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Abstract: This paper investigates the ability of temperature sensors installed in the traction core
of trains to early detect incipient faults. For instance, the breaking of a bearing is known to be
critical as it may cause an increase of the temperature in the motor compartment, that in turn may
eventually lead to a winding fault in the induction motor. The technique proposed in this contribu-
tion is characterised by extreme generality, since most frequent incipient faults lead to temperature
increase that, if properly analyzed, can be a tool for preventive maintenance. In particular, the
measured data, provided by the main Italian railway company, are processed by two dif-
ferent methodologies which are characterized by positive, yet different, performances. The
results show that preventive maintenance with the proposed approach is feasible.

1. Introduction

Modern high-speed trains are fully equipped with sensors measuring physical quantities that are
automatically recorded and sent to acquisition data centers [1]. Such data are often used to make a
precise diagnosis after an event has caused the need of a non-scheduled maintenance. An example
of this, that is of interest in this paper, is the measurement of the temperature of the engines of
a train. Fast and/or out-of-range temperature variations have been recorded in the occurrence of
a fault in the engine compartment. In this case, the objective is to early detect the fault before
more serious consequences occur. This seems to be a very challenging task, as changes in the
temperature are caused by a number of regular (non-faulty) events as well, including among oth-
ers, the train velocity, acceleration, outside temperature, driving direction and the engine position
(relative to the direction). In particular, a critical subsystem that needs an accurate monitoring and
preventive maintenance is the traction core, composed by the engine, the bearings and the gear-
box. In the authors’ experience amongst the possible failures of one of the three above mentioned
components, the most frequent and critical one is the failure of a bearing, as if it is not detected in
a short time, then it can consequently cause additional damages to the other components as well.
Such a consideration is based upon the experience on the numerous fleet of E464 locomotives that
are widely and frequently adopted for commuting services by Trenitalia S.p.A., the main railway
company in Italy.

There are many non-invasive techniques to monitor the functioning of induction motors, and

1



usually they rely on easily measured electrical or mechanical quantities, such as voltage, current,
external magnetic field, speed, and vibrations [2]. In particular, the literature on early fault de-
tection in induction motors is mainly focused on the use of stator current measurements, [3, 4, 5]
and vibrations measurements [6, 7]. It is worth to mention that the motors of the regional trains
E464 are not equipped with current and vibrations sensors, that are commonly used in high-speed
trains. In contrast, E464 locomotives are equipped with temperature sensors, that can record the
signals during the train operation. Real time temperatures have more rarely been investigated in
traction applications, whereas there is a literature dealing with infrared thermography for condition
monitoring of induction motors [8, 9]. Since the temperatures are available for monitoring the lo-
comotive of the E464 fleet, this work investigates the possible predictive power of the temperature
signals to detect motor faults, in particular the failure of a bearing. In [10], [11], [12] and [13]
it is underlined that a temperature increase (thermal stress) can have negative effects both on the
bearings and on the motor. In particular, a high temperature can deteriorate the bearing lubrication
causing an abnormal friction that may eventually lead to a bearing damage and in turn accelerate
the ageing process of the winding insulation leading to a winding fault inside the induction mo-
tor. In addition, as remarked in [14] and [15] with specific reference to the condition monitoring
of bearings, temperature rises can be attributed to several reasons, namely, winding temperature
rise, motor operating speed, temperature distribution within the motor, lubricant viscosity, and the
amount of lubricant. Accordingly, a rise in the temperature can be caused by different factors and,
at the same time, can be used as an indicator of a number of severe faults. In [10] it is said that
about 30% of induction motor faults are stator winding fault, and a small percentage of them is
directly caused by an initial fault in the insulation. In case the insulation has a defect, then partial
discharges are created, which cause overheating that can be detected by looking at the temperatures
before a short circuit occurs; on the contrary, if a short circuit suddenly occurs without a previous
temperature increase, it means that the insulation presented major issues directly from fabrication,
and at this stage nothing can be done in terms of predictive maintenance.

