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AN ELEMENTARY PROOF OF UNIQUENESS OF THE

PARTICLE TRAJECTORIES FOR SOLUTIONS OF A CLASS OF

SHEAR-THINNING NON-NEWTONIAN 2D FLUIDS

LUIGI C. BERSELLI AND LUCA BISCONTI

Abstract. We prove some regularity results for a class of two dimensional
non-Newtonian fluids. By applying results from [Dashti and Robinson, Non-
linearity, 22 (2009), 735-746] we can then show uniqueness of particle trajec-

tories.

1. Introduction

In this paper we consider the following system of partial differential equations

ut − ν0∆u− ν1 divS(Du) + (u · ∇)u +∇π = f in [0, T ]× Ω,(1.1a)

div u = 0 in [0, T ]× Ω,(1.1b)

u(0) = u0 in Ω,(1.1c)

where Ω denotes either a two-dimensional bounded domain or the two dimensional
flat torus, the vector field u = (u1, u2) is the velocity, the scalar π is the kinematic
pressure, the vector f = (f1, f2) is the external body force, u0 is the initial velocity,
and ν0, ν1 are positive constants. We denote by

Du :=
1

2
(∇u+∇uT ) = 1

2
(∂jui + ∂iuj) for i, j = 1, 2,

the symmetric part of ∇u, the convective term is (u · ∇)u :=
∑2

k=1 uk∂ku, and S
denotes the extra stress tensor, defined by

(1.2) S(Du) := (δ + |Du|)p−2Du, p ∈ [1, 2),

where δ is a non-negative constant. System (1.1) describes a shear-thinning ho-
mogeneous fluid and for an introduction to the mathematical theory see Málek,
Rajagopal, and Růžička [19]. We mainly study the problem, endowed with homo-
geneous Dirichlet boundary conditions

(1.3) u|Γ = 0 where Γ = ∂Ω,

but we give some remarks also on the periodic case.
The main goal of this paper is to study the problem of uniqueness for the particle

trajectories (or characteristics), which are solutions of the following Cauchy problem

(1.4)







dX(t)

dt
= u(X(t), t) t ∈ [0, T ],

X(0) = x ∈ Ω,

where u is the fluid velocity in (1.1). For the 3D Navier-Stokes equations the
problem of existence of particle trajectories and Lagrangian representation of the
flow started with the work of Foias, Guillopé, and Temam [13], and related results
of regularity in R

n are proved in Chemin and Lerner [6] by means of Littlewod-
Paley decomposition. The question of uniqueness has been recently addressed by
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elementary tools and in a more general context in Robinson et al. [10, 21, 22] and
it is strictly related with uniqueness for linear transport equations. We consider
here the same problem, in the case of shear-thinning fluids, described by (1.1).
To this end, we will study certain regularity properties of the solutions of (1.1),
investigating when the velocity will verify the appropriate hypotheses for uniqueness
results.

In particular, classical results concerning Lipschitz continuous fields u (which
generally can be verified checking that ∇u is bounded in the space variables) are
not easily applicable here, since such a regularity is very difficult to be proved,
even in the two dimensional case, for (1.1). We recall that, restricting to the two
dimensional case, some C1,γ-results are obtained in Kaplický, Málek, and Stará [14,
15] in the stationary case. Early results in the time dependent case (but not up-to-
the-boundary) are those by Seregin [23], while results in the space-periodic time-
dependent case have been obtained in [16]. We observe that essentially all the above
results require the extra-stress tensor S to be slightly smoother than that in (1.2).
In particular, it is requested that the stress-tensor is replaced, for instance, by

S(Du) = (δ+|Du|2) p−2

2 Du. In any case we study the regularity up-to-the-boundary
with non-smooth initial data and our results, proved in an elementary way, are
original. Moreover, the difficulties appearing in the 3D case seem completely out
of the current mathematical knowledge for such fluids, and this explains why we
restrict to the two dimensional case.

Since we want to have elementary proofs (in order to possibly extend the results
to the widest possible class of solutions and stress-tensors) we will work with the
classical energy-type methods. Concerning uniqueness of particle trajectories, there
have been some recent improvements, strictly related with the Osgood criterion
and with Log-Lipschitz properties of Sobolev functions W s+1,q(Rd) in the case of
limiting Sobolev exponents such that q = d

s . In particular we will use the result
below, proved in [10, Theorem 2.1].

Theorem 1.1. Let Ω be either the whole space R
d, d ≥ 2, a periodic d-dimensional

domain, or an open bounded subset of Rd with a sufficiently smooth boundary. Let
assume that for some p > 1

u ∈ Lp(0, T ;W
d−2

2
,2(Ω)) and

√
t u ∈ L2(0, T ;W

d+2

2
,2(Ω)),

with u|Γ = 0, when Ω is a domain with boundary. Then, the Cauchy problem (1.4)
has a unique solution in [0, T ].

