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Abstract

The paper proposes a general framework to manage a team of Autonomous Underwater Vehicles (AUVs), while
keeping the communication constraints, during missions execution. Virtual spring-damper couplings (passive by
definition) define the distributed interaction forces between neighbouring vehicles. In this way, through passivity
theory, a suitable Lyapunov function for the closed loop system is built to ensure stable convergence of the network
vehicles to an equilibrium point, also providing robustness in presence of communication fading and delays, very
common in the marine environment. Simulations of typical missions show the effectiveness of the proposed approach.
An equivalence between this typical port-Hamiltonian framework and a specific class of potential games, the Bilateral
Simmetric Interaction (BSI) one, is also established. Hence, modelling the network with passive elements, it is
possible to shape the transient behaviour of the players and the reached equilibria at the end of the game.
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1. Introduction

A renewal of interest has been focused recently on the
analysis and control of networked systems, and particu-
larly on distributed systems of mobile agents. Such sys-
tems provide significant benefits in efficiency, scalabil-
ity, and robustness when compared to classical central-
ized solutions. Applications of mobile agent networks
are multi-disciplinary and highly diversified. In particu-
lar, recent advances in marine robotics have made AUVs
more reliable and affordable allowing the execution of
tasks that are dangerous, expensive and time consuming
when performed by humans. There are a lot of practi-
cal applications that can benefit from the use of a team
of AUVs: these include the defence field, patrolling,
surveillance of an asset or of a predefined geographical
area, coverage tasks, exploration, oceanographic sur-
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veying and mapping [1]. All these application scenar-
ios involve communication among multiple agents. In
the underwater domain, due to the well known limita-
tions of the acoustic channel [2, 3, 4], it is of paramount
importance to maintain desired communication perfor-
mances in order to achieve the mission objectives.

Basing on recent preliminary works developed by the
authors [5, 6], this paper presents a general framework
for coordinating a team of agents, applied to a group of
AUVs. The passivity theory is exploited for guarantee-
ing the stable and robust convergence of the network to
an equilibrium configuration, even in presence of com-
munication delays. The term “stability” here is used to
indicate that, for any initial condition which ensures the
fulfilment of the communication constraints, such con-
straints are satisfied for the whole transient, and the pro-
posed algorithm leads the vehicles to assume a stable,
in classic Lyapunov sense, configuration. Moreover,
the degrees of freedom offered by such an approach al-
low to tune the desired motion of the group in terms
of transient behaviour and reached equilibria. In partic-
ular, it is possible to determine in advance which task
has higher priority than the others without any conse-
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quence about stability. Furthermore, the behaviour of
the group is made more flexible, with arbitrary split
and join events, using an “energy tank” able to store
and supply energy whenever required [7]: exploiting
this further passive element the network topology may
change depending on the emerging needs of the mission.

Downstream to what just said, an equally relevant
motivation behind this work arises from the possibility
to capture an ambitious and innovative point of contact
between two different ways to model and control a net-
work of agents: the one proposed here and BSI, a poten-
tial game that exhibits symmetries across the variables.
In fact, a BSI game is characterized by the notion of
pairwise or bilateral strategic interaction, in which the
utility function for each player depends only on its own
action and that of another connected with him, whatever
the behaviour of the rest of the network. If that happens
for all players, the observations are said to be symmet-
ric for each combination of connected agents. Hence,
modelling the network with passive elements, which are
purely design parameters, it may be possible to shape
the transient behaviour of the players and, ideally, the
reached equilibrium at the end of the game.

The proposed approach is based on the positive in-
fluences of several pioneering works, such as the one
in [8], refined and extended in [9] and [10]. Here the
artificial potentials and virtual leaders allowed to man-
age a group of multiple autonomous vehicles, also ma-
nipulating the team geometry and its direction of mo-
tion. Motivated by biological inspiration, such works
focused also on gradient climbing missions in which the
mobile sensor network sought out local maxima or min-
ima in the environmental field; moreover, a convergent
cooperative Kalman filter for exploration missions pro-
vided the estimates to drive the centre of the formation
to move along level curves of the environmental field.
In [11], natural potential functions were obtained from
structural constraints of a desired formation: in this way,
the synthesized controller for each vehicle was able to
steer and move agents exploiting only local informa-
tions, also avoiding collisions. With the same concepts
in mind, the author of [12] proposed a theoretical frame-
work for the design and analysis of several distributed
flocking algorithms, in presence or lack of obstacles.
Another pioneering work that exploited artificial poten-
tials to solve the constrained coverage problem is in
[13]. In particular, the deployment of the mobile sen-
sor network was addressed: each node was treated as a
virtual charged particle, in order to synthesize an algo-
rithm able to maximize the covered area and minimize
the number of nodes of the network itself. Recently, in
[14, 15], a mobility control that switch between a set

of smooth, constraint-enforcing potential fields, satis-
fying local and non-local constraints composition was
proposed. That potential-based control also drove the
agents to maximize connectivity and maintain estab-
lished links; the constraint satisfaction was achieved us-
ing a switched model of interaction which regulated link
addition through repulsive potentials between constraint
violators.

In the recent years, the authors proposed coopera-
tive control algorithms based on the behavioural ap-
proach paradigm [16] and its adaptation as potential
BSI game [17], to maintain desired communication per-
formance and fulfil each agent task. The main drawback
of such algorithms were the absence of stability guaran-
tees along the whole motion of the agents: as a matter of
fact, they were able to provide only the local stability of
equilibria points. In this context, the port-Hamiltonian
framework allows to model the sensors network in a
suitable, passive fashion, e.g. in [18, 19, 20]. Passiv-
ity techniques have been widely studied in the domain
of bilateral teleoperations for the control of a traditional
single-master/single-slave system [21, 22], or for a more
complex single-master/multiple-slaves system [23]. In
spite of take advantage of the operator’s intelligence for
solving complex tasks as in bilateral teleoperations, the
proposed framework seeks to provide full autonomy to
the agents in order to accomplish the cooperative mis-
sion.

The paper is organized as follows: Section 2 presents
the essentials mathematical and theoretical tools im-
plied in the framework, i.e. graph theory, port-
Hamiltonian systems and game theory; Section 3 out-
lines the implementation details of the cooperative al-
gorithm and demonstrates the stability of the proposed
solution including delays on communication links. Af-
ter that, Section 4 provides several consideration about
the relationship between the proposed approach and BSI
games. Section 5 exploits the energy tanks approach
proposed in [23] to enlarge the set of possible stable ma-
noeuvres within the network, while Section 6 illustrates
and discusses the effectiveness of the proposed frame-
work in several application scenarios. Finally, Section 7
summarizes the work and draws the main conclusions.

