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Abstract

This work analyzes an approximate solution of the equations of motion for a spacecraft propelled by an Electric
Solar Wind Sail with a fixed attitude. The peculiarity of such a propulsion system is that its thrust scales
as the inverse heliocentric distance. This represents a substantial difference from a classical solar sail, whose
propelling force is known to be proportional to inverse square distance from the Sun. Assuming a heliocentric,
two-dimensional mission scenario, the polar form of the spacecraft trajectory equation is obtained for a closed
parking orbit of given characteristics by means of an asymptotic expansion procedure. The proposed approach
significantly improves the existing results as presented in the literature. A suitable choice of propulsion system
parameters and parking orbit characteristics provides interesting similarities with recent solutions obtained for a
solar sail-based spacecraft in a heliocentric, two-dimensional, mission scenario.

Keywords: Electric Solar Wind Sail, Asymptotic expansion method, Trajectory approximation,
Generalized orbital elements

Nomenclature

A,B,C,D = matrices of coefficients
a = osculating orbit semimajor axis, [ au]
ac = spacecraft characteristic acceleration, [ mm/s2]
bi = dimensionless coefficients, see Eqs. (3)-(4)
E = dimensionless auxiliary variable, see Eq. (26)
e = osculating orbit eccentricity
h = osculating orbit specific angular momentum, [ au2/day]

qi = generalized orbital elements (with q , [q1, q2, q3]
T
)

qj = j-th perturbation order term of q
R = dimensionless radial thrust
r = Sun-spacecraft distance, [ au]
r⊕ = reference distance, [ au]
s = dimensionless auxiliary variable
T = dimensionless transverse thrust
T (O; r, θ) = polar reference frame
t = time, [ days]
vr = radial velocity, [ au/day]
vθ = transverse velocity, [ au/day]

∗Corresponding author
Email addresses: lorenzo.niccolai@ing.unipi.it (Lorenzo Niccolai), a.quarta@ing.unipi.it (Alessandro A. Quarta),

g.mengali@ing.unipi.it (Giovanni Mengali)

Published in Aerospace Science and Technology, Vol. 71, December 2017, pp. 441–446. doi: https://doi.org/10.1016/j.ast.2017.09.045



αn = E-sail pitch angle, [ deg]
ε = relative error, see Eq. (27)
θ = angular coordinate, [ deg]
µ� = Sun’s gravitational parameter, [ au3/day2]
ω = apse line rotation angle, [ deg]
Subscripts

0 = initial conditions
a = approximate results
max = maximum
n = numerical results
Superscripts

˜ = dimensionless
˙ = time derivative

1. Introduction

The trajectory analysis of a spacecraft propelled by a low-thrust propulsion system usually requires the
equations of motion to be integrated numerically. This approach implies a non-negligible computational
cost, especially in a preliminary mission design, where a number of different scenarios must be analyzed.
In this context, the availability of an analytical approximation of the spacecraft trajectory is therefore an
useful analysis tool.

Recently, Niccolai et al. [1] have discussed an analytical approximate model for the dynamics of a solar
sail-based spacecraft with a fixed attitude, assuming a two-dimensional heliocentric mission scenario. Using
such a propulsion system, the propulsive thrust varies as the inverse square distance from the Sun. An
accurate approximation of the spacecraft (propelled) trajectory is obtained in Ref. [1] with the help of the
following two aids: 1) the state of the vehicle is characterized by the set of non-singular generalized orbital
elements introduced by Bombardelli et al. [2], and 2) the problem is addressed with an asymptotic expansion
procedure [3, 4].

The aim of this work is to extend the results discussed in Ref. [1] to the case in which the spacecraft
primary propulsion system is an Electric Solar Wind Sail (E-sail). The E-sail concept has been proposed
by Pekka Janhunen in 2004 [5]. It is a propellantless propulsion system (such as solar sail) and consists of
a spinning grid of tethers that are kept at a high potential by an onboard electron gun. When the grid is
immersed in the solar wind, the charged tethers interact with the incoming ions, and the momentum exchange
generates a continuous propulsive acceleration whose modulus varies with the spacecraft attitude [6, 7, 8],
and, unlike the solar sail case, it scales with the inverse heliocentric distance [9].