The latter result shows that certain (slightly weaker than C1,γ) results of Sobolev
space-regularity can be used to obtain uniqueness for (1.4). On the other hand, the
W 2,2(R2) regularity for fluid with shear-dependent viscosity is another non-trivial
task (while in 3D proving u ∈ W 5/2,2(R3), seems at the moment out of sight). Some
recent results (in the stationary case) for second-order space-derivatives appeared
in [2, 4, 9] even if the square integrability of second order derivatives is not reached
in general domains, or if certain limitations on the smallness of the force are not
satisfied. For the non-stationary case, we recall the result in the space periodic
setting (obtained uniformly in δ ≥ 0) from [5, 11].

We also point out that one of the main technical obstructions is represented
by the pressure and the associated divergence-free constraint. In the case of the p-
Laplacian systems, in fact, the recent results in Beirão da Veiga and Crispo [3] show
that u ∈ W 2,q(Ω), for arbitrary q, if f is smooth, and under certain restrictions on
the range of p ∈ (1, 2). These latter results are proved in the stationary case, they
have no counterpart for the p-Stokes system, and most likely they can be adapted
to the time-dependent case.



UNIQUENESS OF PARTICLE TRAJECTORIES FOR NON-NEWTONIAN 2D FLUIDS 3

We point out that in the case of non-Newtonian fluids many features of the
problem are critical: The type of boundary conditions, the range of p, and if the
parameter δ is strictly larger than zero. We will discuss later on some of the
technical issues of the problem and we will explain why we have to reduce to the
2D case with ν0, δ > 0. We start by considering the easier case of the periodic
setting where Ω is the flat 2D torus T2 := R

2/2πZ and we will prove the following
result.

Proposition 1.1. Let ν0 > 0, δ ≥ 0, and p ∈ (1, 2]. Let be given u0 ∈ L2(T2) such
that div u0 = 0 and f ∈ L2(0, T ;L2(T2)). Then, weak solutions to (1.1) satisfy√
t u ∈ L2(0, T ;W 2,2(T2)) and hence problem (1.4) admits a unique solution.

We emphasize that the assumption ν0 > 0 is crucial in our method. When ν0 = 0
it is possible to prove a regularity result that, although it is not useful to get an
application of Theorem 1.1, seems interesting by itself. See Prop. 3.1, cf. Kost [17].

In the Dirichlet case the problem of regularity is more delicate. We will consider
problem (1.1) in a domain with flat boundary. We first prove a regularity result,
by using techniques similar to those used in [8] and formerly introduced, for the
case p > 2, in [1]. With smooth data, we have the following result.

Proposition 1.2. Let δ > 0, ν0 > 0, p ∈
[

3
2 , 2

]

, u0 ∈ W 2,2(Ω) ∩W 1,2
0 (Ω) with

div u0 = 0, and f ∈ W 1,2(0, T ;L2(Ω)). Then, weak solutions to Problem (1.1)-(1.3)
satisfy

(1.5)
‖ut‖L∞(0,T ;L2) + ‖∇u‖L∞(0,T ;L2(Ω)) + ‖∇π‖L2(0,T ;L2)

+ ‖∇ut‖L2(0,T ;L2) + ‖D2u‖L2(0,T ;L2) ≤ C,

where C depends on p, δ, ν0, ν1, ‖f‖W 1,2(0,T ;L2), ‖u0‖2,2, T , and Ω.

Some hypotheses can be relaxed, since the time regularity is unnecessary for
the proof of uniqueness of particle trajectories, but the arguments used to prove
Proposition 1.2 will play a fundamental role to demonstrate our main uniqueness
criterion for the problem (1.4). The main result of this paper reads as follows:

Theorem 1.2. Let δ > 0, ν0 > 0, p ∈
[

3
2 , 2], u0 ∈ L2(Ω) with div u0 = 0, such that

(u0 · n)|Γ = 0, and f ∈ L2(0, T ;L2(Ω)). Then, weak solutions to (1.1)-(1.3) satisfy√
t u ∈ L2(0, T ;W 2,2(Ω)), and consequently (1.4) admits a unique solution.

Plan of the paper. In Section 2 we introduce the notation and we give some
preliminary results. In Section 3, we consider the space-periodic setting and we
prove Proposition 1.1. Thereafter, in Section 4, we prove a preliminary space-time
regularity result for the solutions of (1.1)-(1.3) and then we demonstrate Proposi-
tion 1.2. Finally, in Section 5, we give the proof of Theorem 1.2.

2. Preliminaries and basic results

Let us introduce the notation related especially to the problem (1.1) with Dirich-
let boundary conditions. The needed assumptions or changes for the space periodic
case are specified in Section 3.

Throughout the article, when Ω is a bounded domain with boundary, it will be
a two dimensional cube Ω =]− 1, 1[2 and we denote by Γ the two opposite sides in
the x2 direction

Γ := {x = (x1, x2) : |x1| < 1, x2 = −1} ∪ {x = (x1, x2) : |x1| < 1, x2 = 1},
We use the following boundary conditions

(2.1)

{

u|Γ = 0,
u is 2-periodic w.r.t x1.
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Here, x1 represents the tangential direction to Γ and this idealized setting of a
“periodic strip” corresponds to the half-space, but without complications at infinity.