It is of paramount importance for railway companies to develop the ability to perform online
monitoring of the engine temperatures and preventive maintenance in order to prevent engine faults
from occurring (due to the above mentioned components), as they give rise to serious traffic dis-
ruptions, leading to high maintenance and rescheduling costs. In particular, we here use available
temperature measurements (of both the stator windings and the gearbox) recorded with a sampling
time of three minutes and made remotely available on a database, to perform such a predictive
monitoring analysis. We analyse the time domain behaviour of the recorded temperatures, for both
faulty and non faulty conditions, and computational intelligence techniques are employed to iden-
tify non-conventional patterns corresponding to faulty operating conditions. In particular, in this
case study, simple variance-based (or fixed threshold-based) techniques fail to reveal faulty condi-
tions, and thus are inapplicable for preventive maintenance. On the other hand, more sophisticated
and dynamic techniques provide promising results (at least on the available data) and appear to
be able to take pre-emptive measures to fix the faults without needs of online rescheduling of the
transportation service.
In [16] a wireless communications based system is proposed and the authors mention a diag-
nostic tool that uses engine-temperatures in real time operation, but no specific details about
the model are published in that paper. In fact, the scientific literature on this specific topic
is scarce, as it is difficult to find detailed studies about the used algorithms and models, in
particular for the analysis of engine-temperature data in real time. One of the motivations
of our paper is to begin filling this gap; in this perspective the objective of this paper is to
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investigate two possible strategies and provide some promising results obtained on real data.
The techniques used in this paper are feedforward neural networks (FFNN) and Hotelling’s
multivariate control chart. As it will be shown later, both these techniques are not new, how-
ever the implementation of the procedure on such a specific set of data, the definition of the
thresholds and the way input/outputs are chosen (this applies to the FFNN) are an original
contribution. Moreover, a semi-supervised (one-class) method (Hotelling) and a supervised
method (FFNN) are intentionally selected because they are different both in function and
mechanism, and this helps to differentiate the results and improving the performance of the
analysis when they are used in parallel. This is a general rule of fusion of classifiers and it is
confirmed by experimental results [17].

2. System Description and Measurements

The locomotives under study are the Trenitalia E464 class, constructed by Bombardier1, operating
on regular commuter service (see Figure 1). Each locomotive is equipped with four induction
motors (see Figure 2). All motors have (i) squirrel cage rotors; (ii) double start stators; (iii) 4
poles; (iv) a maximum power of 895 kW, and a (v) rated voltage of 1090 V.

Fig. 1. The Trenitalia E464 class from http: // www. bombardier. com/ en/ home. html

In addition, the locomotive is equipped with two inverters, where each one of them powers
one of the two stator windings of the four motors, connected all-together in parallel. During
the normal operation of the train, sensors are used to regularly monitor the temperature of the
motor windings, the temperature of the gearbox lubricant (both acquired with standard PT100
Resistance Temperature Detectors), and the train speed (acquired through a pulse generator). The
pulse generator has a maximum operating frequency of 30 kHz, and the temperatures are recorded
with a sampling time of 3 minutes. More in detail, the temperature probes are located in the stator
laminated core, so that the sensitive element can reach one of the stator tooth and could reach
a temperature very close to the winding temperature; as for the probes in the gearbox they are
directly immersed in oil. Figure 3 shows a schematics relative to the position of the PT100 probes.

For redundancy reasons, two temperature sensors are used on each motor and gearbox, thus
leading to a total of 16 temperatures that are measured for each locomotive every 3 minutes.

