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Zero-Suppressed Binary Decision Diagrams (ZDDs) are widely used data structures for representing and
handling combination sets and Boolean functions. In particular, ZDDs are commonly used in CAD for the
synthesis and verification of integrated circuits. The purpose of this paper is to design an error resilient
version of this data structure, i.e., a self-repairing ZDD. More precisely, we design a new ZDD canonical
form, called index-resilient reduced ZDD, such that a faulty index can be reconstruct in time O(k), where k is
the number of nodes with a corrupted index. Moreover, we propose new versions of the standard algorithms
for ZDD manipulation and construction, which are error resilient during their execution and produce an
index-resilient ZDD as output. The experimental results validate the proposed approach.
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1. INTRODUCTION
Due to the growing density of components on chips, even circuits and memories that
are properly designed and produced may suffer from errors. For example, background
radiation can induce single bit errors in the circuits that cause incorrect output be-
havior [Taylor 1990]; or small imperfections in the chip manufacturing can remain
undetected in the production test.

Fast, large, and cheap memories in today’s computer platforms are characterized
by non-negligible error rates, which cannot be underestimated as the memory size
becomes larger [Jacob et al. 2008]. Since the correctness of the underlying algorithms
may be jeopardized by even very few memory faults, computing in the presence of
memory errors is a fundamental task in many applications. Therefore, the resiliency
of a data structure to memory faults has become a very important issue.

The scientific community has studied the problem in two different frameworks: (i)
fault tolerant hardware design and (ii) development of error resilient algorithms and
data structures. While fault tolerant hardware has been widely studied even in the
past, the design of algorithms and data structures resilient to memory faults, i.e., that
are able to perform the tasks they were designed for even in the presence of unreliable
or corrupted information, has become much more attractive only recently (for a survey
on the subject refer to [Finocchi et al. 2007; 2009; Italiano 2010]).
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A:2 A. Bernasconi and V. Ciriani

Several error models have been proposed for designing resilient data struc-
tures [Taylor 1990]. A fault model in which any error is detectable via an error message
when the program tries to reach the faulty object is proposed in [Aumann and Bender
1996]. The authors assume that an error denies access to an entire node of the struc-
ture. A model with higher granularity, called faulty-RAM, is presented in [Finocchi
et al. 2005; Finocchi and Italiano 2008; Italiano 2010]. In faulty-RAM an adversary
can corrupt any memory word and it is impossible to determine a priori if a memory
area is corrupted or not. Such a scenario is realistic since an error can be induced by
an external source, perhaps temporary, which can change any memory location that
can not be discovered a priori. Moreover, faulty-RAM model has an extreme granular-
ity: any memory location (from a single bit, the single data, or an entire structure) can
be affected by a fault. Another interesting error model is the single-component model
described in [Taylor 1990], which focuses on single attributes of an item at a time and
assumes that each error affects one component of one node of the storage structure,
e.g., a pointer, a count, an identifier field.

The purpose of this paper is to discuss the error resilience of a data structure called
Zero-Suppressed Binary Decision Diagrams (ZDDs) [Minato 1993; Mishchenko 2001]
and design an error-resilient version of it. ZDDs are a particular type of Ordered Bi-
nary Decision Diagrams (OBDDs), a fundamental family of data structures for Boolean
function representation and manipulation [Bryant 1986]. OBDDs are DAG representa-
tions of Boolean functions, where each internal node N is labeled by a Boolean variable
xi and has exactly two outgoing edges: 0-edge and 1-edge. Terminal nodes (leaves) are
labeled 0 or 1.

OBDDs can be constructed by applying some reduction rules to a Binary Decision
Tree, and depending on the set of reduction rules, different representations can be
derived. For example, Figures 1(b), 1(c), and 1(d) are different decision diagrams, de-
rived by the decision tree in Figure 1(a), representing the same Boolean function. In
particular, Reduced OBDDs (ROBDDs) [Bryant 1986] are typically used for the repre-
sentation of general Boolean functions, while Zero-Suppressed BDDs (ZDDs) are used
for representing family of subsets of combination sets [Minato 1993; Mishchenko 2001;
Knuth 2009]. Indeed, ZDDs can be used to describe and manipulate solutions to com-
binatorial problems as, in this framework, they are much more compact and there-
fore more efficient than the traditional ROBDDs. For instance, the family of subsets
{{x1, x2}, {x3, x4}, {x1}} of the set {x1, x2, . . . , x10} needs a ROBDD representation with
10 variables, while the ZDD representation uses only the four variables included in the
subsets.

Even if ZDDs were originally introduced and studied for circuit design and formal
verification, their areas of application have widened and today ZDDs have developed
into a fundamental research tool for combinatorial algorithms, including representa-
tion and manipulation of combination sets in different research fields as data min-
ing [Minato 1993; 2010; 2013], bioinformatics [Minato and Kimihito 2007; Requeno
and Colom 2012; Yoon et al. 2005], symbolic logic, probability theory, and string match-
ing for computer virus detection and text retrieval. In a 2011 talk, Donald Knuth re-
ferred to ZDD as the most beautiful construct in computer science1. We refer the reader
to [Sasao and Butler 2014] for a recent survey on Zero-Suppressed Decision Diagrams
and their applications.

Due to the growing interest in this particular data structure and to its many im-
portant applications, in this paper we focus on the error resilience of ZDDs, mirror-
ing what has already been done for standard ROBDDs, for which security aspects of
implementation techniques have been discussed in [Drechsler 1998], and an error re-

1“All Questions Answered” by Donald Knuth, Google Tech Talk, March 24, 2011.
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silient version has been proposed in [Bernasconi et al. 2013; 2015]. We exploit the
single-component error model and we assume perfect error detection capabilities: er-
rors are immediately reported when the program tries to use the fault component of
a node. Thus, our analysis only deals with the problem of error correction; in fact, as
in [Bernasconi et al. 2013; 2015], our main goal is to study the capability of ZDDs to
restore corrupted data, not to detect them. However, it is worth mentioning that the
peculiar structure of ZDDs, and in particular of the new model of ZDDs that we design
and analyze in this paper, could be exploited for error detection too, as discussed later
in the paper.

We consider, as component of a node N in a ZDD, the index i of the variable xi

associated to the node. In particular, we show that similarly to OBDDs, ZDDs can be
made resilient to errors on indexes, and we design a new canonical ZDD form, called
index-resilient reduced ZDD, where a faulty index can be reconstruct in time O(k),
where k is the number of nodes with a corrupted index. We then propose an index-
resilient version of the standard algorithms for ZDD manipulation and construction,
such as subset, union, intersection, and set difference. The main characteristic of these
new versions is that they are error resilient during their execution and produce an
index-resilient ZDD as output.

The experimental results show that the number of nodes in a index-resilient reduced
ZDD is not too much greater that the number of nodes of a standard reduced ZDD;
indeed, standard reduced ZDDs are only 4% more compact than index-resilient reduced
ZDDs.

Besides indexes, it is important to correct errors in pointers to the children of a
node. Pointer based data structures are not, in general, error resilient, since the loss of
a pointer can imply the loss of an important part of the data structure. Different strate-
gies could be adopted to handle edge errors. In particular, we can use error resilient
linked data structures [Aumann and Bender 1996] or the ad hoc solution already pro-
posed for OBDDs [Bernasconi et al. 2015]. As the solution studied for OBDDs can be
immediately applied to correct pointer errors in ZDDs, without any substantial modi-
fication, in this paper we only focus on index errors.

We finally observe that, even if the techniques applied to obtain index-resilient re-
duced ZDDs and OBDDs are similar, the construction, reduction and dynamical com-
putation of ZDDs are not immediate generalizations of those defined in [Bernasconi
et al. 2015] for OBDDs. Indeed, due to the different reduction rules applied to ZDDs,
the methods discussed in [Bernasconi et al. 2015] for OBDDs cannot be directly applied
to these diagrams. In particular, the concept of removable chains of nodes [Bernasconi
et al. 2015] can be generalized to ZDDs only after a preprocessing phase during which
a particular sequence of nodes, called zr-chain, has been identified and removed, if
present, from the decision diagram (as explained in Section 4). Moreover, since the ba-
sic operations for the manipulation of ZDDs are different from those typically applied
to OBDDs, their error resilient versions had to be designed from scratch.

The paper is an extended version of the conference paper [Bernasconi and Ciriani
2014], where only static construction of index-resilient ZDDs was considered, and is
organized as follows. Preliminaries on OBDDs and ZDDs are described in Section 2.
In Section 3 we discuss the error resilience of the standard ZDD structure, and in
Section 4 we introduce and study index-resilient ZDDs. Section 5 discusses how index-
resilient ZDDs can be dynamically computed through a sequence of set operations ap-
plied to other index-resilient ZDDs using index-resilient versions of the standard ZDD
procedures. Experimental results for validating the proposed strategies are reported
in Section 6. Section 7 concludes the paper.
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Fig. 1. Example of transformations of a BDT using the reduction rules.