Given q ≥ 1, by Lq(Ω), we indicate the usual Lebesgue space with norm ‖ · ‖q.
Moreover, by W k,q(Ω), k a non-negative integer and q as before, we denote the

usual Sobolev space with norm ‖ · ‖k,q. We also denote by W 1,q
0 (Ω) the closure of

C∞
0 (Ω) in W 1,q(Ω) and by W−1,q′(Ω), q′ = q/(q − 1), the dual of W 1,q

0 (Ω) with
norm ‖ · ‖−1,q′ . Let X be a real Banach space with norm ‖ · ‖X . We will use the
customary spaces W k,q(0, T ;X), with norm denoted by ‖ · ‖Wk,q(0,T ;X), recalling

that W 0,q(0, T ;X) = Lq(0, T ;X). We will also use the notation ΩT := Ω × (0, T )
and we will not distinguish between scalar and vector fields and the symbol 〈 · , · 〉
will indicate a duality pairing. Here and in the sequel, we denote by C positive
constants that may assume different values, even in the same equation. We also
define

Vq :=
{

v ∈ W 1,q(Ω) : ∇ · v = 0, v|Γ = 0, v is 2-periodic w.r.t. x1
}

,

with dual space V ′
q . Since the extra-stress tensor S is a function not of the gradient,

but of the deformation tensor (in order to have frame invariant equations) we recall
a Korn-type inequality, see [8]

Lemma 2.1. There exists a positive constant C = C(Ω) such that

‖v‖q + ‖∇v‖q ≤ C‖Dv‖q, for each v ∈ Vq.

We write f ≃ g, if there exist c0, c1 > 0 such that c0f ≤ g ≤ c1f . When
considering the tensor S(D) = (δ+ |Dsym|)p−2Dsym, introduced in (1.2) (where D
is a second order tensor and Dsym its symmetric part) it can be easily checked that
for any second order tensor C, the following relations are verified

2
∑

i,j,k,l=1

∂klSij(D)CijCkl ≥ (p− 1)(δ + |Dsym|)p−2|C|2,(2.2a)

|∂klSij(D)| ≤ (3− p)(δ + |Dsym|)p−2.(2.2b)

The symbol ∂klSij represents the partial derivative ∂Sij/∂Dkl of the (i, j)-component
of S with respect to the (k, l)-component of the underlying space of 2 × 2 matri-
ces. Monotonicity and growth properties of S are characterized in the following
standard lemma.

Lemma 2.2. Assume that p ∈ (1,∞) and δ ∈ [0,∞). Then, for all A,B ∈ R
2×2

there holds
(

S(A)− S(B)
)

· (Asym −Bsym) ≃ (δ + |Bsym|+ |Asym|)p−2|Asym −Bsym|2,
|S(A)− S(B)| ≃ (δ + |Bsym|+ |Asym|)p−2|Asym −Bsym|,

where the constants c0, c1 > 0 depend only on p, and are independent of δ ≥ 0.

From the elementary inequality ap ≤ a2bp−2 + bp, valid for all 0 ≤ a, 0 < b, and
p ∈ [1, 2], we get the relation

(2.4) δ
p

2 + t
p

2 ≃ (δ + t)
p−2

2 t+ δ
p

2 , δ, t ≥ 0

with constants depending only on p (see [5, Corollary 2.19]).
Since in the Dirichlet case we need to handle in a different way tangential and

normal derivatives, we denote by D2u the set of all the second-order partial deriva-
tives of u. In addition, the symbol D2

∗u denotes all partial derivatives ∂2ikuj , except
for the derivative ∂222u1, namely

|D2
∗u|2 := |∂22u2|2 +

2
∑

i, j, k = 1
(i, k) 6= (2, 2)

|∂2ikuj|2.
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We introduce the following quantities strictly related to the stress tensor S and
coming naturally in the problem, when using the techniques introduced in [2, 11, 19]:

I1(u) :=
∫

Ω

(δ + |Du|)p−2|∂1Du|2dx,(2.5a)

I(u) :=
∫

Ω

(δ + |Du|)p−2|∇Du|2dx,(2.5b)

J (u) :=

∫

Ω

(δ + |Du|)p−2|Dut|2dx,(2.5c)

where I is obtained by integration by parts when testing the extra stress-tensor S
with −∆u (and this is possible in the periodic-case); a multiple of I1 is obtained
testing with −∂11u and the calculations are possible in the flat domain; Finally
a multiple of J is obtained testing with utt and calculations are valid also in the
Dirichlet case, for a generic domain.

We will also use this classical result, see Nečas [20].

Lemma 2.3. If it holds ∇g = divG, for some G ∈ (Lq(Ω))2×2, for 1 < q < +∞
then

∥

∥

∥
g −

∫

Ω

g(x) dx
∥

∥

∥

q
≤ c‖G‖q.

