without the need of additional equipment 

mounted on board the train. Data currently measured and recorded on board modern 

high speed trains (i.e. voltages and currents) are analysed in order to detect and quantify 

electric arcs and give information about the current collection quality of the pantograph 

– catenary system. This work is performed in cooperation with Trenitalia s.p.a. that 

collected a set of data on board high speed trains on regular passenger tracks. 
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Introduction 

Modern high speed trains are fully equipped with several sensors measuring a huge set 

of physical quantities of different kinds (temperatures, vibrations, battery charge and 

discharge curves, currents and voltages etc.) potentially allowing efficient predictive 

maintenance, hence cost reduction,  based on the analysis of such amount of data. As a 

paradox, the availability of big amount of data instead of a smaller quantity is 

sometimes misleading, and finding new algorithms and techniques capable of extracting 

the needed information is a fundamental task. At the same time new algorithms might 

imply new processing devices and new signals to acquire, hence new sensors with their 

own cost and reliability; for this reason techniques and algorithms using data commonly 

measured on board trains which do not need additional equipment are a better choice. 

The study of the pantograph - catenary subsystem is the object of great interest in the 

scientific community; the reasons of this fact are obvious: modern high speed trains 

need a great amount of power and the condition of the pantograph – catenary subsystem 

are critical since its failure could cause traffic disruptions, leading to a high impact in 

the economic management of the whole system. 

Planned maintenance  is usually performed by periodic catenary inspections along the 

line by the use of an inspection vehicle and by periodic inspection of the contact strips, 

which are often replaced well before their maximum wear limit to avoid risks because 

there is basically no measure to evaluate the residual life and their operating conditions. 



Both these situations are highly expensive and not economically convenient. Condition 

monitoring and predictive analysis is for this reason fundamental, as clearly explained 

in [1] for  different components of the railway infrastructure. 

As for studies relative to the pantograph – catenary subsystem, some approaches 

analyse the mechanical behaviour in terms of vibration, measured by sensors located 

either onboard the train or in a fixed place over the contact line [2] - [7]. This approach 

is very accurate when macroscopic defects are present while might be not as effective 

for smaller defects. 

A common approach is to equip the locomotive with either a phototube or a photodiode 

capable of detecting electric arcing through the ultraviolet emission (in general a couple 

of twin phototube sensors are physically placed at the front and rear part of the 

pantograph). In this way electric arcs are clearly evidenced but the technique might not 

be convenient for a large scale application because of economical reasons [8] –[11]. In 

[12] a procedure for the correlation of the quality of current collection with the level of 

electrical interference is showing how electrical quantities can be affected by the 

presence of electric arcs.  

In [13] the Fourier Transform (FT) is used for the analysis of the current but extracting 

the proper information from the frequency spectrum is not always an easy task and 

when wide time windows are used the information regarding the location of the event is 

lost.  



A contribution to the research has been given in the past by the authors  for dc railway 

systems. In [14] the current collected by the pantograph has been post processed with an 

advanced data analysis technique based on wavelet expansion; looking at the different 

levels of the wavelet decomposition, several anomalies could be detected, which, 

compared to the phototube signal, were directly related to the presence of electric arcs.  

Due to the good results obtained in [14] the authors have applied the same wavelet 

based technique and the Hilbert-Huang transform to the AC signals in  [15], but the 

results have not been as promising as in the DC case, probably due to the higher 

complexity of the arcing phenomena  in AC (i.e. the arc does not always ignite at the 

same voltage and a nonlinear behaviour can appear). Following these results, the 

authors have investigated the possibility of using supervised learning techniques 

(namely Support Vector Machines) for the location of electric arcs in pantograph – 

catenary systems [16]. The results achieved by this technique are good and once the 

SVM is trained, the percentage of events correctly identified is of about 80%. The key 

point of the technique is correctly training the SVM with voltage and current data and 

phototube output. 

A step forward is proposed in this paper, since the main goal is to detect the presence 

and the type of the electric arcs by only working on voltage and/or current data, without 

the need of the phototube signal. The data are processed by the use of unsupervised 

classification techniques, which means that there is no training with respect to known 



data (phototube output).  Current and/or voltage are processed and clustered (separated 

into different classes); consequently the clusters are related to the phototube data to 

verify the efficiency of the clustering procedure.  