The dynamics of an E-sail-based spacecraft will now be described with an approach formally similar
to that presented in Ref. [1]. Notably, some significant results available for solar sails are shown to apply
to E-sails as well. At the same time, the approximate models currently available in the literature [10] are
substantially improved without the need of significant additional computational costs. Unlike the method
of Ref. [10], the new model can be applied to a generic (closed) parking orbit. This is an important point,
since the spacecraft usually starts its interplanetary mission from a circular or elliptic parking orbit and
then exploits the E-sail propulsive thrust in order to change the orbital elements and meet the mission
requirements. Finally, the implementation of a rectification procedure, which improves the results accuracy,
allows possible (instantaneous) sail attitude variations during the flight to be simulated.

2. Two-dimensional E-sail Heliocentric Dynamics

Consider an E-sail-based spacecraft that initially covers a closed heliocentric parking orbit with semimajor
axis a0 and eccentricity e0 < 1. Let ac be the spacecraft characteristic acceleration, that is, the maximum
propulsive acceleration modulus at a Sun-spacecraft distance r = r⊕ , 1 au, which represents the typical
E-sail performance parameter [11, 12, 13]. Assuming a two-dimensional propelled trajectory belonging to
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the parking orbit plane, the spacecraft equations of motion in a heliocentric polar reference frame T (O; r, θ)
are

r̈ − r θ̇2 = −µ�

r2
+ ac

(r⊕
r

)
R (1)

r θ̈ + 2 ṙ θ̇ = ac

(r⊕
r

)
T (2)

where µ� is the Sun’s gravitational parameter, θ is the spacecraft angular coordinate measured counterclock-
wise with respect to the direction of the parking orbit eccentricity vector e0, and R (or T ) is the radial (or
transverse) component of the dimensionless local propulsive acceleration vector. According to Yamaguchi
and Yamakawa [6, 7], R and T are functions of the sail pitch angle αn ∈ [−90, 90] deg. The latter, see Fig. 1,
is defined as the angle between the Sun-spacecraft line and the unit vector normal to the E-sail nominal
plane in the direction opposite to the Sun.
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Figure 1: Radial (R) and transverse (T ) component of the dimensionless propulsive acceleration as functions of the sail pitch
angle αn. Data adapted from Refs. [6, 7].
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An useful approximation of R = R(αn) and T = T (αn) is given in Ref. [8]

R ' b1 + b2 cos(2αn) (3)

T ' b2 sin(2αn) (4)

where b1 ' 0.7477 and b2 ' 0.2523 are dimensionless coefficients obtained through a best-fit procedure.
Recently, Huo et al. [14], through a geometrical analysis of the E-sail thrust vector based on the work of
Toivanen and Janhunen [15, 16], have demonstrated that the expressions of R = R(αn) and T = T (αn)
given by Eqs. (3)-(4) are exact when b1 = 3/4 and b2 = 1/4.

Equations (3) and (4) show important differences between the thrust behavior of an E-sail compared to
that of a more conventional solar sail, besides the different way with which the propulsive force scales with
the heliocentric distance. In fact, for a solar sail, the expressions of the dimensionless propulsive acceleration
components Rss and Tss can be expressed as functions of the pitch angle αn as Rss = cosαn(c1+c2 cos2 αn+
c3 cosαn) and Tss = cosαn sinαn (c2 cosαn + c3), where the ci coefficients depend on the solar sail optical
properties and the thrust model adopted [17].

According to Bombardelli et al. [2], the spacecraft state vector can be described in terms of the dimen-
sionless modified non-singular orbital elements {q1, q2, q3} defined as

q1 =
e

h̃
cosω , q2 =

e

h̃
sinω , q3 =

1

h̃
(5)

where e is the osculating orbit eccentricity, ω is the angle between the direction of e0 and the direction
of the osculating orbit eccentricity vector, and h̃ is the dimensionless angular momentum modulus of the
osculating orbit. The latter can be calculated as a function of the semilatus rectum p of the osculating
orbit as h̃ ,

√
p/r0, being r0 , r(t0) the Sun-spacecraft distance at the initial time t0 , 0. Accordingly,

Eqs. (1)-(2) can be rewritten in a vectorial form [2] as

dq

dθ
= ãc A ã with A ,

1

q3 s2

 s sin θ (s+ q3) cos θ
−s cos θ (s+ q3) sin θ

0 −q3

 (6)

where q , [q1, q2, q3]
T

is the spacecraft state vector in terms of dimensionless non-singular orbital elements,
ã , [R, T ]