Let us recall the definition of weak solution to the Problem (1.1)-(2.1).

Definition 2.1. Let T > 0 and assume that f ∈ L2(0, T ;V ′
2). We say that u is a

weak solution of problem (1.1) if:

u ∈ L2(0, T ;V2) ∩ L∞(0, T ;L2(Ω)),(2.6a)

ut ∈ L2(0, T ;V ′
2),(2.6b)

∫

Ω

u(t)ϕdx + ν0

∫ t

0

∫

Ω

∇u(s)∇ϕdxds + ν1

∫ t

0

〈

S(Du(s)),Dϕ
〉

ds

−
∫ t

0

∫

Ω

(u(s) · ∇)ϕu(s) dxds =

∫

Ω

u0 ϕdx +

∫ t

0

〈f(s), ϕ〉 ds ∀ϕ ∈ V2.

(2.6c)

Due to the fact that ν0 > 0, the existence of weak solutions follows for all p ≥ 1
in a standard way, and one has not to resort to very sophisticated tools as in
Diening, Růžička, and Wolf [12]. We will come back later on, for the motivation on
this assumption on ν0. In particular, we do not have any further restriction on p
and the proof follows the same lines of the classical work on monotone operators,
as summarized in Lions [18]. The result below is part of the folklore associated
with non-Newtonian fluids. We will give a sketch of the proof since some of the
calculations will be used many times in the sequel.

Theorem 2.1. Let be given ν0, ν1 > 0, p ∈ [1, 2], u0 ∈ L2(Ω) with div u0 = 0
and (u0 · n)|Γ = 0, and f ∈ L2(0, T, V ′

2). Then, there exists a unique solution u
to (1.1)-(2.1) satisfying (2.6a)-(2.6c). Moreover, the following estimates are verified

‖u‖2L∞(0,T ;L2) + ν0‖∇u‖2L2(0,T ;L2) ≤ C

‖ut‖2L2(0,T ;V ′

2
) ≤ C,

where C = C(p, δ, ν0, ν1, ‖f‖L2(0,T ;V ′

2
), ‖u0‖2, T,Ω).

Proof. We deduce the a priori estimates on which the existence of weak solutions
to (1.1)-(2.1) is based. More properly, one should consider approximate Galerkin
solutions defined as follows. Let {ωr}, with r ∈ N, be the eigenfunctions of the
Stokes operator and let {λr} be the corresponding eigenvalues; we define Xm :=
span{ω1, . . . , ωm} and Pm is the orthogonal projection operator over Xm. We will
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seek approximate functions um(t, x) =
∑m

r=1 c
m
r (t)ωr(x) as solutions of the system

of equations below, for all 1 ≤ r ≤ m, t ∈ [0, T ]
∫

Ω

[

umt ω
r + ν0∇um∇ωr + ν1S(Dum)Dωr + (um · ∇)um ωr

]

dx = 〈f, ωr〉,

um(0) = Pmu0.

Taking the L2-product of (1.1a) with um, using suitable integrations by parts and
Young inequality we get

1

2

d

dt
‖um‖22 + ν0‖∇um‖22 +

ν1
2

∫

Ω

(δ+|Dum|)p−2|Dum|2dx

≤ ν0
2
‖∇um‖22 +

1

2ν0
‖f‖2V ′

2
,

Using (2.4) and integrating in time we arrive at the following inequality

‖um(t)‖22 + ν0

∫ t

0

‖∇um(s)‖22 ds+ Cν1

∫ t

0

‖Dum(s)‖pp ds

≤ ‖u0‖22 +
1

ν0

∫ t

0

‖f(s)‖2−1,2 ds+ C(p)ν1δ
p,

for a.e. t ∈ [0, T ]. We estimate, by comparison, the time derivative. The only term
which requires some care is the extra-stress tensor S. Since p ≤ 2 we get

∫ T

0

〈S(Dum),Dϕ〉 ds ≤ ‖S(Dum)‖L2(ΩT )‖∇ϕ‖L2(ΩT )

≤ ‖Dum‖p−1
L2p−2(ΩT )‖∇ϕ‖L2(ΩT )

≤ C(T,Ω)‖∇um‖p−1
L2(ΩT )‖∇ϕ‖L2(ΩT ).

Whence, by standard calculations

(2.7)

∫ t

0

‖umt (s)‖2−1,2 ds ≤ C,

for a constant C depending on p, ν0, ν1, ‖f‖L2(0,T ;V ′

2
), ‖u0‖2, T , and Ω. This proves

that if um is a Galerkin approximate solution then, uniformly in m ∈ N,

um ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;V2) and umt ∈ L2(0, T ;V ′
2).