2. ZERO-SUPPRESSED BDDS
2.1. Definitions and Reduction Rules
A Binary Decision Tree (BDT) on a set of Boolean variables {x0, x1, . . . xn−1} is a rooted
binary tree, where each non-terminal (internal) node N is labeled by a Boolean vari-
able xi and has exactly two outgoing edges: 0-edge and 1-edge. Terminal nodes (leaves)
are labeled 0 or 1 (e.g., see Figure 1(a) where dashed, rep., solid, lines represent 0-
edges, resp., 1-edges). Without loss of generality, we can assume that each node con-
taining the variable xi (with 0 ≤ i ≤ n − 1) lyes on the i-th level of the tree. Thus, the
variable x0 is the root of the BDT and the leaves are on level n (see for example the
BDT in Figure 1(a)).

BDTs are typically used for representing completely specified Boolean functions (i.e.,
any function f : {0, 1}n → {0, 1}). The leaves represent the constants 0 and 1 and the
root represents the entire Boolean function f . The value of f on the input x0, . . . , xn−1
is found by following the path indicated in the BDT by the values of x0, . . . , xn−1 on
the edges: the value of f(x0, . . . , xn−1) is the label of the reached leaf. For example,
the BDT in Figure 1(a) represents the Boolean function f : {0, 1}3 → {0, 1} such that
f(0, 0, 0) = 0, f(0, 0, 1) = 1, . . . , f(1, 1, 1) = 0.

In order to give a more compact description of Boolean functions, a BDT can be
compressed in an acyclic graph (called BDD) that represents the same function. In
particular, a Binary Decision Diagram (BDD) on a set of Boolean variables X =
{x0, x1, . . . xn−1} is a rooted, connected direct acyclic graph, where each non-terminal
node N is labeled by a Boolean variable xi, and has exactly two outgoing edges, 0-edge
and 1-edge, pointing to two nodes called 0-child and 1-child of node N , respectively.
Terminal nodes (leaves) are labeled 0 or 1. A 0-parent (resp., 1-parent) of a node N
is a node M such that N is a 0-child (resp, 1-child) of M . For instance, the decision
diagrams in Figures 1(b), 1(c), and 1(d) are examples of BDDs.

A BDD is ordered (OBDD) if there exists a total order < over the set X of variables
such that if an internal node is labeled by xi, and its 0-child and 1-child have labels xi0
and xi1 , respectively, then xi < xi0 and xi < xi1 . Hereafter, we will consider ordered
BDDs only.

In order to obtain an OBDD starting from a BDT we can apply several reduction
rules:

— m-rule: (or merge rule) if M and N are two distinct nodes that are roots of isomorphic
subgraphs, then N is deleted, and all the incoming edges of N are redirected to M (N
and M are called mergeable);
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— r-rule: (or redundant rule) a node N that has both edges pointing to the same node
M is deleted and all its incoming edges are redirected to M (N is called redundant
node or r-node);

— z-rule: (or zero-suppress rule) a node N that has the 1-edge pointing to the constant
leaf 0 is deleted and all its incoming edges are redirected to the subgraph pointed by
the 0-edge (N is called z-node).

A zr-node is a redundant z-node, i.e., is a node with both edges pointing to the constant
leaf 0.

There are different reduced BDD forms that derive from the use of one or two reduc-
tion rules:

— QR-BDD: (Quasi-Reduced BDD) [Liaw and Lin 1992] is the OBDD derived from a
BDT repeatedly applying the m-rule until it is no longer applicable (see Figure 1(b));

— ROBDD: (Reduced Ordered BDD) [Akers 1978; Bryant 1986; Ebendt et al. 2005;
Knuth 2009] is the OBDD derived from a BDT repeatedly applying the m-rule and
r-rule until they are no longer applicable (see Figure 1(c));

— ZDD: (Zero-suppressed BDD) [Knuth 2009; Minato 1993] is the OBDD derived from
a BDT repeatedly applying the m-rule and z-rule until they are no longer applicable
(see Figure 1(d)).

QR-BDDs, ROBDDs and ZDDs are canonical forms. In particular, given a function f
and a variable ordering <, there is exactly one QR-BDD, one OBDD, and one ZDD with
variable ordering < that represent f . Thus, once we have fixed the variable ordering,
we can compute the QR-BDD, the ROBDD and the ZDD starting from a BDT repeat-
edly applying the corresponding reduction rules in any order. Moreover, it is possible to
first build a QR-BDD (applying the m-rule) and then transform it in a ROBDD (resp.,
ZDD ) using the r-rule (resp., z-rule) on it. In fact, starting from a QR-BDD, the r-
rule and the z-rule cannot create new mergeable nodes (as shown in [Bernasconi et al.
2015] for the r-rule, and in Section 4 for the z-rule). The interpretation of a QR-BDD as
a Boolean function is equivalent to the interpretation of a BDT since the m-rule sim-
ply merges isomorphic subgraphs resulting in an OBDD that has all the paths from
the root to the leaves containing all the variables in X. For ROBDDs and ZDDs we
have to give a correct interpretation of possibly missing nodes (in a path), which have
been deleted using the r-rule or the z-rule. In particular a missing variable in a path
of a ROBDD means that the variable can have any value (0 or 1). For example, in Fig-
ure 1(c), the path “x0 0-edge x2 1-edge 1”, where x1 is missing, represents two possible
input values (i.e., 001, 011) on which the function takes the value 1. On the other hand,
the interpretation of a missing variable xi in a path of a ZDD means that if xi = 1 the
function outputs 0, otherwise (i.e., if xi = 0) the function outputs the value obtained
following the path. For example, in Figure 1(d), the path “x0 1-edge x1 1-edge 1”, where
x2 is missing, means that f(1, 1, 1) = 0 and f(1, 1, 0) = 1.

In this paper we study ZDDs and their operations. In particular as these diagrams
are mainly used for set representation (through the characteristic vectors), the stan-
dard operations on ZDDs consist in set manipulation as shown in the following section.

2.2. Operations on ZDDs
As already observed, ZDDs can be constructed applying the m-rule and z-rule to binary
decision trees. However, in practical applications, ZDDs are dynamically constructed
applying some basic operations to simple graphs representing the two terminal nodes
and the single variables, or directly to other ZDDs already available. Thus, we now
briefly review the following basic operations for the manipulation of ZDDs, for a more
comprehensive treatment, see [Minato 1993]:
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— SUBSET(Z, ind, val), val ∈ {0, 1}: returns the ZDD of the subset of the set represented
by Z, where the value of the variable with index ind is equal to val;

— CHANGE(Z, ind): returns the ZDD obtained from Z complementing the variable with
index ind;

— UNION(R,S): returns the ZDD representing the union of the two sets corresponding
to R and S;

— INTERSEC(R,S): returns the ZDD representing the intersection of the two sets R and
S;

— DIFF(R,S): returns the ZDD representing the set difference of R and S.

Without loss of generality, let us assume that the chosen variable ordering is x0 <
x1 < . . . < xn−1, so that the index of a variable in a node is the level of the node in the
corresponding ZDD.

All operations can be implemented by recursive algorithms that make use of a proce-
dure called GETNODE(ind, Z0, Z1) which creates a node for the variable with index ind,
with the 0 and 1-edges pointing to Z0 and Z1, respectively, or just returns a pointer to
such a node, if it already exists. This procedure relies on the use of the so-called unique
table, i.e., a hash table used in most software implementations to maintain the ZDD
reduced: the lookup on the unique table is indeed used to determine whether it is nec-
essary or not to create a new node. GETNODE also checks whether a node is actually a
z-node and can be deleted: if Z1 is the terminal node 0, GETNODE directly applies the
z-rule and returns Z0:

GETNODE(ind, Z0, Z1)
if (Z1 == terminal 0) return Z0 /* application of the z-rule */
Z = search of (ind, Z0, Z1) in the unique table
if (Z 6= null) return Z /* application of the m-rule */
Z = new node (ind, Z0, Z1)
insert Z in the unique table
return Z

The recursive implementations of the operations have a similar structure. The first
two procedures, SUBSET and CHANGE, are called on a node Z of a ZDD and a variable
of index ind, and depending on ind and on the index Z.index of the variable associated
to Z, three cases are considered: Z.index > ind , Z.index = ind, Z.index < ind. Observe
that, because of the application of the z-rule, Z.ind > ind means that a node with
index ind and with the terminal 0 as 1-child has been deleted from the ZDD. This
must be taken into account in the implementation of the two operations. For instance,
the procedure SUBSET

SUBSET(Z, ind, val)
if (Z.index > ind)

if (val == 1) return the terminal 0
else return Z

if (Z.index == ind) return Zval

if (Z.index < ind)
return GETNODE(Z.index, SUBSET(Z0, ind, val), SUBSET(Z1, ind, val))

returns the terminal 0 if Z.index > ind and val = 1, that is if we are computing the
subset of Z where the variable of index ind is equal to 1, whereas it returns Z if val = 0,
since Z is the 0-child of the missing z-node associated to the variable of index ind. For
Z.index = ind, the subgraph corresponding to val is returned (i.e., the 0-child Z0 of Z if
val = 0, and the 1-child Z1 otherwise), while for Z.index < ind the algorithm is applied
recursively on the 0 and 1-child of Z.
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The procedure CHANGE returns a node with index ind, with the terminal 0 (i.e., the
1-child of the missing z-node of index ind) as 0-child and Z (the 0-child of the z-node) as
1-child for Z.index > ind, it exchanges the two children Z0 and Z1 of Z is Z.index = ind,
and it proceeds recursively on Z0 and Z1 if Z.index < ind:

CHANGE(Z, ind)
if (Z.index > ind) return GETNODE(ind, terminal 0, Z)
if (Z.index == ind) return GETNODE(ind, Z1, Z0)
if (Z.index < ind) return GETNODE(Z.index, CHANGE(Z0, ind), CHANGE(Z1, ind))

The last three procedures (UNION, INTERSEC and DIFF) are called on the roots R
and S of two ZDDs, and depending on the indexes R.index and S.index, three cases are
considered:

— if R.index = S.index, a new node U with the same index is created (or returned if it
already exists) and the algorithms are recursively executed on the 0-children of R and
S, to generate the ZDD whose root becomes the 0-child of U , and on their 1-children
to generate the 1-child of U ;

— if R.index < S.index, the algorithms proceed recursively by pairing the 0 and 1-child
of the node R with lowest index with the 0 and 1-child of the missing z-node above S,
that are S and the terminal 0;

— an analogous procedure is used in the reverse case, where R.index > S.index.