Notation. R, R>0 and R≥0 respectively denote the set
of real, positive real, non-negative real numbers. Vec-
tors and matrices are denoted by bold characters, while
scalars and sets by italics. Unless otherwise specified, 0
and I denotes the zero and identity matrices of suitable
dimensions (context-dependent). A> denotes the trans-
pose of A; Sn denotes the set of symmetric n × n matri-
ces; for a given Q ∈ Rn×n, the notations Q � 0 (Q < 0)
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and Q ∈ Sn
�0 (Q ∈ Sn

<0) denote that Q is symmetric and
has positive (non-negative) eigenvalues. | · | denotes the
cardinality of a set, || · || the Euclidean norm, ⊗ and × the
Kronecker and Cartesian product, respectively.

2. Background and Preliminaries

This section provides the essentials from the main an-
alytical and theoretical tools required for the upcoming
mathematical treatment. In particular, some reminders
on graph theory, passivity, port-Hamiltonian systems
and game theory will be very useful for a proper under-
standing. We remark here that we are using the jargon
of different, though converging, research fields. There-
fore, in the rest of the paper we may refer to the AUVs
with the terms agents, vehicles or players, indistinctly.

2.1. Graph Theory

A graph G B (V, E) is formally defined by a fi-
nite set of nodes (or vertices) V and a set of edges
E ⊂ V × V , connecting pairs of nodes. The node set
V B {v1, v2, . . . , vl} has l = |V | elements, while the
edge set E B {e1, e2, . . . , em} contains m = |E| ele-
ments. Given e j ∈ E, then there exist a pair vi, v j ∈ V
such that e j B (vi, v j); in this way, vi and v j are said
to be adjacent, while (vi, vi) is called a self-loop. If
the edges in graphs are to be interpreted as enabling
information to flow between the vertices on the corre-
sponding edge, these flows can be directed as well as
undirected. Hence, direct and indirect graph can be dis-
tinguished. In the first case, edges have a fixed direction
(i.e. the tail and the head of the edge are setted), while
in the second case, if (vi, v j) belongs to E, then (v j, vi)
belongs to E too. However, for indirect graph, one can
arbitrarily assign an orientation to each edge. Any key
feature of a graph can be described by means of matri-
ces. In particular, the incidence matrix B(G) is a l × m
matrix defined as follows:

[B(G)]i j B bi j =


−1 if vi is the tail of e j,

1 if vi is the head of e j,

0 otherwise.

The l rows of B(G) correspond to the nodes of G, while
the m columns denotes the edges of such graph. For
further details on the graph theory, refer to [24].

2.2. Port-Hamiltonian Systems and Passivity

The port-Hamiltonian framework, introduced in [25],
allows to model complex (non-linear) systems as energy

storing and energy dissipating components, connected
via ports to power conserving transmissions and conver-
sions. It is an energy-based framework in which each
element interacts with the system via a port, that con-
sists of a couple of dual effort and flow quantities, whose
product gives the power flow in and out of the compo-
nent. As well described in [26], let x ∈ Rn denotes the
local coordinates for an n-dimensional state space man-
ifold X, u ∈ Rm the control input and y ∈ Rm the output
of the system. The generalized input-state-output dy-
namics expressed in terms of port-Hamiltonian frame-
work is given by:ẋ = [J(x) − R(x)]

(
∂H(x)
∂x

)>
+ g(x)u,

y = g>(x)
(
∂H(x)
∂x

)>
,

(1)

where J(·) ∈ Rn×n is a skew-symmetric structure matrix,
g(·) ∈ Rn×m is also a structure matrix, H : Rn → R≥0 is
the Hamiltonian function that represents the whole en-
ergy stored in the system and R(·) ∈ Sn

<0 a dissipation
matrix. The entries of both matrices J(·) and R(·) de-
pend smoothly on x. Modelling dynamical system as
(1) provides several benefits: in particular, a basic prop-
erty of a port-Hamiltonian system is related to its energy
balance, tightly coupled with the notion of passivity. In
fact, any port-Hamiltonian system is passive w.r.t. the
supply rate and storage function H(·) if H(·) is bounded
from below.

Let now consider a generic, affine, non-linear systemẋ = f(x) + g(x)u,

y = h(x),
(2)

with the state vector x ∈ Rn, a control vector u ∈ Rm and
an output vector y ∈ Rm. f : Rn → Rn, g : Rn → Rm

and h : Rn → Rm are non-linear functions of the state.

Definition 1. (from [27])
The system in (2) is passive if there exists a continuous
and differentiable lower bounded function of the state
V : Rn → R≥0 (called storage function) such that:

V̇(x) ≤ u>y ⇐⇒ V(x(t))−V(x(0)) ≤
∫ t

0
u>(τ)y(τ) dτ.

V(·) represents the internal stored energy and u>y the
energy flow exchanged with the external world (i.e. the
supply rate). The pair (u, y) is called power port, where
u and y are power variables: these latter allow to control
and interconnect passive systems.

Back to the port-Hamiltonian theory, due to the fact
that H(x) ≥ 0, the passivity is always guaranteed and
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it is easy to show that Ḣ(x) ≤ u>y. In this way, port-
Hamiltonian framework provides a powerful tool for
the stability analysis of dynamical systems, in order to
achieve a feasible, stable and robust control.

2.3. Game Theory and Nash Equilibria
A game G B [N , A, {Ui}i∈N ] in strategic, non-

cooperative form is defined by a non-empty and finite
set N of N rational players, a strategy space A and
a set {Ui}i∈N of utility functions. A player is rational
if he or she makes decisions which are consistent to
the purpose of maximizing (minimizing) his/her util-
ity function. Mathematically speaking, let us denote by
N B {1, 2, . . . , N} the set of N participating players.
For every i-th player in N , his/her collection of all pos-
sible strategies forms a strategy set, expressed as:

Ai B {Ai | Ai is a valid strategy for the i-th player}.

In this way, the strategy space A is defined as the Carte-
sian products of all individual strategy sets, i.e.:

A B A1 × . . . × AN .

Each element A = (A1, A2, . . . , AN) ∈ A is said to
be a strategy profile. Referring to the i-th player, then
A can be rewritten as A B (Ai, A−i), where A−i de-
notes the joint strategy adopted by player i’s opponents.
Hence, the domain of A−i is defined by A−i. For each
player i, his/her utility function Ui is a function that
maps each strategy profile A to a real number, that is
Ui : A → R. Consequently, Ui(A) can be represented
also as Ui(Ai, A−i).