Some examples of recorded data are provided in Figures 4-7.
In particular, Figures 4 and 5 show a sequence of 1500 samples for a regular operation of a

1http://www.bombardier.com/en/home.html
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Fig. 2. One of the induction motors in the locomotive

Fig. 3. Temperature probes positioning.

train, with temperatures recorded for the four engines, and, with the same style, for the gearboxes
respectively. On the other hand, Figures 6 and 7 show a sequence of 1500 samples that ends with a
fault, as can be seen more clearly towards the end of Figure 6, where the temperature of one motor
becomes ultimately too large. A number of useful remarks can be made by observing the data:

• The temperatures have some periodic patterns. This is due to the fact that temperatures in-
crease during a trip of the train and decrease again when the train stops before the next trip.
Also, sometimes trains have long pauses (e.g., some trains do not travel at night time), and
consequently all temperatures converge to a value close to the environmental temperature.
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Fig. 4. Example of the temperatures recorded for the motor in a normal operation
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Fig. 5. Example of the temperatures recorded for the gearbox in a normal operation

• In general, it is possible to observe that the temperatures of the motors are greater than those
of the gearboxes;

• In some cases all sensors provide very similar values of the temperature (see the sequence
of Figures 4 and 5), while in other circumstances they read more different values (see the
sequence of 6 and 7). While this fact is not correlated with the chance of a fault, still the
very different variance of the vector of read temperatures from train to train complicates the
prediction of a fault in practice;

• The fault becomes evident from the temperatures of the motors while it is less evident from
the temperatures of the gearboxes (see Figure 6 in contrast with the Figure 7, that refer to the
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Fig. 6. Example of the temperatures recorded for the motor when a fault occurs
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Fig. 7. Example of the temperatures recorded for the gearbox when a fault occurs

same operation of the same train). However, in our experience, the use of the sensors in the
gearboxes is of paramount importance just the same for the prediction of the fault;

• In some cases some sensors provide evidently wrong reads (i.e., negative temperatures). This
could occur for single values (i.e., where more likely an error occurred in the data transmis-
sion process) or for longer sequences of values (i.e., more likely a fault in a single sensors).
In our analysis we have cleaned the data by neglecting (single) values (of single sensors) that
are out of the historical range of temperatures, and in the case of long sequences of values out
of range, we automatically send a warning to the control room regarding the likely failure of
a sensor.

It is worth mentioning that the proposed method is general, i.e. it can take into account
also quantities such as the train velocity, acceleration, outside temperature, driving direc-
tion and the engine position (already mentioned in the introduction); however they were not
available for all the data sets, for this reason the authors decided not to use them in order to
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Fig. 8. Visual inspection of the temperatures recorded for the motor when a fault occurs

test and compare all the runs on the same basis.

3. Methodologies

In Figure 8, it is possible to see, by visual inspection, that the eventual failure is about to happen.
In particular, during normal operation the temperatures of motor 4 are lower than the temperatures
of motor 3, as indicated using green ellipses in Figure 8. In the periods before the fault occurs, the
temperatures of motor 3 start following a slightly different pattern, as indicated using an orange
ellipse. However, it is not straightforward to design an algorithm that automatically (i.e., in an
unsupervised fashion) can recognise in real-time the faulty condition. In particular, it should be
remarked that simple obvious solutions, as a point-wise comparison of single temperatures with a
safety threshold, are in general ineffective.

Given the multivariable nature of the application (i.e., 16 different signals of temperatures are
constantly monitored in real-time), in this paper we compare the ability of two different multi-
variate methods to recognise in advance the faulty condition; namely, the Hotelling’s multivariate
control chart ([18]), and feedforward neural networks ([19]).

One of the main challenges of predictive anomaly detection is that the class distribution of the
data is in general unbalanced: observations of the abnormal behaviors are scarce while most of
the observations represent nominal behaviors. Under unbalanced class distribution, like in this
case, most of the classification methods perform poorly. A common solution consists in creating a
model of the nominal behavior, and monitoring the deviations from the nominal conditions. Both
of the methods analysed in this paper adopt this strategy (though using different approaches), as it
is described with more details in the remainder of this section.