Observe that when the procedures are called on the terminal 0 node the recursion
stops returning the appropriate result. For instance, the algorithm UNION

UNION(R,S)
if (R == terminal 0) return S
if (S == terminal 0) return R
if (R == S) return R
if (R.index < S.index) return GETNODE(R.index, UNION(R0, S), R1)
if (R.index > S.index) return GETNODE(S.index, UNION(R, S0), S1)
if (R.index == S.index) return GETNODE(R.index, UNION(R0, S0), UNION(R1, S1))

returns directly S (resp. R) if R (resp. S) is the terminal 0, R1 as a result of UNION(R1,
terminal 0) when R.index < S.index, and S1 as UNION(terminal 0, S1) when R.index >
S.index. Analogously, the algorithm INTERSEC

INTERSEC(R,S)
if (R == terminal 0) return the terminal 0
if (S == terminal 0) return the terminal 0
if (R == S) return R
if (R.index < S.index) return INTERSEC(R0, S)
if (R.index > S.index) return INTERSEC(R, S0)
if (R.index == S.index)

return GETNODE(R.index, INTERSEC(R0, S0), INTERSEC(R1, S1))

returns the terminal 0 if one of the two nodes in input is the terminal 0, while
for R.index < S.index it applies the z-rule returning directly the ZDD represent-
ing the intersection between R0 and S since in this case the new node (R.index,
INTERSEC(R0, S), INTERSEC(R1, terminal 0)) would be a z-node. The behavior of the
algorithm is analogous when R.index > S.index. Finally, the DIFF algorithm

DIFF(R,S)
if (R == terminal 0) return the terminal 0
if (S == terminal 0) return R
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if (R == S) return the terminal 0
if (R.index < S.index) return GETNODE(R.index, DIFF(R0, S), R1)
if (R.index > S.index) return DIFF(R, S0)
if (R.index == S.index) return GETNODE(R.index, DIFF(R0, S0), DIFF(R1, S1))

exploits the fact that the difference between the terminal 0 and a ZDD Z is the termi-
nal 0 and directly applies the z-rule whenever the terminal 0 becomes the 1-child of a
node.

To implement each of these algorithms efficiently, avoiding an exponential blow-up
of the recursive calls, a table M of results of the form M [N,N ′] = U is used, indicating
that the result of applying the algorithm to the ZDDs with roots N and N ′ is the
ZDD with root U . Then, before executing the algorithm on a pair of nodes, we first
check whether the table contains an entry for these two nodes. If so, the results is
returned without any further computation. Otherwise, we compute the result of the
algorithm on N and N ′, and add a new entry on the table M before returning the
result. If the table M is implemented with constant look-up and insertion time (e.g., as
a two-dimensional array or as a dynamic hash table with a perfect hashing function
producing no collisions), the complexity of the procedures is proportional to the product
of the size of the two ZDDs in input.

3. INDEX RECONSTRUCTION COST
In this section we discuss error resilient indexes in ZDDs, we analyze the cost of the
reconstruction of a corrupted index, and study the impact of the ZDD reduction rules
on this cost. This study gives us the knowledge to describe in Section 4 a new index
resilient version of ZDDs.

Monitoring the work on error resilient OBDDs [Bernasconi et al. 2013; 2015], we
give some definitions useful to describe error resilient ZDDs. As before, we assume
that the chosen variable ordering is x0 < x1 < . . . < xn−1. In order to facilitate the
index reconstruction of a faulty node N we define the range of indexes that contains
the original index of the node. Let N be an internal node in a ZDD Z, the node range
IN = [iP + 1, iC − 1] is the range containing all the possible levels for N in Z, where iP
is the maximum index of N ’s parents in Z, and iC is the minimum index of its children,
where the leaves have “index” n, and if N is the root, i.e., N has no parent, iP = −1.

Obviously, by definition of ZDD, the index of node N belongs to its range IN . Thus,
in presence of an error in the index i of N we have a lower and an upper bound for the
reconstruction of i given by iP +1 and iC−1, respectively. In particular, if iP +1 = iC−1,
then i is iC − 1.

Let us now examine which characteristics make a ZDD more suitable to the recon-
struction of a corrupted index. To this aim, we introduce a metric to measure the cost
of the reconstruction of a corrupted index of a ZDD node in the worst case. The index
reconstruction cost C(N) of the faulty index i in the node N is given by the number of
indexes that are candidate to be the correct one in N .

If we consider the case of one fault only in node N , we have that C(N) is at most |IN |.
In particular, C(N) = |IN | whenever there is no additional knowledge on the structure
of the ZDD. In the rest of this section, we therefore assume that C(N) = |IN |. Instead,
in Section 4 we will study ZDDs with a particular structure implying that C(N) ≤ |IN |.

In the best case, for each node N of a ZDD we have that C(N) is 1, meaning that
any index can be reconstructed in constant time (considering one single error). This
condition is obviously satisfied by BDTs. In fact, in a BDT, all paths from the root to
the terminal nodes contain exactly n nodes, where n is the number of input variables.
Thus, for each node N , C(N) = |IN | = 1. It is interesting to notice that the optimal
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Fig. 2. A reduced ZDD where each internal node has cost 1.

cost C(N) = 1 can also be reached by reduced ZDDs, such as, e.g., the ZDD in Figure 2
where, even if the diagram is very compact, each internal node has cost equal to 1.

Recalling that a reduced ZDD can be constructed from a BDT by iteratively applying
the reduction rules (m-rule and z-rule) and noticing that a BDT has optimal cost, we
can study how the node range can increase using the two reduction rules.

We first consider the merge rule, i.e., the rule that is also used for the reduction of
OBDDs. In the OBDD context, Theorem 1 in [Bernasconi et al. 2013] shows that this
rule does not increase the index reconstruction cost of the nodes. In fact, the merge of
isomorphic subgraphs does not change the node range of the involved nodes. In other
words, each node N in a QR-BDDs is such that C(N) = |IN | = 1.

On the other hand, the second reduction rule (z-rule), that distinguishes ZDDs from
OBDDs, can increase the index reconstruction costs. For example, consider the ZDD
in Figure 1(d), that can be obtained applying the z-rule to the QR-BDD in Figure 1(b).
While each node of the QR-BDD has cost 1, node x1 on the right of the ZDD has cost 2,
since its range is increased by the z-rule. Note that not always the z-rule increases the
node cost as already observed for the ZDD in Figure 2.

In [Bernasconi et al. 2013; 2015] we proposed an algorithm that reconstructs the
index of a faulty node, restoring exactly the original OBDD and the associated function
f . The algorithm is based on the use of the unique table. Once we have defined the
range IN containing the possible indices for a faulty node N , we can use the unique
table to find the correct index of N in this range as follows: for each possible value l in
the range IN , the algorithm examines all nodes with index l and pointers equals to the
ones of the faulty node N in the unique subtable associated to l, until it finds a node
with the same memory address of N .

This algorithm could be applied and used to restore a faulty index in a ZDD as
well, without any modification. However, the algorithm presents a major drawback: it
assumes that the unique table is fault free, i.e., it is either implemented using error
resilient linked lists [Aumann and Bender 1996] or it is stored in a safe memory area
not affected by errors. This is a quite strong requirement, and for this reason, we do
not propose such an algorithm as a practical solution for the reconstruction of a faulty
index in a ZDD.

4. INDEX-RESILIENT REDUCED ZDDS
The analysis of the previous section shows that, while the merge rule never increases
the overall index reconstruction cost, the application of the z-rule could increase it. In
this section, we describe a new reduced ZDD model where we maintain some z-nodes in
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the diagram, in order to guarantee a constant index reconstruction cost for each node.
In particular we will define a ZDD, called index-resilient reduced ZDD, satisfying the
following properties:

(1) the index reconstruction cost of each node N is C(N) = 1;
(2) in presence of k nodes with a corrupted index, in an index-resilient ZDD, the cost

needed to reconstruct a faulty index is O(k);
(3) starting from a QR-BDD, the construction of the corresponding index-resilient re-

duced ZDD is linear in time;
(4) the index-resilient reduced ZDD is canonical.

We note that, since the z-rule can increase the index reconstruction cost, we could
decide not to apply this rule during the reduction of a ZDD. In this way, we only use the
m-rule and obtain a QR-BDD that has a cost C(N) = 1 for each node N . Recall that an
important property of QR-BDD is that each node at level i has all parents at level i− 1
and all children on level i + 1. QR-BDDs are still a compact representation and could
represent a convenient and canonical trade-off between memory saving, reduction time
and error reconstruction time.