A Nash equilibrium (NE) is a crucial concept in pre-
dicting game outcome: it is a strategy profile such that
if the opponents’ strategies remain unaltered, no player
would be tempted to move away from his/her current
strategy. More precisely:

Definition 2. The strategy profile A∗ ∈ A is a NE if and
only if

∀A
′

i ∈ Ai, ∀i ∈ N , Ui(A∗i , A
∗
−i) ≥ Ui(A

′

i , A
∗
−i).

At a NE, no player is able to gain by deviating from
the current point: it is a sort of “stable operating point”.
Although a NE is often the ultimate objective of a game,
such game in strategic/normal form may have either
unique, multiple or no NE.

2.3.1. Potential Games
As stated in [28] a pure strategy, normal form, poten-

tial game has the strong property that admits at lest one
NE. By definition:

1 2

3

. . .
l

T1 T2

T3

Tm

kT1
1

kT2
2

kT1
3

dT1
1

dT2
2

dT3
3

dTm

l

kTm

l

k12

k13

k23

d12

d13

d23

i

Target

i-th AUV

Virtual coupling

Figure 1: A team of l-AUVs (numbered red circles) in a generic distri-
bution in Rn. The blue circled crosses suggest the target of the agents,
while the spring-damper couples represent the virtual couplings be-
tween agents and/or targets.

Definition 3. A game G is an exact potential game if
and only if a potential function V : A → R exists such
that, ∀i ∈ N:

Ui(Ti, A−i) − Ui(Ai, A−i) =V(Ti, A−i) − V(Ai, A−i),
∀Ai,Ti ∈ Ai,∀A−i ∈ A−i.

In an exact potential game, the change in a single
player’s utility due to his/her own strategy deviation re-
sults in exactly the same amount of change in the poten-
tial function. One interesting property of such games is
that the global maximizers (minimizers) of the potential
function V are NE.

3. The High-Level Cooperative Algorithm

In this paper, the general issue addressed is the fol-
lowing:

Problem. Each AUV within a team has to accomplish
its own task (or tasks), while keeping the communica-
tion connectivity with the other team members.

3.1. Networked System Model

Modelling the agents/targets network as an indirect
graph without any self-loop, the aim is to design a high-
level control policy that allows to maintain the prede-
fined graph during the development of the whole mis-
sion.

From now on, we suppose that the following mild as-
sumptions hold:
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Assumption 1. The connectivity link is guaranteed if
the agents lie within a fixed relative range.

Assumption 2. Each vehicle has to know its own abso-
lute velocity and the relative position of another vehicle
with respect to itself.

It is worth nothing that in order to fulfil the mainte-
nance of the communication link it is assumed that the
performance of the acoustic channel, potential packet
loss issues or Signal-to-Noise Ratio (SNR) have been
converted in a range constraint. This is always possi-
ble (i.e., underwater acoustic communication difficul-
ties decreases as communication ranges get shorter), al-
though sometime too conservative. However, how to ex-
ploit the channel characteristics to optimize communi-
cation ranges [2] is out of the scope of the paper. The in-
formation required in Assumption 2 is measured or esti-
mated by the available navigation system of the vehicles
(see [29] for a recent review). Depending on the specific
situation, or the specific set of vehicles, some sensors or
some approaches can be more appropriate than another:
for instance, in shallow water or for sea-bed inspection
missions the presence of Doppler Velocity Log (DVL)
sensor on board each vehicle is sufficient to measure the
velocity. Acoustic modems with Ultra-Short Base Line
(USBL) capability can not only deliver measurements
of relative position, but can also concur to the establish-
ment of a cooperative navigation system [30] which ex-
ploits range and bearing information as communication
among the vehicles take place. Additional refinements
for deep water and to compensate current disturbance
can be found in [31]. A complete treatment of the nav-
igation issue is clearly out of the scope of this paper;
here it is assumed that a navigation system is in place,
and that the required information is available to the ve-
hicles.

Let now consider the generic network configuration
in Fig. 1, with l-vehicles and m-targets. Each link, either
a communication connection or not, is represented by a
pair of spring-damper element (virtual coupling, passive
by definition). The graph G B (V, E) associated to the
concerned network is defined by:

V B {1, 2, . . . , l, T1, . . . , Tm} → |V | = l + m,

E B {(1, 2), . . . , (1, T1), . . .} → |E| = a + t.

Note the separation between agent-agent and agent-
target edges, with cardinality a and t, respectively. Con-
sidering the (i, j) edge, here the vertex i is always seen
as the tail and j as the head of the link. Then, the inci-

dence matrix B ∈ R(l+m)×(a+t) is given by:

B =



−1 −1 · · · −1 · · ·
1 0 · · · 0 · · ·

0 1 · · · 0 · · ·

...
...

...
0 0 . . . 1 . . .
0 0 . . . 0 . . .
...

...
... . . .

0 0 . . . 0 . . .


Conventionally, the rows of B are sorted as the ele-
ments in V , while the columns as those in E. In this
way, the first a columns represent the links between
agents and the second t stand for the agent-target con-
nections. For sake of clarity, assuming a simple damped
double-integrator dynamics in n-dimensional space for
each node of the network, the i-th AUV and j-th target
equations of motion are given by:

mi q̈i = −d q̇i + ui, mT j q̈Tj = −d q̇Tj + uTj ,

where mi, mT j are the respective masses, qi, qTj ∈

Rn are their positions (generalized coordinates) and
ui, uTj ∈ Rn are the control vectors. The d element
model a viscous friction acting on the moving nodes.
Hence, the corresponding linear momenta pi, pTj ∈ Rn

are:
pi = m̄i q̇i, pTj = m̄Tj q̇Tj ,

with m̄i B I mi, m̄Tj B I mT j and I is the n × n identity
matrix. Now, consider the group of l + m vertices: to
compactly denote the agent dynamics, the vector form
is introduced. Thus, q = [q1

>, q2
>, . . . , qT1

>, . . .]> ∈
Rn(l+m) stands for the generalized coordinates vector,
DA B diag(I d, . . . , I d) ∈ Rn(l+m)×n(l+m) is the damping
matrix and u = [u1

>, u2
>, . . . , uT1

>, . . .]> ∈ Rn(l+m)

is the control vector. The linear momenta vector p ∈
Rn(l+m) is:

p = M q̇,

where M B diag(m̄1, . . . , m̄Tm ) ∈ Sn(l+m)×n(l+m)
�0 is the

matrix of masses. Basing on the communication links,
the relative distances vector z ∈ Rn(a+t) is defined as:

z B (B> ⊗ I) q.