Other different methods exist to overcome the problem, one example being the use of
cost matrices [20]. Unfortunately this method, as many others, is not efficient if one of the
two classes (anomalous vs nominal) contains a very small number of points (tens vs thou-
sands). The anomaly in our case is a catastrophic event, and such data can not be used
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to learn examples of anomalous behaviours. For this reason we follow the most convenient
and recommended approach (both for Hotelling and FFNN) that is modelling the nominal
behaviour, and monitoring the deviation from the nominal behaviour. In particular our ap-
proach is original for the FFNN model, as instead of using it as a classifier for detecting the
anomalies, we use it as a regression algorithm between the temperatures of three motors as
input and the remaining motor as output.

3.1. Hotelling multivariate control chart

The Hotelling control chart performs a dimensionality reduction of the multivariate data to a scalar
parameter denoted as t2 statistics, which represents the square of the Mahalanobis distance [21]
of the observation vector from the vector containing the mean values of the variables in nominal
conditions. As reported in many studies ([22, 23, 24]), the t2 statistics is able to capture the changes
in multivariate data, revealing the deviations from the nominal behavior. In principle, this allows
one to select safety thresholds (UCL, Upper Control Limit, and LCL, Lower Control Limit) on
the t2 control chart more efficiently than upon the original data. Although such a tool had been
originally proposed already in 1947 as a tool for quality control, the Hotelling control chart is still
being applied in many process control applications, and can be regarded as a precursor of one-
class classification methods (i.e., methods that only model a single class of the data [25]). For
these reasons the Hotelling control chart is widely used for early detection of incipient faults, as
an example [3] and [4] proposed the use of the Hotelling control chart for incipient fault detection
in induction motors, by monitoring the stator current.

The construction of the control chart includes two phases: in the first phase historical data
are analysed and the safety thresholds are computed; phase two corresponds to the monitoring of
the real-time process. In phase one, a faultless historic dataset of the process should be defined
by experts with the confidence that it represents mainly nominal behaviors of the process. The
historic dataset is used to create a statistics of the nominal behavior, consisting of a nominal mean
vector and a covariance matrix. Let the historic dataset of phase one be represented by the matrix
X ∈ RN×p, containing N observations of nominal states of the process, that consist in row vectors
of p variables. We denote the row vectors of X as xi ∈ R1×p, where i = 1 . . . N . The sample
mean vector µ ∈ R1×p of the data is defined as:

µ =
1

N

N∑
i=1

xi. (1)

In order to define the covariance matrix we need to construct the demeaned (zero-mean) data matrix
X0 ∈ RN×p:

X0 =


x1 − µ
x2 − µ
. . .
xN − µ

 . (2)

Then, the covariance matrix C ∈ Rp×p of the data is defined as:

C =
1

N − 1
XT

0X0, (3)

where we use the transpose notation ()T . The multivariate statistics µ and C represent the nominal
behavior of the process, and we assume that C is full rank. The scalar t2 statistics is defined as the
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following function of a single observation vector x ∈ R1×p:

t2(x) = (x− µ)C−1(x− µ)T. (4)

The t2 statistics is small when the observation vector x represents nominal states, while it increases
when the observation vector x deviates from the nominal behavior. In order to define the safety
thresholds UCL and LCL of the control chart, in phase one we calculate the mean value µ and
standard deviation σ of the t2 values obtained with the nominal observations xi, for i = 1 . . . N ,
i.e.:

µ =
1

N

N∑
i=1

t2(xi), (5)

σ =

√√√√ 1

N − 1

N∑
i=1

(t2(xi)− µ)2.

Then we define the safety thresholds as: UCL = µ+ 3σ

LCL = max(µ− 3σ, 0)
, (6)

where the actual concern regards only the upper limit, as in faulty conditions the temperatures
exceed the upper limit.

In phase two we use process statistics and the control limits extracted during phase one in
order to detect an anomalous behavior on new data to be monitored. In particular, during phase
two new observation vectors are measured, and the corresponding t2 values are calculated as in
Equation 4. The Hotelling control chart consists in a monitoring tool that plots the t2 values as
consecutive points in time and compares them against the control levels. The process is considered
out of control, and an anomalous behavior is detected, when the t2 values continuously exceed the
control limits.