However, as we have already observed for the ZDD in Figure 2, the use of the z-
rule does not always increase the index reconstruction cost. In other words, it is still
possible to delete some z-nodes in a QR-BDD guaranteeing that, in the final OBDD,
the index reconstruction cost of each node N is still C(N) = 1. Most importantly, as we
will show in this section, it is possible to apply the z-rule to some z-nodes, and derive
a canonical OBDD, more compact than a quasi-reduced one, and with a cost C(N) = 1
for each node N . We will call these OBDDs index-resilient ZDDs.

Definition 4.1 (Index-Resilient ZDD). An Index-Resilient ZDD is an OBDD ob-
tained from a QR-BDD applying several times, possibly never, the z-rule guaranteeing
that each internal node N on level i has at least one child on level i + 1, for any level
of the OBDD.

In particular, a QR-BDD is an index-resilient ZDD where each node on level i has
all parents on level i− 1 and all children on level i + 1.

Observe that the index reconstruction cost for any node N in an index-resilient ZDD
is C(N) = 1, since the variable index of a node N is directly given by i = min{i0, i1}−1,
where i0 and i1 are the indexes of the 0- and 1-child of N . Note that, for any internal
node N in a ZDD, the number of children of N is 2, but the number of parents of N
can be O(m), where m is the total number of nodes in the ZDD, and, in the worst
case, m ∈ Θ(2n/n) [Liaw and Lin 1992]. Note also that for the reconstruction of the
index of N we do not need to know the indexes of its parents (whose number can be
exponential in the number of variables), but only the indexes of its children. In fact, as
shown below, we can define a structure where any node containing a variable xi must
have at least one child containing the variable xi+1.

To compute a compact index-resilient ZDD, we start from a QR-BDD deleting some
z-nodes while preserving the index-resilient property. For this purpose we first observe
that in a QR-BDD there are at most one zr-node and one non-redundant z-node. These
nodes are on level n− 1. See, for example, the QR-BDD depicted in Figure 1(b).

We first consider the zr-node Nzr, if existing, in the QR-BDD. We can note that the
removal of Nzr can generate new z-nodes, i.e., the 1-parents of Nzr (see Proposition 4.3).
In particular, if Nzr has an r-node parent M , the removal of Nzr transforms M in a zr-
node but the ZDD is not index-resilient since M is at level n− 2 and has both children
(the 0 constant) at level n. If we remove the zr-node M , we can generate again new
z-nodes and one possible zr-node that has reconstruction cost greater than 1. We can,
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(b) Two z-chains

Fig. 3. Examples of zr-chain and z-chains. The value PC(N) is depicted over each node N in the z-chains.
The z-chain on the left is removable.

therefore, consider the entire chain of r-nodes that ends with a zr-node defined as
follows:

Definition 4.2 (zr-chain). A zr-chain in an index-resilient ZDD is a chain C =
N1, N2, . . . , Nk (with k ≥ 1) of nodes such that:

(1) N1 has no redundant parents,
(2) Ni, with i ∈ [1, . . . , k − 1], is an r-node and its unique child is Ni+1,
(3) Nk is a zr-node.

The node N1 is called head of the chain, and the leaf 0 is the child of the chain.

When k = 1 the chain corresponds to the zr-node N1. As already observed, the deletion
of a zr-chain generates new z-nodes in the obtained index-resilient ZDD:

PROPOSITION 4.3. Let C be a zr-chain in an index-resilient ZDD Z. If C is removed
from Z, then any node in Z that is a 1-parent of a node in C becomes a z-node.

PROOF. Observe that when the chain C = N1, N2, . . . , Nk is deleted from Z, all edges
pointing to its nodes are redirected to the subgraph pointed by the 0-edge of Nk, that
is exactly the leaf 0. Thus, all nodes in Z whose 1-edge points to a node in the zr-chain
C, i.e., all 1-parents of nodes in C, will end up with their 1-edge pointing to the leaf
0.

For example, consider the QR-BDD in Figure 3(a) that contains a zr-chain of three
nodes. The removal of the zr-chain will produce two new z-nodes (the nodes with in-
dexes x2 that are not part of the chain).

If we remove the entire zr-chain, the resulting OBDD is still an index-resilient ZDD,
as proved in the following proposition. Moreover, in a QR-BDD the zr-chain is unique
and, once deleted, the resulting index-resilient ZDD does not contain a new zr-chain.

PROPOSITION 4.4. Let B be a QR-BDD containing a zr-chain C. We have that:

(1) C is the unique zr-chain in B,
(2) the OBDD B′ derived by deleting C from B is an index-resilient ZDD,
(3) B′ does not contain any zr-chain,
(4) B′ does not contain any mergeable node.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:12 A. Bernasconi and V. Ciriani

PROOF.

(1) First of all, note that in a QR-BDD B there can be at most one zr-node N , since
N must have index n − 1 and there are no isomorphic subgraphs in B. Moreover,
any node in B cannot have two or more r-nodes as parents, either on the same
level (they would be mergeable) or on different levels (otherwise, the most distant
redundant parent would have an index reconstruction cost greater than 1, while
B is a QR-BDD). Thus, any node in C has at most one redundant parent, and this
implies that the zr-chain C is unique.

(2) The only nodes affected by the removal of the chain C are the parents of the nodes
in C that do not belong to C, and therefore are not deleted. Thus, to prove that B′
is still an index-resilient ZDD we must show that the index reconstruction cost of
these nodes does not change. This property follows immediately from the fact that
each parent P 6∈ C of a node in C cannot be redundant and therefore has another
child on the level immediately below, that can keep its reconstruction cost equal to
1 after the removal of C.

(3) Observe that the deletion of the zr-chain C cannot generate a new zr-node, and
therefore a new zr-chain. Indeed, a new zr-node could be generated only by a non
redundant node N 6∈ C with the 0-edge pointing to the leaf 0, and the 1-edge point-
ing to a node in C. Now, since B is a QR-BDD, N must be on the level n − 1 of B,
but a node on this level cannot be connected to any node of C.

(4) Suppose by contradiction that N and N ′ are two mergeable nodes (i.e., roots of
isomorphic subgraphs) at level i of B′. Since B is a QR-BDD, at least one of them
must be a new node generated by the deletion of C. Thus, N and N ′ have a child
at level i + 1, and a child at level n (i.e., the leaf 0). If i = n − 1, i.e., N and N ′ are
on the level immediately above the leaves, neither N nor N ′ are generated by the
deletion of C because the nodes with highest level affected by this deletion are the
parents of the zr-node (i.e., are in level n−2). The fact that N and N ′ are mergeable
is then in contradiction with the fact that B is a QR-BDD. If i < n− 1, then both N
and N ′ had a child on level i+ 1 in the zr-chain C in the original OBDD B. Since C
is a chain and contains only one node per level, N and N ′ were parents of the same
node of C, and were therefore mergeable in B. Thus we reach a contradiction with
the fact that B is quasi-reduced.

We can observe that, after the deletion of a zr-chain in a QR-BDD, each node N
at level i in the resulting index-resilient ZDD has both children at level i + 1, or one
child at level n (the 0 leaf) and a child at level i + 1. Moreover, at level n − 1 there
exists at most one single z-node (i.e., the node that have the terminal 0 as 1-child and
the terminal 1 as 0-child). The index-resilient ZDD obtained after the deletion of the
zr-chain, can still contain z-nodes that can be removable. In order to efficiently test
whether we can delete a z-node N , we first need the following parameter that counts
the number of parents of N whose index reconstruction cost is affected by the deletion
of N .

Definition 4.5 (PC). Let N be a z-node in an index-resilient ZDD resulting by the
deletion of the zr-chain from a QR-BDD. PC(N) is the number of parents P of N satis-
fying at least one of the following properties:

(1) Both children of P are z-nodes (possibly, the same z-node if P is redundant) and N
is the 1-child of P ;

(2) P has another child N ′ 6= N on a level strictly greater than i + 1, where i is the
level of P (i.e., N ′ is the terminal node 0).
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Note that if N is the root, then PC(N) = 0. We can observe that Definition 4.5 derives
from the fact that the cost C(P ) = 1, of a node P at level i, is not increased by the
deletion of its z-node child N if P has the other child N ′ 6= N , on level i + 1 and N ′

cannot be removed. The child N ′ is not removed in two possible cases: 1) N ′ is not
a z-node; 2) N ′ is a z-node (like N ) but is the 1-child of P . This second criterion is
an arbitrary choice due to the necessity of deleting one of the two z-nodes that are
children of P while maintaining the index reconstruction cost and the canonicity of
the representation. More precisely, when a node P has two children that are z-nodes,
one of them can be removed without increasing the cost of P . In this paper we always
remove the 0-child of P in order to guarantee that the resulting index-resilient ZDD is
canonical (see Theorem 4.11). The choice of removing the 1-children is similar.

For example, see the index-resilient ZDD in Figure 3(b). Each z-node N in the figure
has a value that corresponds to PC(N). We note that PC(N) can be efficiently computed
with a simple visit of a index-resilient ZDD obtained after the deletion of the zr-chain
from the QR-BDD.

When the QR-OBDD is constructed, the zr-chain (if existing) deleted, and PC is com-
puted, we can define chains of z-nodes (z-chains) and we can characterize the z-chains
that can be removed, maintaining equal to 1 the index reconstruction cost of each re-
maining node. We therefore introduce the concept of removable z-chain.

