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Orbital Motion Approximation with Constant Circumferential Acceleration
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Nomenclature
A,B,C = auxiliary dimensionless functions
A = interceptor spacecraft
a = semimajor axis, [ km]
aT = propulsive acceleration magnitude, [ mm/s2]
B = target spacecraft
e = eccentricity
F = thrust magnitude, [ N]
f1, f2 = auxiliary functions, see Eq. (24)
g0 = standard gravity, [ m/s2]

h̃ = dimensionless angular momentum
Isp = specific impulse, [ s]
K = number of revolutions
m = spacecraft mass, [ kg]
N = number of rectifications
q1, q2, q3 = dimensionless orbital parameters
r = radial distance, [ km]
s = dimensionless auxiliary parameter
T = orbital period, [ hours]
t = time, [ hours]
u = radial component of velocity, [ km/s]
v = circumferential component of velocity, [ km/s]
ε = dimensionless propulsive acceleration magnitude
θ = polar angle, [ deg]
µ = primary body’s gravitational parameter, [ km3/s2]
ν = true anomaly, [ deg]
ρ = dimensionless radial error
τ = thrust direction parameter
ω = apse line rotation angle, [ deg]

Subscripts

0 = initial, parking orbit
A = interceptor spacecraft
B = target spacecraft
k = value at k-th rectification point
s = numerical integration

Superscripts

· = time derivative

Introduction
The orbital motion of a spacecraft subjected to a constant and circumferential propulsive acceleration (i.e., perpendic-

ular to the position vector direction) is a classical problem of orbital mechanics, which has been thoroughly investigated
since the pioneering work of Tsien [1]. An interesting approximate solution is presented in Battin’s textbook [2], obtained
under the assumptions of a two-dimensional motion, a circular parking orbit, and a low propulsive acceleration magnitude.
More recently, Ref. [3] proposes an analytical approximation of the spacecraft escape conditions and gives a simple and
accurate formula for the escape distance, which only depends on the propulsive acceleration magnitude.

The aim of this Note is to analyze the two-dimensional trajectory of a spacecraft with a constant, low, and circumfer-
ential propulsive acceleration, using the procedure proposed by Bombardelli et al. [4]. The latter describes the spacecraft
dynamics through a set of generalized (non-singular) orbital parameters, and uses a perturbative approach to get an
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2 ORBITAL MOTION APPROXIMATION WITH CONSTANT CIRCUMFERENTIAL ACCELERATION

analytical representation of the resulting orbit in case of tangential propulsive acceleration, that is, when the thrust and
velocity vectors are parallel. This method [4] gives accurate results when the propulsive acceleration magnitude is signifi-
cantly smaller than the local gravitational pull, and its effectiveness in trajectory approximation has been discussed in the
noteworthy cases of a spacecraft propelled by either a solar sail [5], or an electric solar wind sail [6] with fixed attitude.
In fact, the perturbative approach allows an approximation of the osculating orbit characteristics to be derived, for both
circular and elliptic parking orbits, assuming either a constant propulsive acceleration or a constant thrust magnitude with
a time-varying spacecraft mass. In the latter case a rectification procedure, useful for improving the method accuracy [4],
may also be employed to model a time-varying propulsive acceleration and to estimate the propellant mass consumption.
The set of equations discussed in this Note is useful to obtain an analytical approximation of the spacecraft propelled
trajectory for a generic (closed) parking orbit. In particular, when a circular parking orbit and a constant propulsive
acceleration magnitude are considered, the model also gives an analytical estimation of flight time and of propulsive
performance necessary for a circle-to-circle low-thrust rendezvous maneuver [7].

Two-dimensional trajectory approximation
Consider a spacecraft subjected to a continuous propulsive acceleration of constant magnitude aT , which initially

covers a closed parking orbit of semimajor axis a0 and eccentricity e0, moving around a primary body with gravitational
parameter µ. The propulsion system is switched-on at time t0 , 0, when the spacecraft true anomaly is ν0 ∈ [0, 2π] rad.
In the special case of circular parking orbit (e0 = 0), ν0 represents the spacecraft initial angular position relative to a
fixed direction.