3.2. Energetic Description of the Network
Including the virtual couplings, the energy behaviour

of the network is now analysed. The global Hamiltonian
function H : Rn(l+m) × Rn(a+t) → R≥0:

H(p, z) = Hk(p) + Ht(z) + Ha(z), (3)
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is divided as the sum of three different terms, where
the potential contribution of the springs is split between
AUV-target and AUV-AUV contributions. In details:

a) Kinematic contribution Hk : Rn(l+m) → R≥0

Hk(p) B
1
2

p>M−1p.

b) Agent-Target contribution Ht : Rnt → R≥0

Ht(z) B
1
2

z>KTz,

with KT B diag(0, K̄T) ∈ Rn(a+t)×n(a+t), K̄T B
diag(k̄1, . . . , k̄t), k̄i B I kt

i and kt
i is the elastic con-

stant of the i-th vehicle-target coupling in E (for
example, kt

1 = kT1
1 and kt

t = kTm
l in Fig. 1, for

i = 1, . . . , t).
c) Agent-Agent contribution Ha : Rna → R≥0

Defining Rc as the maximum distance at which the
AUV can still communicate with its neighbours, and
Rd ≤ Rc as the desired distance to be maintained be-
tween two vehicles, the last term of H(p, z) is given
by:

Ha(z) B
1
2

a∑
i=1

ka
i (||zi||) · (||zi|| − Rd)2,

where the elastic constant ka
i (·) models a non-linear

spring over each agent-agent link.

Defining f ∈ Rn(a+t) as the force vector acting on the a+t
links:

f =

(
∂H
∂z

)>
+ DC(B> ⊗ I)

(
∂H
∂p

)>
,

where DC B diag(d̄1, . . . , d̄a, . . . , d̄t) ∈ Sn(a+t)×n(a+t)
�0

contains the mutual damping elements d̄i B I di in E.
In this way, assuming (p, z) as the state variables, the
input-state representation of the multi-agents open loop
system in the port-Hamiltonian framework is: ṗ

ż

 =

 −DA 0
B> ⊗ I 0




(
∂H
∂p

)>(
∂H
∂z

)>
 +

[
I
0

]
u

y =
[
I 0

] 
(
∂H
∂p

)>(
∂H
∂z

)>
 .

(4)

Now, Pfaffian constraints are introduced to general-
ize the proposed framework and then to consider fixed
nodes (e.g. the targets). In this way, after choosing
a suitable matrix A ∈ Rn(l+m)×nm that satisfies the re-
lation A>

(
∂H
∂p

)>
= 0, a sort of selection matrix S ∈

Rn(l+m)×n(l+m) such that A>S = 0 can be easily com-
puted. Then, the open loop system in (4) assumes the
following form: ṗ

ż

 =

 −S>DAS 0
(B> ⊗ I)S 0




(
∂H
∂p

)>(
∂H
∂z

)>
 +

[
S
0

]
u

y = S>
(
∂H
∂p

)>
.

(5)

3.3. Control Synthesis and Stability

In order to synthesize a control law that stabilizes
the system and allows to meet the communication con-
straints, the Hamiltonian function H(p, z) is now chosen
as the Lyapunov candidate for the multi-agents multi-
targets network. Indeed, differentiating with respect to
time:

Ḣ(p, z) =
∂Hk

∂p
ṗ +

∂

∂z
(Ht + Ha)ż, (6)

and replacing the dynamic (5) in (6), hence:

Ḣ(p, z) =
∂H
∂p

Su −
∂H
∂p

S>DAS
(
∂H
∂p

)>
+

+
∂H
∂p

S>(B> ⊗ I)
(
∂H
∂z

)>
.

Defining S̄ B (B> ⊗ I)S and choosing the control vector
u as:

Su = −S̄>
(
∂H
∂z

)>
− S̄>DCS̄

(
∂H
∂p

)>
, (7)

the autonomous closed loop dynamics becomes: ṗ
ż

 =

 −(S>DAS + S̄>DCS̄) −S̄>

S̄ 0




(
∂H
∂p

)>(
∂H
∂z

)>
 . (8)

Proposition 1. The proposed control law in (7) leads
the trajectories of the closed loop system (8) within the
set given by (∂H/∂z)> ∈ ker{S̄>}, i.e. at the equilibrium
point between the elastic forces generated to the agent-
agent, agent-target links.

Proof. Just invoking the La Salle principle, applied to
the obtained negative semi-definite Ḣ(p, z), the trajec-
tories of (8) converge to the largest invariant set where
p = 0, that is:

−S̄>
(
∂H
∂z

)>
= 0. (9)
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Figure 2: A generic distribution in R2 for the two AUVs - two targets
case.

Note that the control law in (7) is distributed. In
fact, each AUV can compute its control input know-
ing only the relative position and velocity of the agents
connected with itself. Recalling the Assumption 2, the
only information which requires to be shared within the
team is hence the absolute velocity of each vehicle in
the horizontal plane. Such an information can conve-
niently be coded in a data packet containing two floats
and sent with a broadcast message by each vehicle on
the communication channel. Note that such communi-
cation load, in addition to being small (8 bytes), it is
also scalable w.r.t. the number of connected agents.

Moreover, as regards the choice of the control gains,
the proposed control law offers several degrees of free-
dom, as well as strong stability guarantees. In fact, se-
lecting different elastic constants, it is possible to deter-
mine in advance which task has higher priority than the
other without any consequence about the stability prop-
erty.

Example 1. The discussion just presented is now ap-
plied to the trivial case of two agents - two targets act-
ing in R2 (Fig. 2). The aim is to provide a clearer
interpretation of the invariant set in (9) that contains
the trajectories of the controlled system. So, the set
E = {(1, 2), (1,T1), (2,T2)} contains the different con-
nectivity links, the selection matrix S = diag(I4×4, 04×4)
and the incidence matrix is:

B =


−1 −1 0
1 0 −1
0 1 0
0 0 1

 .
Choosing a linear spring to model the agent-agent vir-
tual coupling (i.e. ka

1(||z1||) = ka
1), the system (8) is sta-

bilized to the set of z that fulfil the following system of

equations:

ka
1

(
1 −

Rd

||z12||

)
z12x + kt

1z1T 1 x = 0

ka
1

(
1 −

Rd

||z12||

)
z12y + kt

1z1T 1y = 0

−ka
1

(
1 −

Rd

||z12||

)
z12x + kt

2z2T 2 x = 0

−ka
1

(
1 −

Rd

||z12||

)
z12y + kt

2z2T 2y = 0,

where

z12 =

 z12x

z12y

 , z1T1 =

 z1T 1 x

z1T 1y

 , z2T2 =

 z2T 2 x

z2T 2y

 ,
represent the relative distances ordered in E, while ka

1,
kt

1 and kt
2 the respective elastic constants.