Definition 4.6 (Removable z-chain). A removable z- chain in an index-resilient
ZDD, which does not contain zr-chains, is a chain C = N1, N2, . . . , Nk (with k ≥ 1)
of z-nodes such that:

(1) Ni, with i ∈ [2, . . . , k], is the 0-child of Ni−1,
(2) PC(N1) = 0,
(3) ∀i ∈ [2, . . . , k] , PC(Ni) = 1,
(4) if M is a z-node then PC(M) > 1, where M is the the 0-child of Nk.

The node N1 is called head of the chain, and M is called child of the chain.

The second requirement states that the head of the chain N1 can be removed without
affecting the reconstruction cost of its parents, as detailed in Proposition 4.8. Note that
this requirement implies that all parents of N1 are not z-nodes or r-nodes. The third
requirement states that any other node Ni (1 < i ≤ k) of the chain affects only the
reconstruction cost of its parent in the chain. The last requirement guarantees that
the removable z-chain is maximal. When the chain is composed by a single z-node
node N , we have that N is removable when PC(N) = 0. Consider, for example, the
index-resilient ZDD in Figure 3(b). While, the z-chain on the left is removable, the
z-chain on the right is not removable since the first node N1 has PC(N1) = 1.

In an index-resilient ZDD there are no “crossing” z-chains, i.e., a node cannot be part
of two different z-chains. This is a direct consequence of the following property.

PROPOSITION 4.7. In an index-resilient ZDDs there are no nodes with two or more
z-nodes as parents.

PROOF. The property follows immediately from the fact that a node cannot have
two parents that are z-nodes either on the same level (they would be mergeable) or on
different levels (otherwise, the most distant parent would have an index reconstruction
cost greater than 1).

The following proposition shows that the deletion of all removable z-chains in an
index-resilient ZDD Z does not change the overall index reconstruction cost, i.e., after
the removal of the chains, each internal node on level i still has at least a child on level
i + 1, for any level i in Z.
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PROPOSITION 4.8. Let C = N1, N2, . . . , Nk, k ≥ 1, be a removable z-chain in an
index-resilient ZDD, which does not contain a zr-chain. The OBDD resulting from the
deletion of C is still an index-resilient ZDD.

PROOF. The only nodes affected by the removal of C are the parents of the nodes in
C that do not belong to C, and therefore are not deleted. Thus, to prove that Z is still
an index-resilient ZDD we must show that the index reconstruction cost of these nodes
does not change.

The second requirement in Definition 4.6 states that the head of the chain N1 can
only have non-removable siblings (as they are not z-nodes, or they are z-nodes but 1-
child of their parents) that lye on the level immediately below the level of their parents,
thus the deletion of N1 does not affect the index reconstruction cost of its parents.
The third requirement states that any other node N in the chain C can have only
one parent without another child that can keep its reconstruction cost equal to 1: its
z-node parent in the chain C, that will also be removed together with N ; while all
other parents P of N must have another child that does not belong to C and that can
guarantee that C(P ) = 1.

Observe that once removable z-chains have been deleted, we are left with an index-
resilient ZDD that can still contain some z-nodes: those that do not form a removable
chains.

We can now propose a new OBDD reduction algorithm that, starting from a QR-
BDD, deletes first the zr-chain and then all the removable z-chains. The following
Theorem 4.9 shows that the deletion of removable z-chains does not construct new
removable z-chains. Therefore, after the removal of the zr-chain, we can detect (and
then delete) all the removable chains at the same time.

The reduction algorithm is based on a constant number of visits starting from a QR-
BDD. The first visit is a breadth first search used to detect and remove the zr-chain, if
it exists. Another visit is used to compute the parameter PC for each z-node; then with
a breadth first visit, all removable z-chains are identified and their nodes are removed
with a final visit of the OBDD, executed by a simple recursive depth first visit that
deletes from the OBDD all nodes identified as removable.

The correctness of the new reduction algorithm is proved in the following theorem.

THEOREM 4.9. Let B be a QR-BDD. The reduction algorithm computes an index-
resilient ZDD Z equivalent to B that contains neither removable z-chains nor a zr-chain.

PROOF. First observe that the new reduction algorithm modifies the input OBDD B
only applying the z-rule to a subset of its z-nodes (possibly a redundant z-node). Thus,
the resulting ZDD Z is equivalent to B.

Now recall that the z-chains are deleted only after the removal of the zr-chain, that
is when the ZDD does not contain any zr-node (the removal of the zr-chain does not
generate new zr-nodes, as proved in Proposition 4.4).

Finally, observe that the deletion of the z-chains cannot introduce new removable
z-nodes (or zr-nodes) in Z, as each 1-parent P of a node N in a chain cannot become
a z-node. Indeed the edge of P pointing to N is redirected to the subgraph pointed by
the 0-edge of the last z-node of the chain, and this subgraph cannot be the leaf 0 as the
last z-node in the chain is not redundant (after the removal of the zr-chain the OBDD
does not contain any zr-node).

The cost of the algorithm is linear in the size of the QR-BDD in input, as it consists
in a constant number of visits of the data structure.

We now formally introduce the concept of Index-Resilient Reduced ZDD.
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Definition 4.10 (Index-Resilient Reduced ZDD). An index-resilient ZDD is reduced
if it contains neither a zr-chain nor removable z-chains.

THEOREM 4.11. Let Z be an index-resilient reduced ZDD obtained with the reduc-
tion algorithm. Then

(1) for each node N in Z, C(N) = 1;
(2) Z does not contain mergeable nodes;
(3) Z is canonical, i.e., given a function f and a variable ordering <, Z is the only

index-resilient reduced ZDD with variable ordering < that represents f .

PROOF.

(1) Since the reduction algorithm starts with a QR-BDD, which is in particular index-
resilient, Propositions 4.4 and 4.8 guarantee that the deletion of the zr-chain and
of the removable z-chains maintains Z index-resilient, i.e., for each remaining in-
ternal node on level i there exists at least a child on level i + 1, for any level of
Z.

(2) We have already proved in Proposition 4.4 that after the deletion of the zr-chain
there are no mergeable nodes in the obtained OBDD B′. We must then show that
the deletion of the z-chains does not generate mergeable nodes. Suppose, by con-
tradiction, that N and N ′ are two mergeable nodes at level i of Z. Since B′ does not
contain mergeable nodes, at least one of them must be a new node (i.e., a node with
different children) generated by the deletion of the z-chains. N and N ′ have a child
at level i+ 1 (otherwise the removed chains were not removable), and a child Nj at
level j > i. If j = i + 1, N and N ′ were not parents of a node in a z-chain and the
fact that they are mergeable is in contradiction with the fact that the algorithm
started with a QR-BDD. If j > i+ 1, then the original QR-BDD contained a remov-
able z-chain between N and Nj and one between N ′ and Nj . This in turns implies
that Nj had two z-node parents on the same level in the original QR-BDD. Thus,
we reach a contradiction with the fact that the starting OBDD is quasi-reduced, as
the two z-node parents of Nj are mergeable.

(3) Given a variable ordering < and a QR-BDD (which is canonical once fixed <), there
is an unique way to delete the zr-chain and the removable z-chains, since each
node cannot be part of two different chains and the removal of the chains does not
produce new chains or mergeable nodes. Here it is important to recall that there
is no ambiguity in the definition of removable z-chains: given any node P with two
different z-nodes as children, only the 0-child can be head or part of a removable
z-chain. The index-resilient reduced ZDD is then a canonical form.

For example, Figure 4 shows the index reconstruction cost of each node in the ZDD
of Figure 1(d) (Figure 4(a)), and the index reconstruction cost of each node in the corre-
sponding index-resilient reduced ZDD, where for each node N we have that C(N) = 1
(Figure 4(b)). We can note that the standard ZDD contains a node N with index recon-
struction cost equal to 2 (the second x1), this implies that if an index error occurs in N ,
the variable reconstruction is not unique since N could contain x1 or x2.

In index-resilient ZDDs, the index reconstruction cost remains limited even in pres-
ence of more than one error on the indexes, as stated and proved in the following
theorem, that shows a result similar to the one obtained for OBDDs in [Bernasconi
et al. 2015].

THEOREM 4.12. The reconstruction cost of a node N on level i in an index-resilient
reduced ZDD Z affected by k errors on the indexes is O(min(k, 2n−i)).
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Fig. 4. A reduced ZDD and the corresponding index-resilient reduced ZDD where, for each node, the index
reconstruction cost is 1.

PROOF. First, we note that, starting from the node N on level i, there is always a
complete path (i.e., a path containing the variable xi, xi+1, . . . , xn) that ends on a leaf.
This path can be exploited to reconstruct the index of N . In fact, the index of N can
be computed using the indexes of its children in the following way. Let j0 and j1 be
the levels of the 0-child and of the 1-child of N . If both children are not affected by
errors, then the index of N is i = min{j0, j1} − 1. Otherwise, we recursively proceed
on the index-resilient ZDD rooted in any corrupted child of N , and we will restore
the index of N when both the indexes of its children will be corrected. The recursion
stops on corrupted nodes with two uncorrupted children. Note that we can consider
the two terminal nodes (the leaves of the OBDD) uncorrupted, as they could be mem-
orized in a safe memory, or duplicated. In the worst case, the reconstruction cost is
the minimum between the dimension of the OBDD rooted in N (i.e., O(2n−i)) and the
total number of corrupted nodes in Z (i.e., O(k)). The number of visited nodes is then
O(min(k, 2n−i)).