Assume the thrust vector to lie on the parking orbit plane for t ≥ t0, and its direction to be perpendicular to the
primary-spacecraft line (case of circumferential thrust). In this scenario, the spacecraft equations of motion can be
conveniently written in a polar reference frame T (O; r, θ) as

r̈ − r θ̇2 = − µ

r2
(1)

r θ̈ + 2 ṙ θ̇ = τ aT (2)

where r is the primary-spacecraft distance, θ is the polar angle measured counterclockwise from the parking orbit apse
line (with θ(t0) = ν0), and τ ∈ {−1, 1} is a dimensionless parameter that models either an orbit raising (τ = 1) or an
orbit lowering case (τ = −1). Note that the situation described by Eqs. (1)-(2) is substantially different from that of
Ref. [4], where the propulsive acceleration is parallel to the spacecraft velocity (tangential thrust case) and, therefore, has
a radial component different from zero.

According to Bombardelli et al. [4], the osculating orbit semimajor axis a, eccentricity e, and apse line direction, can
be written in terms of dimensionless non-singular modified orbital parameters {q1, q2, q3} as

q1 ,
e

h̃
cosω , q2 ,

e

h̃
sinω , q3 ,

1

h̃
(3)

where ω is the angle between the osculating orbit apse line and that of the parking orbit, and h̃ is the dimensionless
angular momentum magnitude, given by

h̃ =

√
a (1− e2) (1 + e0 cos ν0)

a0 (1− e20)
(4)

Note that a, e, and ω may be recovered from Eqs. (3) as [4]

a =
a0
(
1− e20

)
(q23 − q21 − q22) (1 + e0 cos ν0)

, e =

√
q21 + q22
q3

, ω = arctan

(
q2
q1

)
(5)

The primary-spacecraft distance r may be written as a function of {q1, q2, q3} and θ as

r =
a0
(
1− e20

)
(1 + e0 cos ν0) (q1 q3 cos θ + q2 q3 sin θ + q23)

(6)

Finally, the radial (u) and the circumferential (v) component of the spacecraft velocity are

u = (q1 sin θ − q2 cos θ)

√
µ (1 + e0 cos ν0)

a0 (1− e20)
(7)

v = s

√
µ (1 + e0 cos ν0)

a0 (1− e20)
(8)

where s , q1 cos θ+q2 sin θ+q3 is an auxiliary function, which coincides with the dimensionless circumferential component
of the spacecraft velocity.
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Using the angular coordinate θ as the independent variable, the variation of {q1, q2, q3} is described by the differential
equation

d

dθ

[
q1
q2
q3

]
=

τ ε

q3 s3

[
s sin θ (s+ q3) cos θ
−s cos θ (s+ q3) sin θ

0 −q3

] [
0
1

]
(9)

where

ε ,
aT
µ/r20

with r0 =
a0
(
1− e20

)
1 + e0 cos ν0

(10)

is the dimensionless propulsive acceleration, defined as the ratio of aT to the initial gravitational acceleration µ/r20 .
Assume the propulsive acceleration magnitude to be small when compared to the initial gravitational acceleration, that
is, ε � 1. In this case, aT plays the role of a perturbative term in the Keplerian motion [4]. Accordingly, the generic
modified parameter qi can be written with an asymptotic series expansion, viz.

qi = qi0 + τ ε qi1 +O(ε2) with i = {1, 2, 3} (11)

where qi0 are the unperturbed terms (Keplerian case), qi1 are the first order perturbative terms, and O(ε2) represent
higher-order terms in ε, which will be neglected. Substituting Eqs. (11) into Eqs. (9) and equating the unperturbed terms,
qi0 turn out to be constant and may be obtained from the initial conditions, that is

q10 =
e0

h̃0

, q20 = 0 , q30 =
1

h̃0

(12)

where h̃0 = h̃(t0) ≡
√

1 + e0 cos ν0 is the angular momentum along the parking orbit, see Eq. (4).
Since ε is a constant, the first order terms qi1 are found substituting Eqs. (11)–(12) into (9) and solving the resulting

set of differential equations. For a circular parking orbit (e0 = 0), the solution is

q1 = 2 τ ε (sin θ − sin ν0) (13)

q2 = −2 τ ε (cos θ − cos ν0) (14)

q3 = 1− τ ε (θ − ν0) (15)

while, for an elliptic parking orbit

q1 =
e0

h̃0

+ τ ε [A(θ)−A(ν0)] (16)

q2 = τ ε [B(θ)−B(ν0)] (17)

q3 =
1

h̃0

+ τ ε [C(θ)− C(ν0)] (18)

where A = A(θ), B = B(θ), and C = C(θ) are auxiliary (dimensionless) functions defined in the appendix. Having
obtained {q1, q2, q3}, the orbital parameters of the osculating orbit may be calculated with Eqs. (5), whereas the polar
form of the spacecraft propelled trajectory is given by Eq. (6).