We now briefly discuss how we implemented it in our specific application. The observation
vector is represented by the vector of the 16 temperatures measured simultaneously. In particular,
we have used the initial 600 samples (i.e., 30 hours) of normal operation of the train to calculate
the nominal values of the t2, i.e., in terms of its average value µ and its standard deviation σ as
in Equation 5. These values, as well as the control limits defined in Equation 6, are characteristic
of a specific train. Note that the specific values depend on the train, on its typical route, and also
on some specific installation parameters (e.g., motors and sensors). In our experience, we have
found out that it is very important to continuously update the values of µ and σ to take into account
physiological variations of the nominal parameters, for instance due to different environmental
temperatures. At the same time, the parameters can not be updated too frequently to avoid includ-
ing possible incipient faulty conditions into the computation of the safety thresholds. Accordingly,
we shift the window of 600 samples every 50 new samples (i.e., every 2.5 hours), when the new
safety thresholds of Equation 6 are duly recomputed.

3.2. Feedforward neural network

Feedforward neural networks (NNs) are a class of universal approximators, as they can approx-
imate arbitrarily well functions from RN to R with a finite number of neurons in a single layer
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Fig. 9. Architecture of the One Hidden Layer Neural Network

[19]. Neural networks are widely used for detection of incipient faults and predictive diagnostics
in induction motors, for instance, they are used to detect and classify the faults using vibration
signals, [6], [7], and stator current signals [5]. In this work, we consider One Hidden Layer (OHL)
networks, depicted in Figure 9, where a stochastic gradient descent optimisation algorithm is used
for backpropagation, and where the objective function is the minimisation of the mean square error
(MSE). The output of the neural network is described by the following expression:

FNN (x) =
H∑
i=1

vi ϕ
(
wT

i · x+ bi
)
, (7)

where x ∈ Rp is the input column vector, wi ∈ Rp, bi ∈ R and vi ∈ R represent the weight vector,
the bias and the output weight of neuron i respectively, and ϕ (·) is the R→ R activation function
(a non-constant, bounded, and monotonically-increasing continuous function). Finally, H is the
number of neurons in the hidden layer. One typical problem of neural networks, especially when
large sets of data are available like in this case, is that of overfitting, where roughly speaking the
neural network learns the data, and not the structure underlying the data. To avoid this circumstance
and to improve the ability of the neural network to generalize, we used a validation set as a subset
of the training data (not used for training), which stops the training after the MSE in the validation
set does not improve for a fixed number of consecutive epochs (max fail). In particular, we have
chosen a sigmoidal function as an activation function, we have determined the optimal number
of neurons by using a three-fold cross-validation, we set the validation set as a randomly selected
set of 20% the size of the training set, we set the value of max fail equal to 15, and similarly
to the Hotelling solution, we used a training set of 600 samples, representing nominal operation.
As further data preprocessing it is worth to mention that the Matlab implementation of the
FFNN automatically applies a mapping of input and output data to the range [−1, 1].

In our specific application, we decided to use four NNs in parallel, where each one of them
had the temperatures of three motors as an input, p = 12, and the average temperature of the four
sensors of the remaining motor as an output. The rationale of this choice is that under the assump-
tion that the temperature signals remain more or less the same (as a whole), then by knowing the
temperatures of three motors, one may learn how to predict the temperatures of the fourth one.
However, such a pattern breaks when one fault occurs. In particular, one motor starts heating, and
the other three motors lose their ability to predict its temperature.
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As a result of the cross-validation analysis, we obtained that the optimal number of neurons in
the hidden layer H is between 3 and 5, depending on the particular run and particular set of input-
output signals. In the monitoring stage new observations are measured and given as input to the
four trained neural networks. The output of each NN is compared to the average of the measured
temperatures of the motor to be predicted, and an absolute error, AE, is calculated and compared
to an upper threshold. The threshold in this case is defined as three standard deviations of the AE
calculated in the training phase.