Let us now compare the number of nodes of index-resilient reduced ZDDs with the
size of quasi-reduced BDDs and standard ZDDs. Consider a QR-BDD, an index re-
silient reduced ZDD, and a standard ZDD representing the same function with n vari-
ables, and denote by nQ, nIR, and nZ , respectively, their size. Since the index-resilient
reduced ZDD is derived from the corresponding QR-BDD deleting some, possibly none,
z-nodes, while a standard ZDD is derived deleting all z-nodes from the QR-BDD, we
have that nZ ≤ nIR ≤ nQ.

It is also possible to give an upper bound on nIR in terms of nZ . Indeed, we can
observe that in the worst case, in order to make index-resilient a standard ZDD, we
would need to introduce a chain of at most n variables for each node. E.g., the chain
i + 1, i + 2, . . . j − 1 is inserted between the node with index i and its child with index j
with j 6= i+ 1, if it exists. Therefore, we can bound nIR as follows: nIR ≤ n ·nZ . Putting
all together, we then get the bounds:

nZ ≤ nIR ≤ min{n · nZ , nQ} .
Notice that if the size of the ZDD is polynomial in the number of variable, then the
same holds for the size of the index-resilient version of the decision diagram.

The limited size increase of index-resilient ZDDs with respect to ZDDs has been
verified even experimentally. Indeed, the experimental results presented in Section 6
show that index-resilient reduced ZDDs are 14% more compact than quasi reduced
BDDs, and only 4% less compact than standard ZDDs. This result, in turns, is in line
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with previous studies (for instance, see [Liaw and Lin 1992]) showing how the merge
rule makes a much more significant contribution to memory saving than other reduc-
tion rules, and in general it is the rule allowing the exponential size reduction that is
obtained, in some cases, transforming a binary decision tree into a ZDD or a BDD.

To conclude this section, we would like to discuss two important issues concern-
ing the proposed index-resilient ZDD model. First of all, as we have just observed,
an index-resilient reduced ZDD usually contains more nodes than a standard reduced
ZDD, as some z-nodes are kept in the diagram. However, recall that index resilient
ZDDs (reduced or not) do not need the memorization of the unique table. Moreover,
they guarantee a better and more efficient reconstruction of faulty indexes. Secondly,
even if similar results were already known for standard OBDDs, in our opinion the
growing interest in this particular data structure justifies the extension of the idea of
index-resilient BDDs to the family of zero-suppressed decision diagrams. In particular,
even if index resilient BDDs and index-resilient ZDDs have compatible sizes on aver-
age (see Section 6), the areas of application of the two data structures are different,
and the use of BDDs in applications more suitable for ZDDs could lead to an overall
loss of efficiency. For this reason it is important to have index-resilient versions of both
families of decision diagrams, guaranteeing a constant reconstruction cost for each
faulty index. We finally recall that an additional advantage of index-resilient ZDDs is
that the property that each node has at least one child on the level immediately below
could be exploited for error detection, too. For instance, the presence of faulty indexes
can be reported any time the index of a node and those of its children in the diagram
are not consistent with the fixed variable ordering.

5. OPERATIONS ON INDEX-RESILIENT ZDDS
As we have seen in the previous section, it is possible to construct index-resilient re-
duced ZDDs starting from QR-BDDs. Moreover, the whole process of construction of
this data structure is index-resilient. Indeed, the construction of an index-resilient
ZDD starts from a binary decision tree that is transformed into a QR-BDD applying
the merge rule, and in both models each node has all children on the level immedi-
ately below. Therefore, during the execution of the reduction algorithm on a QR-BDD,
we can always guarantee that each node has at least one child on the level below, thus
one or more faulty indexes can be immediately detected and restored as explained in
the proof of Theorem 4.12.

However, ZDDs are not usually constructed from quasi-reduced ones, but instead
they are dynamically constructed applying some basic operations to other ZDDs.
Therefore, we now discuss how the basic recursive procedures reviewed in Section 2.2
can be modified in order to guarantee that the ZDD in output is resilient to index
faults, even if some errors occur during the computation. In other words, we will show
how to obtain error resilient algorithms for basic ZDD manipulation, that is, algo-
rithms capable of dealing with errors (in the data structures) occurring during their
execution.

First of all, an important change with respect to the standard algorithms is that
our implementations do not use the procedure GETNODE. Recall that this procedure
is used to maintain the ZDD reduced, avoiding the insertion of both mergeable and
z-nodes in the ZDD under construction. To achieve this, GETNODE relies on the use of
an additinal data structure: the unique table (see Section 2.2). Thus, in order to design
error resilient algorithms, we should make the unique table resilient to errors as well,
for instance assuming that it is implemented using error resilient linked lists [Aumann
and Bender 1996] or that it is stored in a safe memory area not affected by errors. Since
these are strong requirements, we prefer to avoid the use of the unique table or other
data structures, at the expense of a possibly higher time complexity, that is however
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still polynomial. We only require that the two terminal nodes (the leaves of the ZDD)
are always uncorrupted, and therefore that they are memorized in a safe memory or
duplicated.

Secondly, we modify the implementation of the algorithms in order to guarantee the
following invariant property.

PROPERTY 1 (Invariant). At each step of the execution of the operations, for any
ZDD involved, each internal node on level i has at least one child on level i + 1.

The invariant guarantees that during the execution of the operations it is always pos-
sible to detect and reconstruct faulty indexes as described in the proof of Theorem 4.12.
As we will see, to maintain this invariant we will have to keep some z-nodes, or even
insert chains of z-nodes, in the diagram. The final ZDD will then be transformed into
an index-resilient reduced ZDD through a specific procedure, that we call REDUCTION.

This second reduction phase might be avoided, or performed only at the end of the
overall computation, if time efficiency is a major concern for the current application,
while space efficiency and canonicity of the decision diagrams are not crucial issues.
Indeed, as discussed in this section, the ZDDs computed by these algorithms satisfy
by construction Property 1 and this property guarantees the index-resiliency of the
decision diagrams, even when they contain mergeable nodes and z-nodes that could be
eliminated executing the REDUCTION procedure. Otherwise, if the application requires
the use of reduced and canonical forms, we can execute the reduction procedure after
each operation. This is still a feasible solution, as the reduction can be performed in
polynomial time.

In the rest of the section, with a slight abuse of notation, we will call index-resilient
ZDD any ZDD that satisfies Property 1, but may contain some mergeable nodes. Recall
from Section 4, that the absence of mergeable nodes is crucial for the correctness of
the reduction algorithm for the computation of index-resilient reduced and canonical
ZDDs, while it is not a necessary condition for making the diagrams resilient to errors
on indexes. In particular, Theorem 4.12 holds for any ZDD satisfying Property 1 only.

When performing operations on ZDDs, we always suppose that the ZDDs in input
are index-resilient ZDDs, and we will show that the ZDD in output is index-resilient
(i.e., it satisfies Property 1) and, after execution of the REDUCTION procedure, becomes
an index-resilient reduced ZDD.

In summary, we present new operations, on index-resilient ZDDs, that are error
resilient during their execution and produce an index-resilient ZDD as output. For
any presented operation the overall strategy is depicted in Figure 5. In particular,
we apply the index-resilient version of the operations (shown in Section 5) and we
perform a reduction of the obtained index-resilient ZDD (as shown in Section 5.2). In
the reduction phase we first reconstruct the QR-BDD, inserting a polynomial number
of new nodes and merging all mergeable nodes that could have been inserted in the
previous phases. We then remove the zr-chain (if any) and all the removable z-chains
(as described in Section 4).

5.1. Index Resilient Procedures
We now describe the new index-resilient implementations of the standard operations
on ZDDs. Let us first consider the standard set operations union, intersection and
difference applied to two index-resilient ZDDs rooted in the nodes R and S.