It is worth noting that to the author's knowledge, little or no previous works may be 

found in the literature reporting the use of unsupervised classification techniques to 

detect arcs in pantograph catenary systems directly from the currents and voltages, 

which are measurements readily available on the train. In this regard, this work 

represents a first research step in this direction. 

Section 2 resumes the theoretical background of clustering techniques, with particular 

attention dedicated to the technique proposed here. In Section 3 the authors explain how 

the technique is applied to the available measured data. In Section 4 all the results and 

comments are presented. 

 

Clustering of time domain Signals 

An increasing interest has recently focused on the clustering and classification of time 

series, as it reveals to be a significant research area in several fields, such as 

engineering, physics, economics, finance, medicine, biology, and many others. In 

general, the analysis of time series requires the use of high dimensionality spaces, and 

the direct application of existing algorithms for clustering static data leads to reduced 

performance. In fact clustering algorithms, generally, use the Euclidean distance 



between the data vectors, which works relatively well in the classification of short time 

series, with a length of few tens of time samples. However, in this work we consider 

long time series, where the length is of the order of hundreds or thousands. To 

overcome the relatively poor performance obtained with Euclidean distance, clustering 

algorithms for time series in general adopt one of the following two strategies. The first 

approach modifies the existing algorithms for static data, replacing the distance measure 

with an appropriate one for time series; the second approach tries to convert time series 

data into a set of feature vectors of lower dimension, and then use existing algorithms. 

A distance function based on the periodogram of the time series is proposed in [17], 

which compares the proposed metric with many other alternatives, showing the 

potential of the use of frequency representation for the classification of time series. 

In this work, we propose a method that incorporates the periodogram metric in the k-

means clustering method. In particular, we consider a truncated periodogram, so the 

proposed approach is a combination of the two strategies described above.  

Consider a collection of n  time series   
xi kΔt( ),  i = 1..n,  k = 1..m{ } , where every signal 

is composed by m  time samples spaced by a constant sample time tΔ . We consider the 

problem of clustering the functions in a number c  of different classes, where the 

number of clusters c  is a known parameter. Without loss of generality the sampling rate 

is taken as 1tΔ = , and the value of the generic time series i  at time k  is written as 

( )ix k . A distance based on the periodogram and the logarithm of the periodogram is 



introduced in [17]. Given the generic i-th time series ( )ix k , 1..k m= , the periodogram  

( )iX q  at frequencies    q = 1…m , , is defined as:  

  
Xi q( ) = 1

m
xi(k)e

− j2πqk
1
m

k=1

m

∑
2

     (1) 

Being the periodogram an estimation of the power spectral density of the time series, it 

makes sense to use the logarithm of the periodogram:    
!Xi q( ) = 20log10 Xi q( ) . The 

metric proposed in [4] is based on the logarithmic periodogram: 

   
dLP xi ,x j( ) = !Xi q( )− !X j q( )⎡⎣ ⎤⎦

2

q=1

m 2⎢⎣ ⎥⎦

∑      (2) 

where   m 2⎢⎣ ⎥⎦  is the largest integer less or equal to  m 2 . 

In this work we consider a truncation of the logarithmic periodogram  
!Xi q( )  to its first 

d  values,    q = 1…d , where d m= . In this way, each time series ( )ix k  is converted to a 

d-dimensional vector     yi = [ !Xi 1( ), !Xi 2( ),…, !Xi d( )] .  

To cluster the converted dataset     yi , i = 1…n  we use the k-means clustering [18], which 

aims to partition the n  data vectors iy  into c  clusters sets,    {S1,S2 ,…,Sc} , in order to 

minimize the within-cluster sum of squares: 

   
min

Si

y j − v i

2

y j∈Si

∑
i=1

c

∑          (3) 



where iv  is the mean of the points in the cluster iS . The k-means algorithm defines a 

heuristic strategy that uses an iterative refinement method to reach the goal in (3). After 

defining a set of initial means iv ,    i = 1…c , the iterative technique proceeds by 

alternating between the following two steps: 

• Expectation step: Assign each point vector , 1..j j n=y , to the cluster iS  with 

the nearest mean vector iv .  

    
Si = y j : y j − v i

2≤ y j − v k

2
,k = 1…c{ }        (4) 

• Maximization step: Calculate the new mean vectors by the centroids of the 

points in each cluster 

1

j i

i j
SiS ∈

= ∑
y

v y             (5) 

When the assignments no longer change, the algorithm has converged to a local 

minimum of (3). A commonly used initialization method for defining initial means is 

the random partition, which first randomly assigns a cluster to each point in the 

expectation step, and proceeds to the maximization step. In the following the random 

partition is used for initial means. In general, there is no guarantee that the algorithm 

will converge to the global optimum, and the result may depend on the initial clusters. 