Note that we can extract sub-sequences converging weakly to some u in L2(0, T ;V2),
weakly* in L∞(0, T ;L2(Ω)) and, by Aubin-Lions theorem, strongly in L2(ΩT ), and
a.e. in ΩT . We have enough regularity to pass to the limit in the convective term.
Moreover, since S(Dum) is bounded uniformly in L2(ΩT ), it follows that S(Dum)⇀
A for some A in L2(ΩT ). (Observe that without the Laplacian term we would have

only a bound in Lp′

(ΩT )). We have now to check that A = S(Du). This is obtained
with the monotonicity trick, see e.g. [18, §2-5.2]. By usual Sobolev embeddings
(since we are in two dimensions) the function t 7→

∫

Ω
(u ·∇)u u dx ∈ L1(0, T ), hence

we can write the energy equality between any couple 0 ≤ s0 ≤ s ≤ T

(2.8)
1

2
‖u(s)‖22 + ν0

∫ s

s0

‖∇u‖22 dτ + ν1

∫ s

s0

〈A, u〉 dτ =
1

2
‖u(s0)‖22 +

∫ s

s0

(f, u) dτ.

Defining for φ ∈ L2(0, T ;V2) (a test function with the same regularity of u)

Xm
s := ν1

∫ s

0

〈S(Dum)− S(Dφ),Dum −Dφ〉 dτ + ν0

∫ s

0

‖∇um‖22 dτ +
1

2
‖um(s)‖22,
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it follows, by using that S is monotone and by semi-continuity of the norm, that
lim infm Xm

s ≥ ν0
∫ s

0
‖∇u‖22 dτ + 1

2‖u(s)‖22, and also that

lim
m

Xm
s =

∫ s

0

(f, u) +
1

2
‖u0‖22 − ν1

∫ s

0

〈A,Dφ〉 dτ − ν1

∫ s

0

〈S(Dφ),Du −Dφ〉 dτ.

Hence, by using the equality (2.8) we get

ν1

∫ s

0

〈A− S(Dφ),Du −Dφ〉 dτ ≥ 0 a.e. s ∈ [0, T ].

We fix φ = u − λψ for ψ ∈ L2(0, T ;V2) and λ > 0. Finally, letting λ → 0+ the
thesis follows.

It is important to point out that the weak solution above constructed is unique.
Let us suppose that we have two solutions u1 and u2 corresponding to the same
data. We obtain the following inequality for U := u1 − u2 (This follows by using
the usual interpolation inequalities as for the Navier-Stokes equations and since U
is allowed as test function, see Constantin and Foias [7])

‖U(t)‖22 + ν0

∫ t

0

‖∇U(s)‖22 ds+ ν1

∫ t

0

〈S(Du1)− S(Du2),Du1 −Du2〉 ds

≤ C

ν0

∫ t

0

‖∇u1(s)‖22‖U(s)‖22 ds.

Since S is monotone (cf. Lemma 2.2) the integral involving the extra stress-tensor
is non-negative. Using the Gronwall lemma and the energy estimate one obtains
that U ≡ 0. �

This latter result is very relevant since it allows to conclude that all the sequence
{um} converges to u. Moreover, if we have other a priori estimates on um, the extra-
regularity is inherited by weak solutions directly. This will be used in the proof of
Theorem 1.1. Observe also that, at moment, we do not have any information on
the pressure, apart that there exists as a distribution, by using De Rham theorem.

3. The space-periodic case

In this section we are concerned with the space-periodic case, that is Ω = T
2.

Each considered function w will satisfy w(x+2πei) = w(x), i = 1, 2, where {e1, e2}
is the canonical basis of R2. We also require all functions to have vanishing mean
value, to ensure the validity of the Poincaré inequality. We prove some regularity
results and we will show why the hypothesis ν0 > 0 seems necessary in many
arguments. We define Vper(Ω) as the space of vector-valued functions on Ω that are
smooth, divergence-free, and space periodic with zero mean value. For 1 < q < ∞
and k ∈ N, set

W k,q
div (Ω) :=

{

closure of Vper(Ω) in W k,q(Ω)
}

,

endowed, with the usual norms.
In the space periodic setting many calculations are simpler since we can use

−∆u as test function (now formally but the procedure goes through the Galerkin
approximation). Since in the 2D space-periodic case

∫

Ω
(u · ∇)u∆u dx = 0 we get

(3.1)
d

dt
‖∇u‖2 + ν0‖∆u‖2 + ν1I(u) ≤ C‖f‖2,

hence, if we are able to construct such a solution (this is not trivial at all due to

some technical issues when passing to the limit in
∫ T

0 I(um(s)) ds, for a fixed T > 0)
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that and if ν0 = 0 we obtain as higher order estimate
∫ T

0

I(u) dt =
∫ T

0

∫

T2

(δ + |Du|)p−2|∇Du|2 dxdt < +∞.

We recall the following lemma, which is an adaption of [5, Lemma 4.4] to the two
dimensional case.