5.1.1. Procedures with two Input ZDDs. As already mentioned, we do not use the proce-
dure GETNODE and we do not delete z-nodes during the execution of the algorithms.
As a consequence, in the index-resilient versions of the three procedures UNION, IN-
TERSEC, and DIFF the recursion stops only when R and S are both terminal nodes,
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Fig. 5. General execution-flow for operations on index-resilient ZDDs.

without exploiting the possibility of an earlier termination when one of the two nodes
is the terminal 0 (possibility that, however, would not improve the worst-case complex-
ity of the algorithms). Thus, in the following implementations, if R and S are terminal
nodes, a new terminal node is returned having the appropriate value 0 or 1, depending
on the operation. Otherwise, if at least one node is non-terminal we proceed according
to the index of the nodes. If the two nodes R and S have different indexes, we proceed
by pairing the 0 and 1-child of the node with lowest index with the 0 and 1-child of
the z-node that has been removed from the ZDD rooted in the node with higher in-
dex. Suppose for instance that R.index < S.index. This means that a z-node N , with
index equal to R.index and with S as 0-child and the terminal 0 as 1-child, has been
removed from the ZDD rooted in S. Thus we create a new node with index R.index,
and recursively apply the algorithms on R0 and N0 (i.e., S) to generate the ZDD whose
root becomes the 0-child of the new node, and on R1 and N1 (i.e., the terminal 0) to
generate the 1-child, without applying the z-rule when possible (as for the intersection
and set difference operations). A similar procedure is used in the reverse case, where
S.index < R.index. Finally, if the two nodes have the same index i, we create a new
node with index i, and we apply the algorithms recursively on R0 and S0 to generate
the ZDD whose root becomes the 0-child of the new node, and on R1 and S1 to generate
the 1-child. In this way, we get the following versions of the procedures:

UNION(R,S)
if (R and S are terminal nodes and R 6= S) return the terminal 1
if (R == S) return R
if (R.index < S.index) return new node (R.index, UNION(R0, S), R1)
if (R.index > S.index) return new node (S.index, UNION(R, S0), S1)
if (R.index == S.index) return new node (R.index, UNION(R0, S0), UNION(R1, S1))

INTERSEC(R,S)
if (R and S are terminal nodes and R 6= S) return the terminal 0
if (R == S) return R
if (R.index < S.index)

return new node (R.index, INTERSEC(R0, S), INTERSEC(R1, terminal 0))
if (R.index > S.index)

return new node (S.index, INTERSEC(R,S0), INTERSEC(terminal 0, S1))
if (R.index == S.index)

return new node (R.index, INTERSEC(R0, S0), INTERSEC(R1, S1))

DIFF(R,S)
if (R and S are terminal nodes)
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if (R == S) return the terminal 0
else return R

if (R.index < S.index)
return return new node (R.index, DIFF(R0, S), DIFF(R1, terminal 0))

if (R.index > S.index) return new node (S.index, DIFF(R, S0), DIFF(terminal 0, S1)
if (R.index == S.index) return new node (R.index, DIFF(R0, S0), DIFF(R1, S1))

We now show that these three algorithms executed on two index-resilient ZDDs
preserve by construction the invariant Property 1. Indeed, if the algorithms are called
on two nodes R and S with the same index i, then a new node with index i is created,
and the algorithms are recursively executed on the two 0-children and on the two
1-children of R and S. If instead R and S have different indexes, a new node with
the lowest index between those of R and S is created, and the algorithms proceed
recursively by pairing the 0 and 1-child of the node with lowest index with the other
node and with the terminal 0, respectively. Now, without loss of generality, suppose
that R.index = i and S.index ≥ i. Then the new node has index i and at least one of
its children has index i+ 1, since (i) the procedures recur on the two children of R, one
of which certainly has index i + 1 as R is index-resilient, paired with S and with the
terminal 0, whose indexes are in both cases greater or equal to i+1; (ii) the procedures
always choose as index of the new node the lowest index between those of the two
nodes in input.

As the standard implementations, these versions of the algorithms make use of the
matrix M to avoid an exponential blow-up of the recursive calls. Instead, they do not
exploit the unique table. Therefore, the ZDD in output can contain mergeable nodes.
Still, the use of the matrix M is enough to guarantee that the worst-case complexity of
the procedures is quadratic, and that the size of the resulting ZDD is bounded by the
product of the size of the two ZDDs in input.

5.1.2. Procedures with one Input ZDD. We now consider the two procedures that take as
input a single index-resilient ZDD, i.e., SUBSET and CHANGE.

The index-resilient version of the SUBSET procedure is quite different from the stan-
dard one. In fact, this operation deletes part of the ZDD, and we must preserve the
invariant property in order to assure error correction during its execution. For this
reason the recursion must be executed on the children of a node Z, instead of the node
itself. In fact, if a child is changed we must insert a z-chain (between Z and the child)
in order to guarantee the invariant property for Z. Thus, we have a main procedure
SUBSET that solves the problem when the index ind corresponds to the one on the root
of the input index-resilient ZDD, otherwise it calls a recursive procedure SUBRIC that
solves the problem for the children of the input node.

SUBSET(Z, ind, val)
if (ind == Z.index) return Zval

else return SUBRIC(Z, ind, val)

SUBRIC(Z, ind, val)
for i = 0 to 1

C = Zi

if (C.index > ind and val == 1)
construct a zr-chain from a new node N of index C.index to the terminal 0
Zi = N

if (C.index > ind and val == 0) Zi = C
if (C.index == ind)

construct a z-chain from a new node N of index (ind + 1) to Cval
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Zi = N
if (C.index < ind)

Zi = new node (C.index, SUBRIC(C0, ind, val), SUBRIC(C1, ind, val))
return Z

The procedure CHANGE simply swaps the 0-child with the 1-child, thus Property 1 is
guaranteed and we have to be careful only when ind is the index of a removed z-node.
In this case the node is reinserted, but it is no longer a z-node. We now have to add a
zr-chain to the 0 terminal in order to maintain the invariant. Note that the canonicity
of the ZDD is obviously lost (because of the swapping of some sub-ZDDs), but it will be
restored during the reduction phase.

CHANGE(Z, ind)
if (Z.index > ind)

construct a zr-chain from a new node N of index ind + 1 to the terminal 0
return new node (ind, N , Z)

if (Z.index == ind) return new node (ind, Z1, Z0)
if (Z.index < ind) return new node (Z.index, CHANGE(Z0, ind), CHANGE(Z1, ind))

Even these last two procedures make use of the matrix M and do not exploit the
unique table. Their worst-case complexity is bounded by the product between the size
of the ZDD in input and the number of variables. The last factor of the product is due
to the insertion of the z-chains.

5.1.3. Error Handling. During the execution of all the procedures described in Sec-
tions 5.1.1 and 5.1.2 some errors may occur, in particular we can have errors in the
indexes of the nodes and errors in the recursive table M . We now discuss ho to handle
these errors.

Recall that, for all the operations described, we have guaranteed the invariant prop-
erty, i.e., that any internal node on level i of the computed ZDD has at least one child
on level i + 1. Exploiting this property, we can always reconstruct the correct index,
whenever an error occurs during the computation, using the strategy described in the
proof of Theorem 4.12.

Moreover, following the strategy described in [Bernasconi et al. 2015] for index-
resilient OBDDs, we can correct the errors occurring in the matrix M used for mem-
orizing the output of the recursive calls in order to avoid an exponential number of
re-computations. Position M [N,N ′] of the matrix M contains NULL if the considered
operation is never computed on the input (N,N ′), otherwise, M [N,N ′] contains the
pointer to the root node of the sub-ZDD that is the solution of the operation. If M [N,N ′]
is corrupted, the algorithm simply computes (possibly, again) the operation on the in-
put (N,N ′). This means that, in the worst case, the number of re-computations of the
same pointers in M is O(rM ) where rM is the total number of errors in M .

5.2. Reduction
As already observed, the result of the operations described in Section 5.1 is not usu-
ally an index-resilient reduced ZDD, since some mergeable nodes and some removable
chains could have been inserted by the operations. This is due to the absence of the
unique table. In order to obtain a reduced form, we now define a polynomial reduc-
tion strategy on the computed ZDD Z. In particular, Figure 5 shows the steps of this
reduction.

As already pointed out, this reduction phase might be avoided, or performed only
at the end of the overall computation, if time efficiency is a major concern for the
current application, while space efficiency and canonicity of the decision diagrams are
not crucial issues.
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The reduction first transforms the given ZDD Z in a QR-BDD, first inserting the
missing chains and then merging all mergeable nodes. This step is necessary since
the operations can change the 0-child and the 1-child, possibly making non-removable
a z-chain that has been removed. Therefore, any chain must be reconstruct and the
ZDD reduced again in order to maintain the canonical form. This insertion of chains is
polynomial in the number of nodes and in the number of variables n since, in the worst
case, we introduce a chain of n variables for each node, i.e., the chain i+1, i+2, . . . j−1
is inserted between the node with index i and its child with index j with j 6= i + 1, if
exists. Second, we must perform a merge step, since the obtained ZDD Z can contain
mergeable nodes. This task can be done through a quadratic DFS visit of Z: when
a node N is visited, we perform a second visit that identifies and merge all nodes
mergeable with N . Finally we have a QR-BDD, and we can remove the zr-chain and
all the the removable z-chains from it, as shown in Section 4.

During the execution of the reduction procedure, since the invariant Property 1 holds
for any ZDD involved, we can dynamically correct errors.

6. EXPERIMENTAL RESULTS
This section shows the experiments we have run in order to evaluate size (i.e., number
of nodes) and computational time for index-resilient ZDDs.

The algorithms have been implemented in C and the experiments have been run on
a Linux Intel Core i7, 3.40 GHz CPU with 8 GB of main memory.

In order to show the gain and the loose, in number of nodes, of index-resilient re-
duced ZDDs, we compare these new forms with QR-BDDs and standard reduced ZDDs.
Recall that, considering the same variable ordering, the number of node of an index-
resilient ZDD (nIR−ZDD) is less or equal to the number of nodes of the corresponding
QR-BDD (nQR−BDD), and it is greater or equal to the number of nodes of the ZDD
(nZDD) for the same function: nZDD ≤ nIR−ZDD ≤ nQR−BDD.

The main aim is to determinate whether IR-ZDDs are compact as ZDDs, or not. Our
second objective is to compare the index-resilient definition of ZDDs with the index-
resilient definition of OBDDs described in [Bernasconi et al. 2015]. In particular, since
the reduction rule for index-resilient OBDDs and index-resilient ZDDs are quite dif-
ferent, a purpose of the experiments is to determinate whether the given definition of
index-resilient ZDDs is practical or not.