As the algorithm is usually very fast, it is common to run it multiple times with different 

starting conditions. In our experiments, we performed 200 replicates with random initial 



clusters, and the results of the run with the smaller within-cluster sum of squares (3) is 

selected.  

For selecting the number of clusters c we use the internal validity measure defined by 

the Dunn index. Given a partition of the data in c sets   {S1,S2 ,…,Sc}  the Dunn index is 

defined as the ratio between the minimum intercluster distance ( ),i jS Sδ  and the 

maximum cluster size iΔ . Various definition exist for the intercluster distance 

( ),i jS Sδ  and the cluster size iΔ , and we use the following ones: 

   
Δ i =

1
Si

y j − v i
y j∈Si

∑          (6) 

which is the mean value of the distance of all the points from the centroid, whereas 

( ),i j i jS Sδ = −v v          (7) 

which represents the distance between the centroids of the clusters i and j. The Dunn 

index DIc is then defined as  

   
DIc =

min
k≠ j

δ Sk ,S j( )
max
i=1…c

Δ i

           (8) 

A good choice of the number of clusters c is given by the partition that has the higher 

value of the Dunn index cDI , varying c between 2 and a maximum value defined by the 

user.  

 



Application to field test data 

Description of the test runs 

The data available for the analysis are relative to 6 test runs of a 25 kV a.c. high speed 

train (ETR 600 model), operated on different regular passengers railway tracks. The 

train is equipped with voltage and current recording instruments (which are always 

present on high speed trains), and two phototubes revealing the presence of the electric 

arcs. All data are sampled at 20 kHz. In particular, for each test run the data available 

are: 

• Voltage 

• Current 

• Two phototubes (looking at the same pantograph from both directions) 

• Train velocity 

A typical test run velocity and current profiles is reported in Figure 1, in which it is 

evident that the runs are characterized by a 25 to 30 min length in which the train is 

accelerated, kept at an almost constant speed and decelerated while the collected current 

is varied to simulate different operating conditions. It is important to notice that due to 

the sampling rate the amount of data samples is in the order of 35�106, a challenging 

number considering that the main goal is to find useful information at reasonably low 

computational time. 

 



 

Figure 1. Current and velocity profile of test run #1. 

 

Figure 2 shows a portion of the signal recorded by the phototube, in which it is evident 

the presence of positive peaks related to electric arcing detected by the photosensitive 

device. 



 

Figure 2. Output signal of a phototube 

 

Figure 3 shows a shorter window (in which only an event is evidenced) of the same 

phototube signal shown in Figure 2  and the corresponding current collected by the 

pantograph; by analysing Figure 3 it is evident that a simple visual analysis of the 

current would not lead to any significant conclusion regarding the presence of electric 

arcs. 

 



 

Figure 3. Phototube and current signal corresponding to an event. 

 

Figure 4 shows the logarithmic periodogram of different current signals characterized 

by presence and absence of arc: as before, a direct analysis of frequency domain data 

can be extremely difficult, particularly when the data quantity is high as in this case. 



 

Figure 4. Logarithmic periodogram. 

 

Parameters selection 

Several tests have been performed by the authors in order to find the best parameters’ 

value for this special kind of problem. 

The time domain signals that have been processed with the clustering algorithm are 

voltage and current, while the phototube output and the train velocity are used as a 

validation to test the quality of the clustering analysis, i.e. to check if different clusters 

are really related to different arcing conditions.  

As first result the authors have verified that the method works better with the currents 

signals than with the voltage signal, a result that is physically consistent with the nature 



of the arc, even though also the voltage presents characteristic behaviour in presence of 

the arcing phenomena. 

When applying the clustering algorithm to the current data, no preprocessing technique 

has been used since any action (for instance filtering for noise reduction) could modify 

the signal and alter the pattern relative to the presence of electric arcs. In addition, the 

main goal is to develop a procedure which could be used any time new current data are 

acquired, hence a lower number of steps needed to run the procedure means easiness in 

its application 

In order to keep the possibility to detect the arcs and locate them in time, the authors 

have decided to consider time windows of three periods, i.e. 60 ms, which at 20 kHz 

sample rate lead to a number of 1200 samples. So each recorded run (in particular the 

recorded current) has been divided into sections of m=1200 points and all the sections 

of a single run have been clustered with the proposed algorithm. 