Lemma 3.1. Let p ∈ (1, 2], δ ∈ (0,∞), and ℓ ∈ [1, 2). Then, for all sufficiently
smooth functions u with vanishing mean value over Ω, the following relations hold
true

‖u‖p2,ℓ ≤ c
(

I(u) + δp
)

,

Hence, the information on the regularity in the space variable which we can
extract from (3.1), in the case ν0 = 0, could be at most

u ∈ W 2,ℓ(T2) ∀ ℓ < 2, a.e. t ∈ [0, T ].

This is not enough to employ Thm. 1.1 and explains the introduction of the hy-
pothesis ν0 > 0.

Proof of Proposition 1.1. In the light of the above observations the proof follows as
in the 2D Navier-Stokes equations, see[10]. We test the equations by −t∆um and
we have

d

dt
(t ‖∇um‖2) + ν0 t ‖∆um‖2 + ν1 t I(um) ≤ C t ‖f‖2 + ‖∇u‖2.

Hence, no matter of the non-negative term coming from the extra-stress tensor,
integrating in time over [0, T ] we have that

√
t um ∈ L2(0, T ;W 2,2(T2)). Due to

uniqueness of the solution the whole sequence {um} converges to u and by lower-
semicontinuity of the norm we obtain that

√
t u ∈ L2(0, T ;W 2,2(T2)). �

For the sake of completeness, we recall that in the periodic 2D case, with ν0 = 0
it is possible to prove the following result of existence of regular solutions, see
Kost [17], which is an adaption of those in [5] for the 3D case. (Observe that in
absence of the Laplacian also the existence and uniqueness of weak solutions is
more delicate and the limit process on Galerkin solutions requires some care). The
following result, which is of interest by itself, is not enough for our purposes of
studying uniqueness for solutions to (1.4).

Proposition 3.1. Let be given δ ∈ [0, δ0], for some δ0 > 0, set ν0 = 0, ν1 >
0, and let p ∈ (1, 2]. Given T > 0, assume that f ∈ L∞(0, T ;W 1,2(T2)) ∩
W 1,2(0, T ;L2(T2)). Let u0 ∈ W 2,2(T2) be such that div u0 = 0 and divS(Du0) ∈
L2(T2). Then, there is a time 0 < T ′ ≤ T (depending on the data of the prob-
lem) such that the system (1.1), has a strong solution u on [0, T ′] satisfying, for
r ∈ (4/3, 2),

u ∈ Lq(0, T ′;W 2,r(T2)) ∩ C(0, T ′;W 1,q(T2)), ∀ q <∞.

Remark 3.1. One can obtain further regularity results for ut and also for ∇π (the
latter if δ > 0).

4. Space-time regularity in the Dirichlet case

In this section we consider the time evolution problem with Dirichlet boundary
conditions and we prove a result of regularity for smooth data. Then, we will relax
some of the assumptions to prove the main result of the paper. We start by showing
a first regularity result for the time derivative of the solutions to the problem (1.1)
with Dirichlet boundary conditions. We prove now some results by using as test
functions first and second order time derivatives of the velocity. These are legal test
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functions, since if u is divergence-free and u|Γ = 0, then ∂ku
∂tk

shares the same two
properties, for all k ∈ N. In particular, the following result is valid in any smooth
and bounded domain, while the hypothesis of flat boundary will be used for the
W 2,2(Ω)-regularity.

Lemma 4.1. Let p ∈ (1, 2], δ > 0, f ∈W 1,2(0, T ;L2(Ω)), u0 ∈W 2,2(Ω) ∩ V2, and
let u be a weak solution of problems (1.1)-(2.1). Then,

(4.1)
‖ut‖2L∞(0,T ;L2) + ‖∇u‖2L∞(0,T ;L2) + ν0‖∇ut‖2L2(0,T ;L2)

+ ν1‖J (u)‖L1(0,T ) ≤ C,

where the constant C depends on p, δ, ν0, ν1, ‖f‖W 1,2(0,T ;L2), ‖u0‖2,2, T , and Ω.

As in the previous result we only prove the a priori estimates. A complete proof
can be obtained through a Galerkin approximation and for the reminder of this
section we drop the superscript “m”. We also define

M(t) :=

∫ t

0

(

δ + s)p−2s ds ≥ 0, for t ≥ 0.

Observe that M(t) ≃ (δ + t)p−2t2 and also (δ + t)p−2t2 ≤ tp, with 1 ≤ p ≤ 2. This
shows that

(4.2) 0 ≤ M(u) :=

∫

Ω

M(|Du|) dx ≤ C(p)‖Du‖pp, with 1 ≤ p ≤ 2.

Proof of Lemma 4.1. First, we multiply (1.1a) by ut and integrate by parts. We
observe that taking the duality of − divS(Du) against ut, we get

(4.3) −
〈

divS(Du), ut
〉

=
〈

S(Du),Dut
〉

=
d

dt
M(u).

By suitable integrations (since div ut = 0) we obtain

‖ut‖22 +
ν0
2

d

dt
‖∇u‖22 + ν1

d

dt
M(u) =

∫

Ω

(

f ut − (u · ∇)u ut
)

dx.