3.4. Stability to Communication Delays
The required information to be exchanged among

neighbouring vehicles (velocity) could be affected by
communication delays on the connectivity links. This
is particularly critical in marine acoustic communica-
tions, due to the speed of sound in the ocean (typical
value 1500 m/s). Before stating the main result of this
section, we make the following assumption, which will
be clear later:

Assumption 3. The time varying delay acting on each
connectivity link is represented by τi(t), a non-negative,
bounded above, Lipschitz function.

Thus, we are ready to state the following theorem,
which is a generalization of the result of [32]:

Theorem 1. Under Assumption 3, if there exist (a +

t) matrices P̄i ∈ Sn(l+m)×n(l+m)
�0 that meet the following

Linear Matrix Inequalities (LMI) problem:

−S>DAS − D̄ +

a+t∑
i=1

P̄i ≺ 0,

then Proposition 1 still holds even in presence of com-
munication delays.

Proof. The control policy synthesized above can be re-
stated as:

Su = −S̄>
(
∂H
∂z

)>
−

D̄ (
∂H
∂p

)>
−

a+t∑
i=1

T̄i

(
∂H
∂p

)>
τi(t)

 ,
where:
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• D̄ contains the diagonal elements of S̄>DCS̄;

• T̄i contains the out of diagonal elements of S̄>DCS̄
closely related with τi(t).

The term (∂H/∂p)τi(t) represents the partial derivative
of the Hamiltonian function w.r.t. the linear momenta,
computed in according to the time varying delay on the
i-th link. Omitting the time dependence of each τi and
defining:

∇H> B


(
∂H
∂p

)>(
∂H
∂z

)>
 , ∇H>τi

B


(
∂H
∂p

)>
τi(

∂H
∂z

)>
τi

 ,
the Lyapunov candidate V : Rn(l+m) × Rn(a+t) → R≥0 is
now chosen as in [32]:

V(p, z) = H(p, z) +

a+t∑
i=1

∫ t

t−τi

∇Hsi Pi∇H>si
dsi, (10)

with each Pi ∈ Sn(l+m+a+t)×n(l+m+a+t)
<0 . In view of the As-

sumption 3 the time derivative function of (10) is hence:

V̇(p, z) = Ḣ(p, z)+
a+t∑
i=1

[
∇H Pi ∇H>+

−(1 − τ̇i)∇Hτi Pi ∇H>τi

]
.

Noting that only the term (∂H/∂p)τi of ∇Hτi is really
affected by lag, hence Pi = diag(P̄i, 0). Then, consider-
ing the worst case in which each τ̇i = d̃ and compacting
everything in vector form, after some simple algebraic
manipulations:

V̇(p, z) ≤


(
∂H
∂p

)>(
∂H
∂p

)>
τ


>

W


(
∂H
∂p

)>(
∂H
∂p

)>
τ

 , (11)

where: (
∂H
∂p

)>
τ

B


(
∂H
∂p

)>
τ1

...(
∂H
∂p

)>
τa+t

 ,
and the matrix W is:

−S>DAS − D̄ +
a+t∑
i=1

P̄i T̄1 . . . T̄a+t

0 −(1 − d̃)P̄1 . . . 0
...

...
. . .

...

0 0 . . . −(1 − d̃)P̄a+t


.

In this way, the time derivative of the Lyapunov candi-
date in (11) is negative definite iff W ≺ 0. Due to the
fact that W is a diagonal matrix and that −(1 − d̃)P̄i ≺ 0
is satisfied for all possible choices of P̄i, the only condi-
tion that should be verified is the one on the first entry
and this conclude the proof.

Remark 1. Assuming a positive, bounded above, Lips-
chitz delay function τi(t), as stated in Assumption 3, is
quite realistic in marine environment. As a matter of
fact, there are two main reasons why the time derivative
of the delay is greater than one: if c is the speed of sound
in water, the first trivial case implies that two vehicles
are moving at a relative velocity that is greater than c
(quite uncommon). The second reason is closely related
with the packet loss, shown in the following example.

Example 2. Consider two fixed nodes (A, B), at a pre-
defined distance R0: the node A transmits messages,
while B receives them. Trivially, the time derivative of
the delay τ can be approximated by:

τ̇ '
∆τ

∆t
.

If A sends at time t0, then B successfully receives the
message at time t0 + τ. If a second message, sent at
time t1, it is not properly received at t1 + τ, the node A
ideally re-sends such message at t1 + τ. In the unlikely
event that it is not properly received again, the node
A sends the same message for the third time at t1 + 2τ
(as many commercial acoustic modems work), that is
correctly received by B at t1 + 3τ. Thus, considering
this unfortunate set of transmissions, the final delay is
equal to 3τ, so ∆τ = 3τ − τ = 2τ, while ∆t ≥ 3τ. Then,
the following chain of inequalities holds:

τ̇ '
∆τ

∆t
≤

2
3
< 1.

The example above show that, even in the ideal case
of immediate retransmissions of the lost packet, assum-
ing |τ̇| < 1 is still reasonable. Such assumption, for
instance, was always verified in the field tests reported
in [30].

4. Relationship with Potential BSI Games

This section aims to introduce the BSI games and to
show the close relation with the proposed way of model
a network of interconnected agents.
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4.1. Symmetric Observations and BSI Games

BSI games are characterized by bilateral or pairwise
strategic interactions. For the i-th player, the utility
function Ui contains a term wi j(Ai, A j), namely the ob-
servation seen by i due to the strategy of j, which takes
place solely due to the pairwise interaction between
him/her and another player j. A BSI game is a game
where the observations are symmetric, i.e. wi j(Ai, A j) =

w ji(A j, Ai), across all pairs of players [33]. That is,
∀i, j ∈ N , i , j, there exist functions wi j : Ai ×A j → R
such that wi j(Ai, A j) = w ji(A j, Ai) for all Ai ∈ Ai and
A j ∈ A j. Moreover, the utility function of player i is
assumed to be of the form:

Ui(Ai, A−i) =
∑
j,i

wi j(Ai, A j), ∀i ∈ N .

As reported in [33], the next theorem shows that BSI
games are exact potential games (the proof is here omit-
ted for sake of brevity).

Theorem 2. Assume G is a BSI game. Then it is also an
exact potential game with the following potential func-
tion:

V(A) =
∑
i∈N

∑
j∈N ,
j<i

wi j(Ai, A j).