T
is the dimensionless propulsive acceleration vector, s , (q1 cos θ + q2 sin θ + q3) is an auxiliary

variable, and

ãc =
ac

µ�/r20

(
r⊕
r0

)
(7)

is a sort of dimensionless characteristic acceleration, whose value depends on the initial Sun-spacecraft
distance r0 = a0(1 − e20)/(1 + e0 cos θ0), calculated at θ = θ0 , θ(t0). The first order vectorial differential
equation (6) is completed by the initial conditions q0 , q(θ0) evaluated on the parking orbit. Since ω(t0) = 0,
and recalling Eqs. (5), the vector q0 becomes

q0 =
1√

1 + e0 cos θ0
[e0, 0, 1]

T
(8)

The Sun-spacecraft distance (r), and the radial (vr) and transverse (vθ) components of the spacecraft
inertial velocity may be expressed as functions of the modified parameters [2] as

r =
r0

q23 + q1 q3 cos θ + q2 q3 sin θ
(9)

vr , ṙ =

√
µ�

r0
(q1 sin θ − q2 cos θ) (10)

vθ , r θ̇ =

√
µ�

r0
(q1 cos θ + q2 sin θ + q3) (11)
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Using Eqs. (5) and Eqs. (9)-(11), the evaluation of the classical orbital elements as functions of the modified
parameters is straightforward. However, the corresponding expressions are here omitted for the sake of
conciseness, and the interested reader is referred to Ref. [2].

Paralleling the procedure described in Ref. [1], an interesting analytical approximation of the solution to
the differential system of Eqs. (6) and (8) can be obtained when ãc � 1 and {R, T} are constants of motion.
Bearing in mind Eq. (7), the assumption ãc � 1 is consistent with a low-performance E-sail, that is, an
E-sail whose propulsive acceleration modulus is significatively smaller than the Sun’s (local) gravitational
acceleration. Moreover, the assumption that both R and T are constants of motion is consistent with a case
in which the E-sail maintains a fixed attitude (i.e. a constant pitch angle, see Fig. 1) with respect to an
orbital reference frame.

2.1. Approximate analytical solution

As long as ãc � 1, the E-sail propulsive acceleration can be considered as a perturbation of the spacecraft
Keplerian motion. Accordingly, the modified orbital parameters can be written by means of an asymptotic
series expansion [1, 2, 4] as

q = q0 + ãc q1 +O(ã2c) (12)

where q1 represents the first order perturbative term of the spacecraft state vector q. Higher order pertur-
bation terms are neglected in the rest of the work, i.e. O(ã2c) ' 0, since an analytical solution that reduces
the computational costs cannot be obtained when second (or higher) order perturbative terms are included
in the analysis.

When Eq. (12) is substituted into Eq. (6), the vectorial differential equation involving q1 is obtained by
equating the terms proportional to ãc [2], viz.

dq1

dθ
= B ã with q1(θ0) , 0 (13)

where

B ,

√
1 + e0 cos θ0
1 + e0 cos θ


sin θ cos θ

(
2 + e0 cos θ

1 + e0 cos θ

)
− cos θ sin θ

(
2 + e0 cos θ

1 + e0 cos θ

)
0 − 1

1 + e0 cos θ

 (14)

Since {R, T} are constants of motion, the term ã in Eq. (13) is a constant vector whose components depend
on the value of the constant pitch angle, see Fig. 1 or Eqs. (3)-(4). Note that Eq. (13) is formally similar
to Eq. (29) of Ref. [1], which refers to a solar sail-based mission case, the main difference being that the
components of matrix B now contain terms proportional to (1 + e0 cos θ)−2. However, in the noteworthy
case of circular parking orbit (e0 = 0), Eqs. (13)-(14) coincide with those obtained in Ref. [1].

Equation (13) can be integrated with respect to the angular variable θ, distinguishing according to
whether the parking orbit is circular or elliptical (e0 6= 0). In case of circular parking orbit, the angular
coordinate θ and the angle ω are measured from a generic (fixed) direction, so that θ0 = 0 can be assumed
without loss of generality. Taking into account Eq. (14), when e0 = 0 the solution of Eq. (13) is

q1 = C ã with C ,

(1− cos θ) 2 sin θ
− sin θ 2 (1− cos θ)

0 −θ

 (15)

Therefore, according to Eqs. (8) and (12), the variation of q with the angular coordinate θ is given by the
following (approximate) equation

q ' [0, 0, 1]
T

+ ãc C ã (16)

In particular, having q3 > 0 for physical reasons (see the last of Eqs. (5)), a maximum value exists for the
angular coordinate, that is, max(θ) , θmax = 1/(T ãc), beyond which the approximate solution (16) cannot
be applied. Figure 2 shows how θmax varies with the E-sail attitude and the characteristic acceleration
evaluated with r0 = r⊕.
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Figure 2: Maximum angular coordinate θmax for the circular parking orbit case (r0 = r⊕) as a function of the E-sail pitch
angle αn and the characteristic acceleration ac.