3.3. Performance evaluation

With both methodologies, and as typical with most fault predictions approaches, it is important
to decide whether we are interested in receiving many alarms (which might include false alarms
as well), or whether we wish to receive an alarm only when the algorithm is pretty confident that
a fault has actually occurred. In this specific case, we are interested in being very conservative
when giving an alarm, as a false alarm is also very expensive from the point of view of the train
company (in fact, the train company might want to stop the train while running, with a number of
inconveniences for the passengers). Thus, we are specifically interested in minimizing the chance
of having false alarms. However, the counterpart of being conservative is that a fault may be
recognised with some delay (i.e., some extra time is required to make sure that a failure has actually
occurred and it is not a false alarm).

4. Experimental results

Final results corresponding to the analyses of 10 different trains (with three faults) are summarized
in Table 1. In addition, the results for two single realisations (i.e., the specific correct and faulty
sequences previously shown in Figures 4-7), obtained with Hotelling and NNs are shown in Figures
10-13.
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Fig. 10. Hotelling analysis of a normal operation of a train

As can be noticed in Figures 10 and 12, the t2 statistics frequently exceeds the UCL threshold
(horizontal dashed line). To avoid false positives (i.e., fault alarms when not required), we decided
to set the alarm when a sequence of 20 consecutive samples is found to continuously exceed the
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Fig. 11. Absolute error index of the four NNs during a normal operation of a train
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Fig. 12. Hotelling analysis. Here a faulty occurs towards the end (the vertical thick black line
indicates that a too large temperature has been achieved). The vertical red line corresponds to the
instant of time when Hotelling predicts the fault and recommends to stop the train

threshold. On the other hand, NNs do not seem to ever provide false positives, and in general
they do not require special care in tuning particular parameters. This is a great advantage, as
some tuning procedures (e.g., the previous choice of 20 consecutive samples out-of-bounds before
Hotelling recognises a faulty condition in practice) may be regarded as empirical.

Also, Figure 13 shows that the all four the NNs recognise the occurrence of a fault. This is due
to the fact that the high temperatures of a single motor affect both the NN where they correspond
to the output signal, but also the other 3 NNs where the motor serves as an input. However, the
first NN to recognise the fault is the one for which the faulty motor appears as an output (i.e., in the
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Fig. 13. NN analysis. Here a faulty occurs towards the end (the vertical thick black line indicates
that a too large temperature has been achieved). The vertical red line corresponds to the instant
of time when the NN predicts the fault and recommends to stop the train

Table 1 Performance of the two algorithms in the early detection of the fault.

Performance/Method Hotelling Neural Networks
False positives 0 0
True negatives 0 0
Shortest early prediction
of a fault [minutes]

6 33

Largest early prediction of
a fault [minutes]

402 42

Ability to assess the exact
motor where the fault has
occurred

no yes

example, the fourth motor). This feature actually occurs in all the examined faulty occurrences,
and can be used to recognise where exactly the fault has occurred. The same information could
not be retrieved using the Hotelling approach.

While both the methodologies do not experience true negatives (i.e., they never fail to recognise
a fault), the main advantage of the NNs however appears to be that the fault is always spotted at
least half an hour before it reaches a critical level. On the other hand, in some cases the early
detection of the Hotelling approach occurs only about 5 minutes in advance. Summarising what
said above, the result of FFNN are more stable in terms of time from early prediction to fault
occurrence (ranging from 33 to 42 minutes) with respect to the early prediction times for
Hotelling (form 6 to 402 minutes). So, while Hotelling is in general less reliable, it was able
to predict the fault almost 7 hours in advance in one case. Observing figures 12 and 13, it is
possible to note that the AE index of the fourth subplot in fig 13 increases in correspondence
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of the early detection time (red bar) detected by Hotelling and shown in fig 12. The increase
of the AE is not sufficient to produce a warning (it stays below the threshold), while Hotelling
indicates a fault. This relative function of the two approaches suggested the following logic
to combine the two indications in a single rule based approach:

• if FFNN gives a warning stop operation of the train;

• if Hotelling gives a warning, continue train operation, and schedule an immediate su-
pervision from a human expert of the monitoring indices both of Hotelling and FFNN.