By using Hölder and Gagliardo-Nirenberg inequalities, with the boundedness of the
kinetic energy, we get, for all ε > 0

∣

∣

∣

∣

∫

Ω

(u · ∇)u ut dx

∣

∣

∣

∣

≤ ‖u‖4‖∇u‖2‖ut‖4

≤ C‖u‖
1
2

2 ‖∇u‖
1
2

2 ‖∇u‖2‖ut‖
1
2

2 ‖∇ut‖
1
2

2

≤ cε
(

‖∇u‖22 + ‖ut‖22‖∇u‖22
)

+ ε‖∇ut‖22,

Thus, we obtain the following differential inequality

(4.4) ‖ut‖22+
d

dt

(

ν0‖∇u‖22+ν1M(u)
)

≤ cε
(

‖∇u‖22+‖ut‖22‖∇u‖22+‖f‖22
)

+ε‖∇ut‖22,

which we clearly cannot use directly, due to the lack of control for ∇ut.

Remark 4.1. Another path will be that of using improved estimates for ∇u to
estimate the convective term, see the last section.

We take now the time derivative of (1.1a), multiply by ut and integrate by parts
(recalling that

∫

Ω
(u · ∇)ut ut dx = 0) to obtain

(4.5)
1

2

d

dt
‖ut‖22+ν0‖∇ut‖2+ν1〈∂t

(

S(Du)
)

,Dut〉 ≤
∣

∣

∣

∣

∫

Ω

(

(ut · ∇)u ut + ft ut

)

dx

∣

∣

∣

∣

.
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By (2.2a) the term involving S in (4.5) is non-negative being estimated from below
by a multiple of J (u) ≥ 0. Let us focus on the right-hand side of (4.5). By using
Hölder and interpolation inequality, and the energy estimate we get, for each η > 0,

∣

∣

∣

∣

∫

Ω

(ut · ∇)u ut dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

(ut · ∇)ut u dx

∣

∣

∣

∣

≤ ‖ut‖4‖∇ut‖2‖u‖4

≤ C‖ut‖
1
2

2 ‖∇ut‖
3
2

2 ‖u‖
1
2

2 ‖∇u‖
1
2

2

≤ cη‖∇u‖22‖ut‖22 + η‖∇ut‖22,
hence, choosing η > 0 small enough we get

(4.6)
d

dt
‖ut‖22 + ν0‖∇ut‖22 + ν1J (u) ≤ C

(

‖∇u‖22‖ut‖22 + ‖ft‖22
)

.

Summing up (4.4)-(4.6) and choosing ε > 0 small enough we get finally

d

dt

(

‖ut‖22 + ν0‖∇u‖22 + ν1M(u)
)

+ ‖ut‖22 + ν0‖∇ut‖22 + ν1J (u)

≤ C
(

‖∇u‖22‖ut‖22 + ‖∇u‖22 + ‖f‖22 + ‖ft‖22
)

.

To integrate over [0, T ] we need to make sense to ‖ut(0, ·)‖2. From the assumptions
on the data, the fact that δ > 0, and um(0) = Pmu0 we easily get (cf. [5, § 5]) that

‖umt (0)‖2 ≤ c
(

‖um0 ‖22,2 + ‖fm(0)‖2
)

.

Recall that we are working on the finite dimensional approximation um and taking
the limit m → +∞. With Gronwall lemma and by using the fact that ∇u ∈
L2(0, T ;L2(Ω)), we get for a.e t ∈ [0, T ]

‖ut(t)‖22 + ν0‖∇u(t)‖22+
∫ t

0

(

‖ut(s)‖22 + ν0‖∇ut(s)‖22 + J (u(s))
)

ds

≤ C(ν0, ν1, δ, T, ‖f‖W 1,2(0,T ;L2), ‖u0‖2,2,Ω),
hence the thesis. �

Remark 4.2. The hypotheses on the external force can be slightly relaxed, but this
is inessential in our treatment.

We now prove Proposition 1.2. For the reader’s convenience we split the proof
into two parts. First, we perform a preliminary study of the system obtained
removing the convective term (u · ∇)u from (1.1a).

ut − ν0∆u− ν1 div S(Du) +∇π = f in [0, T ]× Ω,(4.7a)

div u = 0 in [0, T ]× Ω,(4.7b)

u = 0 in [0, T ]× Γ,(4.7c)

u(0) = u0 in Ω,(4.7d)

and focusing on the role of the nonlinear stress-tensor. The system (4.7) can be
treated similarly to a steady state problem if we have good enough a priori esti-
mates on ut. We will then address the full problem (1.1)-(2.1), by adding suitable
estimates for the convective term.

Lemma 4.2. Let ν0 > 0, δ > 0 and p ∈
[

3
2 , 2

]

. Given T > 0, assume that

u0 ∈ W 2,2(Ω) ∩ V2 and f ∈ W 1,2(0, T ;L2(Ω)). Then, problem (4.7)-(2.1) admits a
unique solution, such that (1.5) holds true.