Flight time approximation for circular parking orbit

An analytical estimation of the flight time can be obtained, in principle, paralleling the procedure described in the
appendix of Ref. [4]. However, that procedure is rather involved and requires the use of elliptic integrals. Here, a different
approach is proposed, and an elegant, analytical approximation of the flight time is found in the special case of circular
parking orbit with r0 ≡ a0. Assuming e0 = 0 (circular orbit) and ν0 = 0, the radial distance r in Eq. (6) becomes

r =
r0

(1− τ ε θ)2 + 2 ε sin θ (τ − ε θ)
(19)

whereas the radial and circumferential components of the spacecraft velocity, from Eqs. (7)–(8), are

u = 2 τ ε (1− cos θ)

√
µ

r0
, v = (1− τ ε θ + 2 τ ε sin θ)

√
µ

r0
(20)

Note that the trajectory equation (19) is quite different from the original expression proposed by Battin [2], which was
obtained by neglecting the radial acceleration u̇, that is

r =
r0√

1− 4 τ ε θ
(21)

Unlike Eq. (19), the relation (21) does not include any oscillatory term in θ, and is less accurate than Eq. (19) as long as
ε θ � 1.
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The flight time t may be estimated as a function of the polar angle θ by recalling that θ̇ = v/r, where v and r are
given by Eqs. (19) and (20), respectively. Therefore

θ̇ =

√
µ

r30
(1− τ ε θ)3

(
1 + 2

τ ε sin θ

1− τ ε θ

)2

(22)

Since q3 is defined to be positive, see Eqs. (3), Eq. (15) implies that ε θ < 1. Recalling that ε ≥ 0 and τ = {−1, 1}, the
quadratic term in Eq. (22) is constrained by

f1 ≤
(

1 + 2
τ ε sin θ

1− τ ε θ

)2

≤ f2 (23)

where

f1 ,

(
1− 2 ε

1− ε θ

)2

, f2 ,

(
1 +

2 ε

1− ε θ

)2

(24)

Figure 1 shows the numerical values of the functions f1(ε, θ) and f2(ε, θ) defined in Eq. (24).
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Figure 1 Numerical values of f1 (solid line) and f2 (dash line), see Eq. (24).

Both functions can be approximated with f1 ' f2 ' 1, with an error less than 1%, as long as ε θ < 0.5 and the
dimensionless propulsive acceleration is ε ≤ 10−3. Note that ε = 10−3 in a circular low-Earth orbit corresponds to an
acceleration aT ' 9 mm/s2, a value well beyond any realistic case. Accordingly, Eq. (22) reduces to

θ̇ '
√
µ

r30
(1− τ ε θ)3 (25)

and the approximate expression of the flight time as a function of the polar angle is

t '
√
r30/µ

2 τ ε

[
1

(1− τ ε θ)2
− 1

]
(26)

Neglecting the oscillatory terms in Eq. (19), the time variation of the radial distance can be expressed as

r ' r0

(
1 +

2 τ ε t√
r30/µ

)
(27)

which coincides with the linearization of the analogue expression given by Battin [2] and by the recent model discussed
in Ref. [3], when ε θ � 1 (or ε t� 1).