Note that the original utility function proposed in
[33] is obtained combining BSI games and no-conflict
games. Due to the linear combination property of util-
ity functions [34], the resulting exact potential game has
utility functions of the form Ui(A) =

∑
j,i wi j − Pi(Ai),

where Pi : Ai → R indicates the no-conflict term.
Hence, the potential function can be rewritten as:

V(A) =
∑
i∈N

∑
j∈N ,
j<i

wi j(Ai, A j) −
∑
i∈N

Pi(Ai). (12)

4.2. Equivalence Relations

With the previous concepts in mind, if the strategy set
for the i-th agent in Fig. 1 is Ai B (pi,qi), consider its
general Hamiltonian function:

hi(Ai, A−i) B
1
2

∑
k∈�a

i

hak (zk) +
1
2

∑
j∈�t

i

ht j (zj)︸                               ︷︷                               ︸∑
q∈�i

wiq(zq)

+
1
2

p>i m̄−1
i pi︸       ︷︷       ︸

−Pi(pi)

,

where �a
i and �t

i are the sets of agents and targets con-
nected with the i-th agent, while �i contains all that
links, i.e. �i = �a

i ∪�
t
i. Note that the strategies of the

neighbouring agents A−i are included in {zq}q∈�i , cou-
pled with Ai. In this way, the functions hak (·) and ht j (·),
i.e. the springs contributions (possibly non-linear), de-
pend only on the relative distance between two nodes; it
is straightforward to observe that the action of the spring
on the nodes is the same: from here, the symmetry of the
observations in the proposed framework. The kinematic
contribution instead p>i m̄−1

i pi represents a sort of pure
coordination term, because no agent connected with the
i-th cares about which action is taken from it.

Now, assuming the i-th Hamiltonian function as the
i-th player’s utility function, it is quite easy to show that
the global Hamiltonian in (3) can be rewritten as the po-
tential function of the game in (12), just imposing with-
out abuse wi j = 0 on non-existing links. In fact:

−
∑
i∈N

Pi(Ai) =
1
2

l+m∑
i=1

p>i m̄−1
i pi = Hk(p),

∑
i∈N

∑
j∈N ,
j<i

wi j(Ai, A j) =
∑
i∈N

∑
q∈�i

wiq(zq) = Ht(z) + Ha(z).

Remark 2. If there are some fixed nodes, the potential
contribution of the springs depends only on the strategy
of the considered agent. It also becomes a pure coordi-
nation term.

Remark 3. The Hamiltonian function in (3) is a con-
vex function in the generalized coordinates (p, z). The
resolution of the minimization problem, that leads to a
NE of the game, is not trivial due to the presence of
the communication constraints and fixed nodes: these
may induce several local minima in the potential func-
tion and make richer the invariant set (9). However, in
the simple case where there are no constraints (i.e. any
spring with equilibrium point different from 0) or fixed
nodes, the set of strategies that minimizes the Hamilto-
nian function is the one that leads the agent in the NE
(0, 0).

In the authors’ previous works (and here), as in [16]
and [17], the desired intra-agents behaviour was ob-
tained by means of non-linear springs, whose elastic po-
tential was given by:

hai (zi) B


K1 (‖zi‖ − Rd)2 ‖zi‖ ≤ Rd

K2
(‖zi‖ − Rd)2

Rc − ‖zi‖
otherwise

(13)

where K1,K2 > 0 were design parameters. As an ex-
ample, Fig. 3 shows the function in (13) with a typi-
cal value for the maximum communication range of a
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Figure 3: Elastic potential associated to an agent-agent connection,
with Rc = 3000 m and Rd = 2000 m.

medium frequency acoustic modem, e.g. Rc = 3000 m,
and Rd = 2000 m.

Thus, the resulting gradient-based control rules were
able to solve the general area coverage problem, reduc-
ing the overlap of sonar detection and ensuring that each
agent maintains at least one other vehicle in its commu-
nication range. However, there were several limitations
to the application of such control law: although the pos-
sibility to tune the appropriate interest functions (i.e.
utility functions), the myopic coordination of AUVs
could neither provide any guarantee of stability of the
networked system, nor ability to predict which NE of
the game was reached.

At a price of a slightly more complex network
model (couples of spring-damper, incidence matrix,
port-Hamiltonian framework and so on), with the con-
trol algorithm (7) presented in this work, that is also
gradient-based and offers the same degrees of free-
dom of the previous one, it is always possible to arbi-
trarily change the transient behaviour of the network,
maintaining the robust stability guarantees previously
demonstrated. Moreover, exploiting the equivalence re-
lations with potential games, it is possible to shape and
determine in advance the potential functions, its set of
local minima and the set of NE related with game.

5. Integrating the energy tanks

This section provides a modelling strategy for obtain-
ing a flexible cohesive behaviour of the group of AUVs
by applying the artificial tank approach introduced and
demonstrated in [23]. As there stated, the passivity is
guaranteed during a split manoeuvre, i.e. the cancella-
tion of the coupling force between a pair of agents when
they are outside the communication range. Not the same
holds for a join manoeuvre, i.e. the re-establishment of

∆H

Hsplit < Hjoin

JoinSplit

Figure 4: When the agents perform a join manoeuvre, it may occur
that the required energy Hjoin is greater than the one stored in the
spring during the split manoeuvre (Hsplit, without loss of generality in
0). In this way, the required extra amount of energy could breaks the
passivity of the whole network. Note that the same holds if one of the
two agents is replaced by a fixed target.

the coupling: as a matter of fact, some extra energy can
still be produced during the join procedure. According
to the scenario in Fig. 4, the relative distance between
two agents at the join operation may induce to an higher
elastic potential energy with respect to the one at the
split operation, leading to an increase of the Hamilto-
nian function and consequently a loss of stability guar-
antees. This entails a new edge in the graph and the cor-
responding update of the incidence matrix B. However,
the passivity of the global system can be maintained by
endowing each AUV with a container of dissipated en-
ergy, called tank.

5.1. Mathematical Model

Due to the natural damping of the marine environ-
ment, the amount of power dissipated by each of l mo-
bile nodes is:

Di =
∂H
∂pi

d̄A
(
∂H
∂pi

)>
,

where d̄A are the elements of the diagonal matrix DA

(implicitly assuming that such natural damping is the
same for all the AUVs). Thus, the dynamics of the i-th
tank is:

ṫi =
1
ti
θiDi +

∑
j∈Ni

wij
>

(
∂H
∂zij

)>
,

where Ni denotes the set of nodes connected with i, the
parameter θi ∈ {0, 1} disables/enables the storage of the
energy dissipated by the vehicle and wij ∈ Rn is an input
vector that allows to exchange energy between virtual
springs and tanks.
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A few more words about θi and its usefulness must
be spent. Although the introduced tanks are artificial,
note that each of them has an associated energetic func-
tion Ti = 1

2 t2
i . Filling the tanks with a huge amount of

energy, indeed, could lead to some unstable behaviours
in the whole system, as reported in [35]; in this way,
it is conservative (but necessary) to disable the energy
storage.