Assuming θ < θmax, the polar equation of the spacecraft trajectory and the spacecraft inertial velocity
components may be obtained by substituting the components of q given by Eq. (16) into Eqs. (9)-(11), viz.

r =
r0

(1− T ãc θ) [1 + R ãc (cos θ − 1) + T ãc (2 sin θ − θ)]
(17)

vr =

√
µ�

r0
ãc [2T (1− cos θ) +R sin θ] (18)

vθ =

√
µ�

r0

[
1− 2R ãc sin2(θ/2) + T ãc (2 sin θ − θ)

]
(19)

Note that Eqs. (17)-(19) coincide with the results obtained in Ref. [1], provided the solar sail lightness number
(β) be formally substituted with the E-sail dimensionless characteristic acceleration ãc. This implies that
the heliocentric behaviours of two different (propellantless) propulsion systems, such as the solar sail and
the E-sail, are, to a first order, similar when the parking orbit is circular, the motion is two-dimensional and
the sail pitch angle is maintained constant.

For an elliptic parking orbit (e0 6= 0), the initial angular coordinate θ0 coincides with the true anomaly
on the osculating orbit at t = t0. In this case the integration of Eqs. (13) is more involved, but it can be
verified that

q ' q0 + D ã with D ,

D11 D12

D21 D22

0 D32

 (20)
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where q0 is given by Eq. (8) and

D11 , − ãc h̃0
e0

ln

(
1 + e0 cos θ

h̃20

)
(21)

D12 , ãc h̃0

θ − θ0
e0

− E − E0

e0

√
(1− e20)

3
+

1

1− e20

(
sin θ

1 + e0 cos θ
− sin θ0

h̃20

) (22)

D21 , − ãc h̃0
e0

(
θ − θ0 −

E − E0√
1− e20

)
(23)

D22 , − ãc h̃0
e0

[
ln

(
1 + e0 cos θ

h̃20

)
− 1

1 + e0 cos θ
+

1

h̃20

]
(24)

D32 , − ãc h̃0
1− e20

[
E − E0√

1− e20
− 2 e0 tan (θ/2)

(1− e0) tan2 (θ/2) + 1 + e0
+

2 e0 tan (θ0/2)

(1− e0) tan2 (θ0/2) + 1 + e0

]
(25)

with h̃0 , h̃(t0) =
√

1 + e0 cos θ0, and E is an auxiliary dimensionless variable defined as

E , 2 arctan

(√
1− e0
1 + e0

tan
θ

2

)
(26)

Finally, the analytical polar form of the trajectory equation can be obtained by substituting the components
of Eq. (20) into Eq. (9). The final result is here omitted for the sake of conciseness.

The error introduced by the asymptotic series approximation increases for large values of the pair {ãc, θ}.
However, it is possible to improve the model accuracy by means of a rectification procedure, introduced in
Ref. [2] and discussed in depth in Ref. [1]. More specifically, the rectification procedure consists of updating
the initial conditions and the fixed direction from which the angles θ and ω are measured at a given time
instant. The use of a rectification procedure reduces the error in terms of difference between the analytical
and the simulation results, but increases the computational costs. Note that instantaneous sail attitude
variations (i.e. variations of the components of the vector ã) can be easily introduced in the rectification
points, thus improving the overall model flexibility.

2.2. Model validation

The accuracy of the proposed (approximate) model has been checked by direct comparison with the
results obtained by a numerical integration of the equations of motion in double precision, using a variable
order Adams-Bashforth-Moulton solver scheme [18, 19] with absolute and relative errors of 10−12.