Propellant consumption estimation for a constant-thrust case

The results given by Eqs. (16)–(18) (or Eqs. (13)–(15) for the circular case) are the application of the approximate
model proposed by Bombardelli et al. [4] to the case of constant, low, and circumferential propulsive acceleration. In case
of propellantless propulsion systems, Eqs. (16)–(18) (or Eqs. (13)–(15)) are sufficient to describe the spacecraft dynamics.
A similar conclusion does not apply, however, to a conventional propulsion system, which provides a thrust of magnitude
F with specific impulse Isp. In fact, in that case the variation of the spacecraft mass m due to propellant consumption
(and, therefore, the variation of aT = F/m) must be taken into account in the analysis, especially when long flight times
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are considered. This is possible by introducing an orbit rectification procedure in the trajectory approximation [4], which
essentially consists of updating the initial conditions of Eqs. (16)–(18) (or Eqs. (13)–(15)). Its effectiveness has been
recently discussed for a propellantless propulsion system-based mission scenario [5,6]. Usually, this rectification procedure
is used to improve the accuracy of the analytical model by preventing the angular coordinate θ to increase indefinitely.
However, orbit rectifications may also be implemented to account for the instantaneous variation of the dimensionless
propulsive acceleration ε in Eq. (10). In that case, the spacecraft propelled trajectory can be approximated assuming a
piecewise constant propulsive acceleration aT = aT (θ) or ε = ε(θ).

For example, assume the propulsion system to provide a constant magnitude thrust F . The spacecraft mass mk+1

(and, therefore, the propulsive acceleration magnitude) at the generic rectification time instant tk+1 is given by

mk+1 = mk −
F

g0 Isp
(tk+1 − tk) with k ∈ [0, N ] (28)

where g0 is the standard gravity, and N ≥ 0 is the (integer) total number of rectifications. The time interval (tk+1 − tk)
between two consecutive rectifications can be calculated with the equations described in the appendix of Ref. [4] (not
reported here for the sake of conciseness). From Eq. (28), the propulsive acceleration can be obtained as aTk+1 = F/mk+1,
whereas the dimensionless parameter εk+1 at time tk+1 is given by Eq. (10). In particular, the value of mk+1 when k = N
is an estimate of the total propellant consumption during the whole flight.

Model validation

The proposed model has been validated by comparing the results of the analytical approximation with the outputs of
an orbit simulator in which the spacecraft equations of motion are integrated in double precision using a variable order
Adams-Bashforth-Moulton solver scheme [8,9] with absolute and relative errors of 10−12. The accuracy of the approximate
results (see Eq. (6)) can be evaluated by analyzing, in a given mission scenario, the dimensionless error ρ = ρ(θ) defined
as [10]

ρ =
|r(θ)− rs(θ)|

rs(θ)
(29)

where the subscript “s” refers to the output of the numerical integration.
For exemplary purposes, consider a geocentric orbit raising problem (µ = µ⊕ = 3.986 × 105 km3/s2, and τ = 1) in

which the parking orbit is circular with radius r0 , r(t0) = 6640 km. Assume the conventional propulsion system to
provide a constant magnitude thrust F = 0.1 N with a specific impulse Isp = 3000 s, a typical value of a Hall effect
thruster. The variation of the dimensionless error ρ = ρ(θ) is shown in Fig. 2 for two values of the spacecraft initial mass
m0 ∈ {100, 1000} kg, without any rectifications (N = 0). The error ρ of the analytical approximation increases (decreases)
with the polar angle θ (initial spacecraft mass m0), but its numerical value remains confined to a few percentage points,
even when the spacecraft completes a large number (about 100) of revolutions around the Earth.

The accuracy of the analytical method also depends on the value of the parking orbit eccentricity e0. For example,
consider an elliptic parking orbit with perigee (apogee) radius equal to 6640 km (42168 km), which corresponds to a typical
geosynchronous transfer orbit (GTO) with e0 ' 0.73. In this case, the results (without rectifications) of an orbit raising
problem, starting at perigee, are shown in Fig. 3. When the propulsive acceleration is sufficiently small (for example
when the initial mass is m0 = 1000 kg), the analytical model accurately approximates the actual propelled trajectory even
for a large number of revolutions. This is shown in Fig. 3(b), where the dimensionless error is below 0.1% after thirty
revolutions. When the propulsive acceleration is increased (for example, m0 = 100 kg), the value of ρ is still acceptable
(below 1%) when θ/2π < 10, see Fig. 3(a). However, the dimensionless error ρ quickly grows when both aT and θ
increase, as is shown in Fig. 3(a), where ρ ' 50% when m0 = 100 kg and θ/(2π) = 30. In the latter case, a more accurate
approximation can be obtained with a rectification procedure. This is shown in Tab. 1, where the maximum dimensionless
error ρ is reported as a function of the number of rectifications N . For example, assuming m0 = 100 kg and N = 49, ρ is
less than 2% when θ/(2π) = 30. Also, the propellant consumption, estimated to be 8.04 kg from Eq. (28), is close to its
actual value of 7.84 kg.