Thus, compacting in vector form and including the
dynamics of tanks in (8), the augmented networked sys-
tem with the proposed control law becomes:


ṗ
ż
ṫ

 =


−(S>DAS + S̄>DCS̄) −S̄> 0

S̄ 0 Γ>

ΘPS>DAS −Γ 0




(
∂H
∂p

)>(
∂H
∂z

)>(
∂H
∂t

)>
 ,

(14)
whereH : Rn(l+m) × Rn(a+t) × Ra → R≥0

H(p, z, t) = H(p, z) +
1
2

t>t, (15)

is the augmented total energy of the system, while (14)
represents the autonomous behaviour of the whole net-
work. In particular, Θ B diag(θi) ∈ R(l+m), P B
diag( 1

ti
pi
>m̄−T

i ) ∈ R(l+m)×n(l+m) and the matrix Γ ∈
R(l+m)×n(a+t) is built as Γi,(n( j−1)+1, ..., n j) B bi jwij

>. Al-
though the time-varying nature of the incidence matrix
B, in [23] the authors show that, usingH(·) as a storage
function, the system in (14) is passive w.r.t. external in-
put acting on the agents. Thus, by appropriately choos-
ing the matrix Γ, i.e. the input vector wij, it is possible
to prevent positive jumps in the storage function H(·)
during the join operations. Note that the time derivative
of the energetic function associated to each tank is:

Ṫi = ṫiti = θiDi + ti
∑
j∈�i

wij
>

(
∂H
∂zij

)>
,

where �i is the set of neighbours of the agent i. In this
way, choosing arbitrarily the sign of wij, it is possible to
extract a certain amount of energy from Ha(·), injecting
it into Ti or vice versa.

Remark 4. The fact that split and join manoeuvring
depends on the available energy stored in the artificial
tank may rise the impression that only a limited amount
of such manoeuvring is possible. Indeed, the artificial
tank is filled by the motion of AUV itself, accumulat-
ing the energy dissipated during motion. This means
that after a split-join manoeuvre, the vehicles have to
wait a sufficient time to refill the tanks before attempting
another split-join manoeuvre. In practice, this means

that a too rapid sequence of split-join action (or too
early in the mission, as at the very beginning) may dis-
rupt network connectivity and ultimately stability. The
dynamics of the artificial tanks sets implicitly a suffi-
ciently large time interval among two consecutive split-
join manoeuvres to guarantee passivity of the network.

As a final note, it is straightforward to demonstrate
that the proposed modelling allows also to manage the
dynamic reconfiguration of the network in case of fault
of one or more vehicles without affecting the stability of
the overall system. Indeed, a vehicle subject to a failure
involuntarily behaves as a fixed node and the remain-
der of the team can continue the mission by executing a
split manoeuvre with the faulty vehicle, without violat-
ing the passivity of the system. The maintenance of the
stability in case of inclusion of additional agents in the
team is more critical to be proven, as it involves a join
manoeuvre among the new vehicle and the team. This,
in principle, can be realised in a passive way as long as
the energy stored in the tanks of the vehicles of the team
is sufficient to compensate the energy introduced in the
system by the new agent. However, this case is not con-
sidered in this work, since a formal demonstration must
be treated carefully and will be subject of future inves-
tigations.

5.2. The Stability Issue
Here further aspects about the stability of the au-

tonomous system in (14) and the invariant set reached
by its trajectories are treated. In particular, the follow-
ing proposition holds:

Proposition 2. The trajectories of the augmented sys-
tem in (14) converge within the largest invariant set
given by: 

0 = −S̄>
(
∂H
∂z

)>
ż = Γ>

(
∂H
∂t

)>
ṫ = −Γ

(
∂H
∂z

)>
,

(16)

allowing “safe” join manoeuvres.

Proof. The networked system in (14) has an additional
state t due to the introduced tanks dynamics. However,
choosing the storage function in (15) as the new Lya-
punov candidate and differentiating it w.r.t. time:

Ḣ(p, z, t) = ∇H


ṗ
ż
ṫ

 =
∂H

∂t
ΘPS>DAS

(
∂H

∂p

)>
+

−
∂H

∂p
(S>DAS + S̄>DCS̄)

(
∂H

∂p

)>
.

(17)
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The second term in the RHS of (17) is always non-
positive (both DA and DC are positive definite matrices);
then, making explicit the first one:

∂H

∂t
ΘPS>DAS

(
∂H

∂p

)>
= t>Θ


1
t1

D1

...
1
tl

Dl

 =

l∑
i=1

θiDi.

Noting that θi ∈ {0, 1}, such term represents at most the
energy dissipated by the AUVs; hence, the second term
is always greater than the first one, and Ḣ(p, z, t) ≤ 0.
Again, invoking the La Salle principle applied to the
obtained negative semi-definite V̇(·), the trajectories of
(14) converge to the largest invariant set where p = 0.

6. Simulation results and discussion

This section aims to show the simulation results ob-
tained by applying the control algorithm presented in
Section 3 to a team (or teams) of AUVs. Due to its
flexibility, the proposed control law can be exploited to
accomplish several cooperative missions, noting once
again that the maintenance of the communication link
among the vehicles belonging to a team (or a sub-team)
is a fundamental requirement for the success of the col-
lective task. Thus, after choosing a proper initial inci-
dence matrix, the non-linear spring associated to each
connection is modelled as reported in Section 4. In this
way, defining an initial sub-graph between the agents
of a team, the fulfilment of the communication con-
straints can be guaranteed: if two agents start within
the communication range, they remain connected dur-
ing the whole task, converging if possible to the desired
distance Rd.

Remark 5. Generally, at the beginning of each mis-
sion, a support ship or a docking station allow the de-
ployment of vehicles within a restricted area; so it is
quite realistic to assume the existence of a communica-
tion link among vehicles from the beginning.

In the following, the simulation results obtained with
several types of typical tasks are presented, where ve-
locities are supposed to be exchanged between the ve-
hicles at a rate of 1 Hz. Moreover, all the simulations
(except the last one in Section 6.3, which is delay-free)
are performed considering a fixed targets and fixed com-
munication delay of 1 s.
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Figure 5: Cooperative surveillance task. The vehicles start from the
positions indicated by the coloured stars. At the end, the vehicles
(coloured diamonds) are disposed around the asset (black circle) while
satisfying the distance constraints, represented with the dotted circles.
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Ḣ
(t
)

Figure 6: Hamiltonian function with each single contribution of (3)
(top) and its time-derivative (bottom).