For the first set of experiments we have considered the benchmarks taken from the
classical library LGSynth93 [Yang 1991]. The decision diagrams have been constructed
considering the union of the on-set and dc-set. As some benchmarks have multiple
outputs, we have constructed one ZDD for each output. In the following, we report a
significant subset of the functions as representative indicator of our experiments.

In Table I we compare the number of nodes of index-resilient ZDDs with the size of
QR-BDDs and standard ZDDs. The first column reports the name of the benchmarks,
the second column contains the number of nodes in the QR-BDD. The following group
of three columns reports the number of nodes in the index-resilient ZDD, the number
of nodes in the standard ZDD and the percentage of outputs containing a zr-chain. The
last group of two columns reports the number of nodes for index-resilient OBDDs and
standard OBDDs [Bernasconi et al. 2015].

In our experiments we have also evaluated the computational times for constructing,
starting from a QR-BDD, index resilient ZDDs (resp., BDDs) and the reduction times
for standard ZDDs (resp., OBDDs). In both cases, the computational times were found
to be negligible, at most a few milliseconds, for all the benchmarks considered showing
that index-resilient ZDDs and standard ZDDs have limited and similar construction
times.
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Table I. Size (number of nodes) in the considered DDs.

Bench QR IRZDD ZDD zr-chain IRBDD BDD

add6 698 677 671 86% 547 372
addm4 495 428 420 100% 417 361
alu1 206 163 145 100% 109 31
alu2 455 432 426 75% 396 330
alu3 495 474 468 75% 429 358
apla 469 408 402 91% 384 331
b11 493 246 201 93% 294 160
bench1 1132 1102 1090 100% 1086 1048
br1 346 252 182 100% 265 242
br2 285 194 157 100% 190 174
clpl 140 115 115 80% 84 53
dc2 171 102 93 86% 129 103
dist 290 257 252 100% 266 247
dk17 422 383 377 100% 339 304
dk27 248 239 239 0% 185 185
ex1010 1773 1742 1729 100% 1718 1659
ex5 1188 833 739 94% 762 646
exp 858 601 470 100% 796 751
exps 1650 1213 1058 100% 1395 1278
fout 266 238 235 100% 238 222
inc 236 168 155 100% 186 126
lin.rom 1038 936 895 78% 894 849
luc 667 435 416 100% 543 375
m2 405 203 198 100% 282 229
m3 433 249 245 100% 284 244
m4 554 383 373 100% 440 388
max1024 512 407 407 100% 473 443
max128 507 345 345 88% 377 322
max512 329 259 259 100% 285 260
mp2d 413 304 290 100% 299 151
newapla 272 163 144 100% 134 78
newbyte 72 25 20 100% 40 40
newcpla1 352 212 186 100% 207 155
newtpla2 85 53 46 100% 49 43
newxcpla1 407 266 239 96% 255 176
opa 3091 1819 1519 100% 2315 1164
p1 688 601 587 94% 581 538
p3 504 442 429 93% 416 382
p82 182 97 83 100% 127 122
pope.rom 803 644 598 88% 603 537
prom1 4027 3566 3358 100% 3729 3577
prom2 1814 1546 1502 100% 1585 1501
t3 300 198 171 100% 227 111
t4 399 298 292 100% 320 213
test1 786 747 732 100% 744 711
test2 11678 11527 11482 100% 11431 11195
test3 6713 6581 6538 100% 6490 6302
test4 1512 1452 1441 77% 1361 1314
tms 438 261 224 100% 310 279

In order to have a statistical idea of the size of the diagrams, we have run a sec-
ond set of experiments on all the Boolean functions with 2, 3 and 4 variables, which
are 16, 256, and 65536 in number, respectively. Table II shows the results. The first
column reports the number of variables. The second column shows the difference be-
tween the total number of nodes in the index-resilient ZDDs and the QR-BDDs, the
third columns reports the difference between the total number of nodes in the ZDDs
and the index-resilient ZDDs. The last two columns show the same difference for index-
resilient BDDs with respect to QR-BDDs and reduced OBDDs.
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Table II. Differences of size (number of nodes) of the DDs for all the functions
with 2, 3 and 4 variables.

NV IRZDD-QR ZDD-IRZDD IRBDD-QR BDD-IRBDD

2 16 2 16 2
3 414 76 410 80
4 150956 35070 147086 38940

Table III. Index Reconstruction Cost for standard ZDDs.

Bench Nodes tot IRC max IRC Nodes with IRC > 1 %

alu1 145 171 2 26 18%
b11 201 320 6 64 32%
bench1 1090 1110 2 20 2%
br1 182 296 5 78 43%
br2 157 220 4 49 31%
clpl 115 115 1 0 0%
dc2 93 114 3 16 17%
exp 470 747 5 195 41%
exps 1058 1376 6 197 19%
inc 155 183 3 23 15%
lin.rom 895 951 3 52 6%
luc 416 475 3 49 12%
m2 198 246 8 31 16%
m3 245 286 6 29 12%
m4 373 417 7 32 9%
newapla 144 185 5 26 18%
newbyte 20 45 5 13 65%
newcpla1 186 246 5 41 22%
newtpla2 46 78 9 12 26%
newxcpla1 239 298 5 39 16%
opa 1519 2071 6 363 24%
p82 83 120 4 25 30%
pope.rom 598 672 5 52 9%
prom1 3358 3810 6 350 10%
t3 171 234 4 49 29%
t4 292 310 2 18 6%
tms 224 320 8 81 36%

The results in the two tables show that index-resilient reduced ZDDs are a good
trade-off between QR-BDDs and reduced ZDDs. In fact, the reduction of a QR-BDD in
an index-resilient reduced ZDD pays significantly, since index-resilient reduced ZDDs
are more compact than QR-BDDs and the number of nodes in an index-resilient re-
duced ZDD is not too much greater that the number of nodes of a standard reduced
ZDD. In practice, from the results on the benchmark functions, we have that, in av-
erage, index-resilient reduced ZDDs are 14% more compact than QR-BDDs, and that
standard reduced ZDDs are 4% more compact than index-resilient reduced ZDDs.

Moreover, if we consider index-resilient reduced BDDs we have that index-resilient
reduced BDDs are 13% more compact than QR-BDDs, and that standard reduced OB-
DDs are 10% more compact than index-resilient reduced BDDs. This result, experi-
mentally shows that the definition of index resilient reduced ZDDs seems to give a
more compact form that the one described in [Bernasconi et al. 2015] for OBDDs.

In order to understand how many errors cannot be handled in standard ZDDs, we
have computed the index reconstruction cost for the considered benchmark functions.
Table III shows the results of a significant subset of the benchmark functions. The
first column reports the name of the benchmarks and the second contains the num-
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ber of nodes in the classical ZDD representation. The following group of two columns
reports the index reconstruction cost of the entire ZDD (i.e., the sum of the index re-
construction costs for each node) and the maximum value of the index reconstruction
cost of a single node in the ZDD. The last group of two columns shows the number, and
the percentage, of nodes with index reconstruction costs strictly greater than 1. This
number gives us an indication about how many node errors cannot be handled in stan-
dard ZDDs. For example, consider the benchmark exp, the 41% of its nodes has a index
reconstruction cost strictly greater than 1 (with maximum 6). In order to reconstruct
the correct index, if we do not use the unrealistic unique table in a trusted memory, for
any node with index reconstruction cost c, we can only guess the correct index value
with probability 1/c. In the example, if the node with index reconstruction cost 6 con-
tains an index error, the reconstruction can randomly guess the correct index value
with probability 17%. Recall that in index-resilient ZDDs this fact can never happen,
since the index reconstruction cost for each node is always 1. In fact, by construction
of index-resilient ZDDs, the index of each node can be simply reconstructed exploiting
the indexes of its children.

7. CONCLUSION
This paper has proposed a new ZDD canonical form that is resilient to errors in indexes
under the single-component error model. This form can be derived in linear time start-
ing from a quasi-reduced BDD, or in polynomial time combining other index-resilient
ZDDs. Even if similar results were known for standard OBDDs [Bernasconi et al. 2013;
2015], in our opinion the many applications of this data structure justify the extension
of the study on error resiliency from standard BDDs to the family of ZDDs. In particu-
lar, we have focused on error on indexes only, as the ad hoc solution already proposed
for OBDDs in [Bernasconi et al. 2015] to handle errors on pointers can be immediately
applied to ZDDs, without modification. Instead, the techniques for the construction,
reduction and dynamical computation of index-resilient ZDDs are not immediate gen-
eralizations of those defined in [Bernasconi et al. 2015] for OBDDs, as reduction rules
and basic operations for the manipulation of ZDDs are different from those typically
applied to OBDDs.

The proposed analysis completes the study on the error correction of the two families
of binary decision diagrams that are mainly used in applications. The generalization of
these results to other families of decision diagrams such as ordered functional decision
diagrams (OFDDs) [Kebschull and Rosenstiel 1993] and ordered Kronecker functional
decision diagrams (OKFDDs) [Becker et al. 1997] should be easily accomplished, as
the reduction rules for OFDDs are syntactically identical to those applied to ZDDs,
even if the semantic is different.

Error detection is another important issue, that we have not considered in the
present analysis, where we assumed perfect error detection capabilities. Further work
on this subject could therefore be a deeper study of error detection in binary decision
diagrams.
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