Consequently, the procedure clusters the currents or voltages logarithmic periodogram 

of each time window into different groups whose elements have similar characteristics. 

Due to the availability of the phototube data it is then possible to a-posteriori relate the 

different clusters to the arc length and magnitude. Based on this result a predictive 

maintenance procedure could be established with the availability of only currents and/or 

voltage data. 

 



Then the dimensionality reduction has been performed by truncating the logarithmic 

periodogram from 600 frequency points down to d=10. Based on the authors’ 

experience and on performed test, a further reduction would lead to information loss, 

hence worse performances of the clustering algorithm.  

The above mentioned choices lead to the following problem dimension: for each run a 

number of about n=30�103 signal sections has been represented by their logarithmic 

periodogram of dimension d=10. 

Due to the sampling time, truncation of the periodogram at the first 10 frequency 

samples means to limit our analysis up to frequencies of 166 Hz. Based on numerous 

tests an increase of d does not lead to any performance increase. Considering the 

presence of harmonics introduced by the traction equipment switching, which are 

generally of the order of 1 kHz, with this particular choice they do not affect the 

proposed technique. The same thing holds for the filtering process performed by the 

current transformer: such equipment has in general a cut-off frequency which is higher 

than 166 Hz. 

As for the number of clusters, the main goal of the procedure would be to detect the at 

least the absence and presence of an arc (two clusters). By choosing only two clusters, 

though, we would prevent the procedure to identify additional clusters which might be 

of relevant meaning (i.e. arcs of different magnitude etc.). At the same time choosing a 



larger number of clusters might lead to slow convergence of the procedure and the 

existence of similar data associated to different clusters.  

For each run we applied the k-means algorithm to find a partition with c=2,3,…,20 

clusters. Calculating the Dunn index as in (8) for each partition always gives a clear 

indication that the best number of cluster should be selected as c=4, so in the following 

analysis we consider four clusters. 

 

Results and discussion 

Application to the test runs 

The result of the clustering procedure for a single run (run #1) is reported in Figure 5. 

The x axis now shows the number of sections as described before (each section contains 

three periods of the current waveform, i.e. 60 ms and 1200 time samples); in the top 

graph each different colour represent a cluster; the middle graphs shows the velocity of 

the train, coincident with the profile in Figure 1. In this case, since data are grouped in 

sections, at each point the velocity is calculated as the mean velocity of each 60 ms 

window. 

Following the same principle, the phototube signal shown in the bottom graph, shows 

the maximum value of the sum of the two phototube signals in each section (i.e. 60 ms 

window). This could be apparently seen as a lost of information, but as a matter of fact a 

resolution of three main periods is enough for such application: the algorithm detects 



the presence of arcs every 60 ms. The authors have run the procedure also with time 

windows of 20 ms with basically no improvements of the accuracy of the technique. 

 

 

Figure 5. Result of the clustering procedure for run #1 (clusters, velocity and 

phototube) 

 

In the top graph of Figure 5 different colours represent the four different clusters and it 

is evident how the temporal development of the run is divided according to the presence 

(or absence) of electric arcs. Further analysing Figure 5 we can say that the  red and 

cyan cluster are related to the absence of arcs, while blue and yellow are related to the 

presence of arcs. 



In Figure 6 the pantograph output has been replaced with the collected current (in 

particular, as done before, each point is the maximum value of the current in the 60 ms 

time window). We can observe that the red and cyan cluster (no arcs) correspond to 

lower values of currents, with the red in particular seems to be related to current values 

very close to zero which occur at the end of the run or during the run when the engines 

are disconnected. 

 

 

Figure 6. Result of the clustering procedure for run #1 (clusters, velocity and current) 

 

 



 

Figure 7. Result of the clustering procedure for run #1 (ordered) 

 

The clustering results are clearer in Figure 7, in which the sections ordering do not 

follow time but they are sorted according to the clusters. Subgraph #2 shows the 

clusters, while subgraphs # 3 and #4 respectively show the electric arcs and velocity. 

It is now evident that red and cyan cluster are related to the absence of electric arcs 

while the blue and yellow are related to the presence of arcs. In particular, observing 

Figure 7, we can notice that the yellow cluster is related to arcs of higher magnitude 

while the blue cluster is related to lower magnitude arcs. This is an important result, 



showing that by clustering current data it is possible to detect the presence of electric 

arcs and have an indication of their magnitude, besides localizing them in time. 