12



6.1. Patrolling: Single and Multiple Assets

In a surveillance or patrolling task, the vehicles of a
team have to cover a certain area around an asset to be
defended. The first scenario in Fig. 5 involves only one
target (the asset itself, m = 1) and a team of three ve-
hicles (l = 3). Hence, the agent-target connections are
modelled by a spring-damper couple from each vehicle
to the asset, setting instead the desired intra-agent range
Rd = 100 m. As it can be noticed, the team reaches
a stable configuration around the asset to be defended.
Furthermore, each vehicle remains within the desired
distance with respect to all the others. In Fig. 6 the
Hamiltonian function (3) and its time derivative are rep-
resented. Note that the function Ḣ(·) is negative semi-
definite, as expected with the choice of the control input
defined in (7). In Fig. 7 there is another example of
such task with two sub-teams of AUVs while perform-
ing a patrolling of multiple assets. Here there are two
main assets and two sub-teams consisting of three and
four vehicles, respectively (numbers 1-2-3 and 4-5-6-7);
each target is connected by a virtual spring-damper cou-
ple with each agent of the corresponding sub-team. The
communication constraints are defined among the vehi-
cles belonging to the same sub-team. As it can be no-
ticed in Fig. 8, each team reaches a stable configuration
around the asset to be defended while the velocities de-
crease almost exponentially: this fact directly depends
on the choice of the non-linear springs, which effects
decrease as the AUVs get closer to the target. Due to
the symmetry of the problem, the sub-team with three
vehicles shapes an equilateral triangle around its target,
while the one with four agents shapes a square. More-
over, each vehicle remains within the desired distance
with respect to all others within the team (Fig. 9).

6.2. Coverage Task

In this case, each vehicle is assigned to a specific
target (l = m) with the overall objective of covering
the maximum area in the targets’ neighbourhood. Each
coupling between an agent and the associated target is
modelled by a spring-damper connection. Fig. 10 shows
the trajectories followed by the team members in a sce-
nario with three vehicles (l = m = 3) and a relative dis-
tance among the agents Rd = 2500 m. In this case, the
team reaches a stable configuration in which no vehi-
cle can move closer to the corresponding target without
breaking the imposed constraints due to the communi-
cation maintenance. As it can be seen from Fig. 11, after
an initial transient in which it decreases, the Hamilto-
nian function settles at a constant value, different from
zero. This is the effect of the agent-target springs that
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Figure 7: Cooperative patrolling of multiple assets. The two sub-
teams start from the positions indicated by the coloured stars. At the
end, the vehicles (coloured diamonds) are disposed around the assets
(red and cyan circles) while satisfying the distance constraints, repre-
sented with the dotted circles.
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13



-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

x [m]

-2000

-1000

0

1000

2000

3000

4000

5000

y
[m

]

Vehicle 1
Vehicle 2
Vehicle 3
Target 1
Target 2
Target 3

Figure 10: Cooperative coverage task. The vehicles start to approach
to the assigned targets until the communication limit (dotted circles)
is attained.
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Figure 11: Hamiltonian function with the different contributions (top)
and its time-derivative (bottom).

do not reach their equilibrium point (the well-known in-
variant in (9)). As expected, the time-derivative of the
Hamiltonian is still negative semi-definite.

6.3. Exploration Task

Given a team of AUVs and a set of significant spots,
the fulfilment of an exploration task implies that each
site is visited (i.e. reached within a certain tolerance
RT ) at least once by a vehicle. Consider the case with
three agents, that have to maintain the connectivity one
to each other, and three possible targets. Depending on
the sites location, even if the elastic constants on the
agent-target connections are not the same, the proposed
control law (7) leads the vehicles in a static, equilateral
triangle shaped configuration (deadlock) that does not
allow the accomplishment of the exploration task (e.g.
as in the case of the coverage task in Fig. 10). In order
to guarantee the success of the mission, one possible
solution when a deadlock occur is to maintain only one
agent-target link at time, breaking and regenerating the
connections following a certain policy. In this case, the
agents have assigned a predefined priority that schedule
the spot exploration order: when a deadlock occurs, the
agent with highest priority takes the “leadership” of the
group, while the others “disconnect” themselves from
their related targets (split manoeuvre) as long as the
leader does not accomplish its sub-task. Now the story
is trivial: the first leader breaks the connection with its
target, a new leader is elected, e.g. the agent with imme-
diately lower priority, and the corresponding connection
is restored (join manoeuvre). Depending on the position
reached by the new leader, this operation could require
an injection of energy into the system (i.e. when the join
manoeuvre happens at an higher distance from the target
with respect to the split one). This amount of extra en-
ergy is picked up from the tank of the moving agent, im-
plementing the algorithm described in Section 5. Note
that the split and join manoeuvres can be executed also
between agents, allowing to relax the assumption of the
communication maintenance if possible or required. In
this case, the required extra amount of energy would be
extracted from both the tanks, accordingly with the pro-
cedure reported in [23].

7. Conclusions and Future Developments

Exploiting the port-Hamiltonian system modelling,
jointly with the passivity theory, the proposed dis-
tributed control law allows to fulfil communication con-
straints between interconnected marine vehicles dur-
ing the execution of several missions. Moreover, such
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Figure 12: Exploration task. The agents start from the positions
indicated by the coloured stars and reach the corresponding target
(coloured circles) one at a time. In this case, the priority is 3-1-2.
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Figure 13: Relative distances between agents and corresponding tar-
get over time. The solid intervals of each line suggest the phase of
link activation, while the dashed one represents the “absence” of con-
nection.
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Figure 14: Tanks dynamics. During the evolution of the mission, the
tank is charged up until it reaches a saturation. The downward spikes
characterize the join manoeuvres, where the involved vehicle pick up
an extra amount of energy from its tank.

framework suggests an easy way to draw quick con-
clusions about the soundness and stability in the large
of the whole system, providing robustness and stabil-
ity guarantees even in presence of time varying delays
on the connectivity links, which are very common in
marine environment. The large number of degrees of
freedom, that can be exploited upstream of the mis-
sion, represents one of the main features of the algo-
rithm; as a matter of fact, each passive virtual coupling
introduces an artificial potential that can be arbitrar-
ily shaped, without any consequence about the stability
of the sensors network. In this way, selecting differ-
ent elastic constants, it is possible to determine in ad-
vance which task has higher priority, “choosing” the set
of reachable equilibria. The behaviour of the group is
also made flexible, with arbitrary split and joint events:
the passivity property of the whole network is kept safe
using artificial tanks, able to store and supply energy
whenever required. With the setting of the present pa-
per, the equivalence between the proposed framework
and BSI games has been shown. Whether this equiva-
lence can be formally extended to a larger class of sys-
tems it is an interesting challenge for future research.
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