5. Computational cost for real time operation

As for the Hotelling’s multivariate control chart, the vector of the 16 temperatures simultaneously
measured represents the observation vector. Regarding the FFNN, we use the temperatures of three
motors as an input (p = 12 is the number of inputs to the NN), and the average temperature of the
four sensors of the remaining motor as an output. As further data preprocessing it is worth to
mention that the Matlab implementation of the FFNN automatically applies a mapping of input
and output data to the range [−1, 1].
For assessing the feasibility of a real time operation we estimated the computational cost, in terms
of computational time, for the periodic retraining operation of both methods, to be performed every
2.5 hours (phase I), and for the calculation of the instantaneous value of the monitoring indices,
t2 and AE, to be performed every 3 minutes (phase II). All the computational costs are estimated
using the Matlab environment and a Intel i7 computer. For assessing the computational cost of t2

calculation during monitoring, we assume that the sample mean vector (1), the covariance matrix
(2) and the thresholds (6) were previously calculated in phase I. Given the 16 raw temperatures
from the sensors at a particular time step, the calculation of the t2 in phase II (the monitoring
phase) involves the following operations:

1. convert the 16 raw values in Celsius degrees;

2. define the observation vector x as a raw vector of the 16 temperatures;

3. calculate t2 as in (4);

4. compare the t2 value with the thresholds (6).

The average time for above operations is of the order of 0.2ms. Regarding the cost for executing the
calculation of the AE index of a single, previously trained, neural network, the involved operations
are the following:

1. convert the 16 raw values in Celsius degrees;

2. calculate the average value of the 4 temperatures relative to the motor used as output signal;

3. calculate the neural network output (7) using as inputs the 12 temperatures of the other three
motors;

4. calculate the AE as the absolute value of the difference between the output of the NN and the
average value calculated in point 2.
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The average time for the above operations, for a single neural network, is of the order of 15ms.
Considering that these steps should be repeated for each one of the four neural networks, and
assuming single-threading, a total of 60ms are needed for the calculation of the four AE values
and comparison with the thresholds.

The cost for the training of the Hotelling approach (i.e. the cost for calculating equations (1-3)
and (5-6), is of the order of 2ms. Finally, the average time for initializing and training one of the
four NNs is of the order of 400ms, where the most frequent stop condition was the reaching of
the max fail threshold. As a final comment on calculated times, real time operation is perfectly
feasible as the computational times required by the methods are order of magnitude smaller than
the sampling time of 3 minutes.

6. Conclusion

This paper investigated the ability of monitoring temperatures in train motors to detect the failure
of bearings in a short time. In fact, a missed detection of such a fault frequently causes additional
damages to other components of the traction core, and eventually brings to the breakdown of the
induction motor itself. Simple methods based on the absolute values, or on the variance, of the
monitored temperatures recognise the fault when it is too late. Other more sophisticated multivari-
able methods appear to be able to provide early detections of the faults. In this paper, we showed
that it is very convenient to project the received temperature signals into the t2 statistics of the cor-
responding Hotelling control chart, or to use NNs. In particular, it is rather convenient to use a set
of NNs in parallel, where each time the temperatures of one motor is predicted using the tempera-
tures of the other motors as an input. In this case, as soon as one set of motors fails to accurately
predict the temperature of the remaining motor, this implies that a fault has occurred in the last
motor. The two techniques implemented are characterized by different performances, even
though both of them guarantee a sufficient early detection time to take immediate actions.
It is shown that tuning both techniques (by setting appropriate thresholds and selecting a
proper way to use them) can improve the performances, while using them in conjunction
(fusion technique) would lead to the exploitation of the benefits of both of them. The possi-
bility of introducing an intermediate error level that may be used to handle the very early
detections will be investigated in the future, for instance, by making a distinction between
warnings and (certain) alarms to handle the expected increase in the number of false alarms.
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