It is noteworthy to mention that  according to the regulation EN 50317 (Railway 

applications - Current collection systems - Requirements for and validation of 

measurements of the dynamic interaction between pantograph and overhead contact 

line), “for the output, only arcs longer than a defined duration shall be analyzed. This 

duration depends of the problem which has to be investigated. A common value is 5 ms, 

when investigating current collection quality”. Arcs longer than 5 ms can be related 

both to catenary and to pantograph defects/wear, while shorter arcs might anyway 

indicate contact strip wear, for this reason all the arcs have been considered in this work 

since they anyway indicate the actual status of the collection system. In order to better 

investigate the difference between the two clusters associated to the presence of electric 

arcs, the bottom graph of Figure 6 shows the Boolean value relative to the arc length: 

the value is 1 if the arc has a duration longer than 5ms while it is 0 if the arc is shorter 

than 5 ms. 

Analyzing again Figure 7 it is possible to see that most of the arcs with duration longer 

than 5 ms are concentrated in the yellow cluster, which is another important result. 

As for the top graph we can see how different clusters correspond to different 

logarithmic periodograms which the clustering algorithm is able to group. 

 



 

 

Figure 8. Result of the clustering procedure for run #2 (ordered) 

 

The authors have run the same algorithm for each available run and in Figure 8 the 

results for run #2 are reported: the algorithm again groups the current data in 4 different 

clusters. The results show the same trend: arcing events are divided into two separate 

clusters, one related to higher magnitude arcs (in which most of the arcs of duration > 

5ms are included) and the other one related to arcs of lower magnitude, and two clusters 

related to the absence of arcs, in which one of them is characterized by a zero current 

condition. 



 

Generalization of the results. 

In order to generalize the results obtained and evaluate the possibility of an extended 

use of the algorithm, the authors have investigated how the clusters relative to different 

runs, found by the clustering algorithm, differ from each other. 

Figure 9 shows the four centroids (relative to each cluster) for the 6 runs analysed; it is 

evident that the four centroids (each one composed by 10 points of the logarithmic 

periodogram) are well separated one from the other and are practically coincident. This 

means that the results obtained above can be generalized: each of the four clusters is a 

footprint relative to the arc characteristics and is independent on the run, which means 

that it is independent of the of the track. 

 

Figure 9. Centroids of the clusters for each run. 



 

Based on this conclusion it is possible to compare the results of different runs: Figures 

10 and 11 show the four clusters and the relative arcs for each run. Superimposed to the 

arcs magnitude there is the information relative to arcs having a duration > 5m (labelled 

with a circle of value 1). 

It is evident from the figures that 

a) the clustering algorithm is capable of separating the events detecting the 

presence of arcs from its absence; 

b) the time windows characterized by the presence of an electric arc are separated 

into 2 clusters, depending on the arc magnitude (as detected by the phototube); 

c) most of the arcs of a duration longer than 5 ms are grouped into the same cluster, 

even though there is a direct relation between the arc length and arc magnitude. 

d) different clusters related to the absence of arc events, are related to different 

current magnitudes; 

e) there is an extremely low number of arcs, as detected by the phototube, 

belonging to cluster #3 (in runs #4 to #6): they can be either low magnitude arcs 

that do not produce any effect on the train current or results originated by 

inaccuracy of the measurements. 

 

 



 

Figure 10. Results generalization for runs #1 to #3 

 

Figure 11. Results generalization for runs #4 to #6 



Statistics study of the results 

In order to better evaluate the results obtained by the previous analysis some statistics 

data have been extracted from the 6 test runs, and are reported in table 1, in which the 

cluster numbering is the one followed in figures 10 and 11  

By looking at table 1 we can see that all the arcs of length > 5ms are localized in the 

first two clusters (as it was clear also from figures 9 and 10); in particular the 

percentage of such arcs which are in cluster #2 (instead of cluster #1) is around 6.5% 

(with the exception of Run #3 in which they are all in cluster #1). In the authors opinion 

this is a good results since the procedure is able to averagely classify the 93.5% of 

longer arcs in a single cluster, and the remaining 6.5% are classified in a second cluster 

which is anyway related to arc presence. 