N + 1 max (ρ) [%]
1 49.01
10 27.63
20 16.35
30 8.12
40 2.79
50 1.77

Table 1 Orbit raising from a GTO with T/m0 = 1mm/s2: max (ρ) vs. N .

Mission application
The previously discussed approximate method is now used to analyze a classical mission scenario involving the ren-

dezvous of two spacecraft, the interceptor A and the target B. These spacecraft initially cover two circular coplanar
orbits with radius rA and rB, respectively. Assume that A, equipped with a propulsion system providing a circumferential
acceleration with constant (small) magnitude, must perform a rendezvous with B. The problem consists of estimating
the propulsive acceleration (i.e., the value of ε) and the initial angular separation between A and B necessary for the
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a) T/m0 = 1 mm/s2.
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b) T/m0 = 0.1 mm/s2.

Figure 2 Results for an orbit raising from a circular LEO (r0 = 6640 km).

rendezvous maneuver. The latter starts at t0 , 0, when the angular coordinate of A and B are θA(t0) ≡ νA0 , 0 and

θB(t0) , νB0 ∈ [0, 2π] rad, respectively, see Fig. 4. Since the angular position of A must coincide with that of B at the
end of the rendezvous maneuver (that is, at time t = tf , where tf is the flight time) the final polar angle of the target,
θBf = θB(tf ), can be written as

θBf = νB0 + tf

√
µ

r3B
= θAf (30)

where θAf = θA(tf ) is the total angle swept by A during the transfer (propelled) trajectory.
The value of θAf may be found by taking into account that, at the end of the maneuver, the radial velocity of A must

be uA(tf ) = 0. From the first of Eqs. (20), the result is

θAf = 2K π (31)

where K ≥ 1 is the integer number of revolutions around the primary body completed by A during the transfer. Note
that, substituting Eq. (31) into Eq. (19) and the second of Eqs. (20), the circumferential velocity of the interceptor is

v =
√
µ/r, that is, it matches the target orbital velocity at the end of the rendezvous maneuver. The latter unusual result

is related to the approximate nature of the model.
The required value of the dimensionless propulsive acceleration ε can be written as a function of K by enforcing the

initial condition r0 = rA and the rendezvous condition r(θAf ) = rB into Eq. (19), where θAf is given by Eq. (31). The
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Figure 3 Results for an orbit raising from a GTO (e0 ' 0.73) starting at perigee (r0 = 6640 km).
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Figure 4 Conceptual scheme of the circle-to-circle rendezvous.
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result is

ε =
1−

√
rA/rB

2 τ K π
(32)

where

τ = sign

(
rB
rA
− 1

)
(33)

and sign (2) is the signum function. The flight time tf is given by Eqs. (26) and (32) as

tf
TA

=
K (rB/rA − 1)

2
(

1−
√
rA/rB

) (34)

where TA = 2π
√
r3A/µ is the initial orbital period of the interceptor spacecraft. The required propulsive acceleration

and flight time are shown in Fig. 5. Finally, substituting Eqs. (31)–(34) into Eq. (30), the initial angular position of the
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Figure 5 Dimensionless propulsive acceleration and flight time for a circle-to-circle orbit transfer.

target spacecraft νB0 , necessary to accomplish the rendezvous maneuver, is

νB0 = K π

(
2−

√
rA
rB
− rA
rB

)
(35)

Case study

Equations (32)–(35) are now used to analyze a low-thrust rendezvous between an interceptor in a circular low-Earth
orbit of radius rA = 6640 km (with µ⊕/r

2
A ' 9 m/s2), and a target spacecraft that covers a coplanar (close) circular orbit

of radius rB = 6740 km. Since the analysis is based on the assumption that νA(t0) = 0, the value of νB0 in Eq. (35)
represents the initial angular separation between the interceptor and the target. In this case rB/rA ' 1.015, τ = 1, and
the values of {ε, tf , νB0}, given by Eqs. (32)–(35), are summarized in Fig. 6 for different values of K ≤ 10.