The first test case example involves a circular parking orbit with a0 ≡ r0 = r⊕, that is, a mission
case consistent with a spacecraft leaving the Earth’s sphere of influence with zero hyperbolic excess speed.
Paralleling the procedure described in Ref. [1], the difference in terms of Sun-spacecraft distance r between
the analytical approximation (without rectification) and the numerical results (subscript n) may be quantified
through the relative error ε defined as

ε , max
θ

(
|rn(θ)− r(θ)|

r0

)
(27)

Figure 3 shows that, even without any rectification procedure, ε is smaller than 4% for a simulation time
of 5 years and ac ≤ 0.1 mm/s2 (which corresponds to a low-performance E-sail). Note that, in this case
ãc ' ac/(5.93 mm/s2), see Eq. (7).

A similar estimation of the differences between the analytical method and the numerical integration is
now given for the elliptic parking orbit case. The selected initial orbital parameters are a0 = a' = 0.308 au,

e0 = e' = 0.206, and ν0 = 0. This situation simulates the exit from Mercury’s sphere of influence at the
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Figure 3: Relative error ε as a function of αn and ac for a simulation time of 5 years (e0 = 0 and a0 = r⊕).

planetary perihelion with zero hyperbolic excess speed. For a simulation time of 5 years, Fig. 4 shows that
the error ε is smaller than 10%, and is appreciable only for large values of pitch angle and characteristic
acceleration. These results confirm the flexibility of the approximation, whose performance is good both for
a circular and an elliptical parking orbit, and suggest that rectification procedures are advisable especially
in the elliptic parking orbit case.
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Figure 4: Relative error ε as a function of αn and ac for a simulation time of 5 years (e0 = e', a0 = a'), and ν0 = 0.
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3. Comparison with the Literature Results

The results of the proposed method are now compared with the analytical approximation of the E-sail
heliocentric dynamics given by Ref. [10]. In particular, the model of Ref. [10] is obtained by neglecting the
radial acceleration (r̈) in the equations of motion, and is based on the three following assumptions: 1) the
trajectory is two-dimensional; 2) the E-sail has a fixed attitude; 3) the parking orbit is circular. Recall that
the model discussed in this work is more general than that of Ref. [10] since it can be applied to a closed
parking orbit, that is, when e0 < 1.

For illustrative purposes, consider a 10 years orbit raising from a circular parking orbit of radius r0 = r⊕
using an E-sail with a characteristic acceleration ac = 0.1 mm/s2. According to Ref. [10], and bearing in
mind the results of Refs. [6, 7], assume a pitch angle αn = 45 deg, that is, a pitch angle that maximizes the
transverse component of the dimensionless propulsive acceleration T , see Fig. 1. Figures 5 and 6 show the
time variations of {r, vr, vθ}, and the osculating orbit parameters calculated with a numerical integration
(solid line), using the approximate method of Ref. [10] (dash line), and the proposed analytical method
(dash-dot line) with one rectification every six months. The corresponding spacecraft (polar) trajectory is
shown in Fig. 7. Note that the analytical method of Ref. [10] is quite accurate in predicting the secular
variations of the spacecraft osculating orbit parameters. However, the proposed model is superior in terms of
capability of accurately evaluating the short-term oscillations. When coupled with a rectification procedure,
it also shows an overall better performance with respect to the model of Ref. [10] while maintaining a
moderate computational cost. In fact, in our simulations (with two rectifications per year), the time saving
is about two order of magnitudes when compared to a numerical integration approach.
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Figure 5: Results for a 10 years orbit raising with ac = 0.1 mm/s2, αn = 45 deg, r0 = r⊕, and e0 = 0 (solid line = numerical
integration; dash line = analytical method of Ref. [10]; dash-dot line = proposed analytical method with 19 rectifications).
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4. Conclusions

An analytical approximate solution for the two-dimensional equations of motion of a spacecraft propelled
by a Electric Solar Wind Sail has been discussed. The mathematical method used to obtain the approxi-
mation is based on the procedure applied in a recent work focusing on solar sail-based spacecraft, but the
different relation between the propulsive thrust and the heliocentric distance produces new and significant
outcomes. The obtained results guarantee a substantial reduction of the computational costs when compared
to a numerical integration of the equations motion. The possibility of including a rectification procedure
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improves the method accuracy, and allows the designer to model possible sail attitude variations during the
flight. A comparison with a previous (approximate) method confirms the new model to show significant
improvements in terms of results accuracy and flexibility. Indeed, the procedure discussed in this work can
be applied also in case of elliptical parking orbit and is capable of predicting not only the secular variation
of the orbital parameters, but also their short-term oscillations.
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