Clusters #3 and #4 are relative to the absence of electric arcs, and in cluster #4 no 

current is measured; additional interesting features are shown by the last two columns of 

Table I: columns #4 and #5 respectively show the average and standard deviation of the 

phototube signal. The average value is obviously high for cluster #1 (arcs of higher 

magnitude as detected by the phototube), low for clusters #3 and #4 (no arcs) and 

characterized by an intermediate value for cluster #2 (arcs of lower magnitude); as for 

the standard deviation lower values are obtained for clusters #3 and #4 since in both 

cases there is absence of arcs; clusters #1 and #2 present higher standard deviation 



because of the high variability of the phototube signal, however their value is consistent 

with the scope of the analysis. 

As for column #3 of Table I, we can see that higher number of arcs are present in 

correspondence with higher velocity (as it is physically understandable). 

 

Table 1. Statistics of the data signal 
Cluster 
Number 

Cluster  
Dimension 

Arcs > 
5ms 

Average 
Velocity 
(km/h) 

Phototube 
average signal 
( µW / cm2  ) 
 

Phototube  
standard 
deviation 
(  ) 

Run #1 
1 9042  736  242.13 0.0347 0.0281 
2 12624 54 214.00 0.0197 0.0184 
3 4935 0 74.60 0.0161 0.0008 
4 1830 0 130.53 0.0167 0.0007 

Run #2 
1 8679 975 236.43 0.0490 0.0345 
2 12848 67 214.16 0.0251 0.0229 
3 4106 0 87.89 0.0215 0.0015 
4 1303 0 193.44 0.0214 0.0007 

Run #3 
1 8672 79 240.41 0.0079 0.0063 
2 12550 0 217.48 0.0050 0.0019 
3 6761 0 63.42 0.0047 0.0013 
4 1176 0 195.64 0.0047 0.0008 

Run #4 
1 8573 444 228.18 0.0522 0.0444 
2 14614 28 202.41 0.0385 0.0150 
3 10594 0 47.04 0.0350 0.0051 
4 599 0 123.95 0.0376 0.0050 

Run #5 
1 9295 342 244.46 0.0281 0.0211 
2 13392 26 210.46 0.0201 0.0089 
3 4341 0 69.52 0.0162 0.0037 

µW / cm2



4 828 0 100.37 0.0076 0.0009 
Run #6 

1 8662 939 244.83 0.0543 0.0507 
2 13313 60 217.49 0.0315 0.0211 
3 4929 0 75.99 0.0292 0.0015 
4 617 0 133.51 0.0294 0.0011 
 

From the operational point of view, this analysis leads to the identification of a series of 

time intervals (the ones belonging to cluster #1) in which electric arcs are mainly 

concentrated. The time intervals belonging to the other clusters (in particular #3 and #4) 

are arc free. 

An increasing dimension of cluster #1 for the same train in different runs might lead to 

the conclusion that the contact strip condition has deteriorated and/or the catenary 

presents some wear if the measurements are relative to the same track section. 

 

Application to an additional test run 

The procedure has been tested on an additional test run, relative to an older high speed 

train (ETR500; this is the only test run available for such train). The measured 

quantities are in this case current, voltage and phototube (no velocity has been 

measured), with the key difference that the sampling rate is now of 5 kHz. By choosing 

the same dimensionality reduction the authors have run the same procedure, and the 

results are reported in Figure 12. 

 



 

Figure 12. Result of the clustering procedure for run #7 (ordered) 

 

The clustering procedure again divides the current signal in four clusters relative to the 

magnitude of the electric arcs revealed by the phototube. Even in this case most of the 

arcs of length >5ms are all grouped in the same cluster. 

As a matter of fact Figure 11 shows that the clustering procedure is general and not only 

valid for a single case (one specific train), and that a lower sampling rate of the current 

data does not alter its validity (less expensive recorders can be used). 

The centroids of the four clusters of run #7 have been compared to the centroids of the 

other six runs and the result is that they are not coincident. This means that each train 



system (train + pantograph) has its own behaviour which is not strictly extendable to 

train of different kinds. 

 

Conclusions 

In this paper the author develops a method for detecting and quantifying electric arcs 

which arise during normal operation trains with pantograph – catenary current 

collection system. The method is based on an unsupervised classification technique 

which takes as input data the current collected by the pantograph and usually recorded 

on modern high speed train. 

The method allows the detection and localization of electric arcs with great accuracy, 

and if of great help also in averagely quantifying the magnitude of the arcs. 
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