For example, assuming K = 10, the required dimensionless propulsive acceleration is ε ' 1.2×10−4 (about 1.08 mm/s2),
the flight time is tf ' 10.1TA ' 15 hours, and the initial angular separation is νB0 ' 40 deg, see Fig. 6. Note that,
according to the approximate method, the polar angle of the interceptor at rendezvous is θA(tf ) = 20π = 3600 deg.
In this case, the actual (numerical) values of the radial and angular position of spacecraft A at time tf ' 15 hours are
rA(tf ) = 6741 km and θA(tf ) ' 3599.7 deg, respectively. Hence, the actual A-B final distance, at time t = tf , is less than
36 km. A more accurate result can be obtained by considering a smaller value of K and, therefore, a smaller value of the
final polar angle θAf . Indeed, assuming K = 2, Fig. 6 gives ε ' 5.93 × 10−4, tf ' 2TA ' 3 hours, νB0 ' 8 deg. In this

case, aT ' 5.3 mm/s2 and the actual A-B distance at time t = tf is reduced to about 6.7 km.
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Figure 6 Results for a low-thrust rendezvous between circular orbits with rA = 6640 km and rB = 6740 km.

Conclusions

The two-dimensional dynamics of a spacecraft, subjected to a small and constant circumferential propulsive accelera-
tion, has been approximated using a perturbative approach. A comparison with the outputs of a numerical integration
of the equations of motion shows that the approximate method is accurate when the parking orbit is circular, and the
propulsive acceleration magnitude is sufficiently small. A rectification procedure may effectively be used for estimating
the propellant consumption and improving the model accuracy, particularly in the case of an elliptic parking orbit, when
a large polar angle (or propulsive acceleration) is considered. The proposed model is an useful tool for the analysis of a
circle-to-circle orbit raising, and gives a set of analytical relationships for the preliminary phase of mission design.

Appendix: Auxiliary functions A, B, and C

Equations (16)–(18) represent the compact form of the modified parameters {q1, q2, q3} for an elliptic parking orbit,
where the terms {A, B, C} are three auxiliary functions of the polar angle θ. The function A = A(θ) in Eq. (16) is defined
as

A(θ) , A1(θ) +A2(θ) +A3(θ) +A4(θ) +A5(θ) +A6(θ) (36)

where

A1(θ) ,
2 h̃3

0 sin θ

(1− e20)2 (1 + e0 cos θ)2
(37)

A2(θ) , − h̃3
0

e0 (1− e20)5/2
φ(θ) (38)

A3(θ) ,
h̃3
0

e0
√

1− e20
φ(θ) (39)
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A4(θ) , − e0 h̃
3
0

2 (1− e20)5/2
φ(θ) (40)

A5(θ) , − e20 h̃
3
0 sin θ

2 (1− e20)2 (1 + e0 cos θ)2
(41)

A6(θ) ,
3 e0 h̃

3
0 sin θ cos θ

2 (1− e20)2 (1 + e0 cos θ)2
(42)

with

φ(θ) , arctan

(√
1− e20 sin θ

e0 + cos θ

)
(43)

The function B = B(θ) in Eq. (17) is defined as

B(θ) ,
(2 e0 cos θ + 3) h̃3

0

2 e0 (1 + e0 cos θ)2
(44)

Finally, the function C = C(θ) in Eq. (18) is given by

C(θ) , C1(θ) + C2(θ) + C3(θ) + C4(θ) + C5(θ) (45)

where

C1 = − h̃3
0

(1− e20)5/2
φ(θ) (46)

C2 = − h̃3
0 e

2
0

2 (1− e20)5/2
φ(θ) (47)

C3 =
2 e0 h̃

3
0 sin θ

(1− e20)2 (1 + e0 cos θ)2
(48)

C4 = − e30 h̃
3
0 sin θ

2 (1− e20)2 (1 + e0 cos θ)2
(49)

C5 =
3 e20 h̃

3
0 sin θ cos θ

2 (1− e20)2 (1 + e0 cos θ)2
(50)

where φ is given by Eq. (43). Note that A(ν0), B(ν0), and C(ν0) in Eqs. (16)–(18) refer to the value of the functions A,
B, and C at the initial time t0, that is, when θ = ν0.
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