Proof. We adapt to the time-dependent case a technique with three intermediate
steps taken from [2, 8]: In the first step we bound the tangential derivative of
velocity and pressure; In the second step we estimate the normal derivative of the
velocity field; In the last step we estimate the normal derivative of the pressure.
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Again we merely prove the a priori estimates. Observe that for this simpler
problem without convection, the same existence proved in Theorems 2.1 and reg-
ularity from Lemma 4.1 clearly hold true (this is particularly relevant for what
concerns ut).

Step 1. We first prove that the following estimates, concerning the tangential
derivatives, hold true

(4.8) ν0‖∇∂1u‖2 + ν0‖∂222u2‖2L2(0,T ;L2) + ‖∂1π‖L2(0,T ;L2) ≤ C,

where C depends on p, δ, ν0, ν1, ‖f‖W 1,2(0,T ;L2), ‖u0‖2,2, T , and Ω.

We now use the particular features of the flat domain. Multiplying equation (4.7a)
by −∂211u and integrating by parts, it follows that

1

2

d

dt
‖∂1u‖22 + ν0‖∇∂1u‖22 + (p− 1)ν1

∫

Ω

(δ + |Du|)p−2|∂1Du|2 dx ≤ ‖f‖2 ‖∂211u‖2.

By applying Young inequality and using relation (2.5a), we get a.e. in [0, T ]

(4.9)

‖∂1u(t)‖22 +
∫ t

0

(

ν0‖∇∂1u(s)‖22 + ν1I1(u(s))
)

ds

≤ C
(

‖∇u0‖2 +
1

ν0

∫ t

0

‖f(s)‖22 ds
)

,

and, since div u = 0, ∂222u2 = −∂221u1 and the estimate on ∂222u2 follows.
Let us focus on the pressure term. Differentiating the equation (4.7a) with

respect to the tangential direction x1, one has that

∇∂1π = ν0 div ∂1∇u + ν1 div ∂1
[

(δ + |Du|)p−2Du
]

− ∂1ut + ∂1f a.e. in ΩT .

We observe that ∂1ut = div

(

∂tu1 0
∂tu2 0

)

and ∂1f = div

(

f1 0
f2 0

)

. Hence to apply

Lemma 2.3 to estimate ∂1π, we only have to bound the term ∂1
[

(δ+ |Du|)p−2Du
]

.
A direct computation gives

∂1
[

(δ + |Du|)p−2Du
]

= (δ + |Du|)p−2∂1Du+ (p− 2)(δ + |Du|)p−3(Du · ∂1Du)
Du
|Du| ,

and consequently
∣

∣∂1
[

(δ + |Du|)p−2Du
]
∣

∣ ≤ (3− p)(δ + |Du|)p−2|∂1Du| a.e. in ΩT .

Therefore, by comparison ∂1
[

(δ + |Du|)p−2Du
]

∈ L2(Ω) and it follows that
∫

Ω

∣

∣∂1
[

(δ + |Du|)p−2Du
]
∣

∣

2
dx ≤ c δp−2 I1(u) a.e. t ∈ [0, T ].

By applying Lemma 2.3 we have that

‖∂1π‖22 ≤ ‖ut‖22 + ν0‖∂1∇u‖22 + ν1 C δ
p−2 I1(u) + ‖f‖22 a.e. t ∈ [0, T ],

from which, integrating in time over [0, T ], using (4.9) and recalling the bounds
previously proved on ut, ∂1∇u, and I1, then (4.8) follows.

Step 2. To bound ‖∂222u1‖L2(0,T ;L2), we consider a narrower range of values for

the parameter p. Under the same hypotheses as before, but for p ∈
[

3
2 , 2

)

, we have

‖∂222u1‖L2(0,T ;L2) ≤ C,

where the constant C depends on p, δ, ν0, ν1, ‖f‖W 1,2(0,T ;L2), ‖u0‖2,2, T , and Ω.

We follow the main lines established in the proof of [8, Lemma 3.3]. By calcu-
lating ∂2

[

(δ + |Du|)p−2Du
]

, the first equation in (4.7a) can be written as

(4.10) α1∂
2
22u1 = −F1 − f1 + ∂tu1 + ∂1π,
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where

α1 := ν0 +
ν1
2
(δ + |Du|)p−2 + ν1(p− 2)

(δ + |Du|)p−3

|Du| (Du)12(Du)12,

and

F1 :=
[

ν0 + ν1(δ + |Du|)p−2
]

∂211u1 +
ν1
2
(δ + |Du|)p−2∂212u2

+ ν1(p− 2)
(δ + |Du|)p−3

|Du|
[

2
∑

k,l=1

(Du)kl∂1(Du)kl(Du)11 + ∂222u2(Du)22(Du)12

+
∂212u2
2

(Du)12(Du)12
]

.

By direct calculations it can be easily seen that

|F1| ≤ C
[

ν0 + ν1

(

p− 3

2

)

(δ + |Du|)p−2
]

|D2
∗u| a.e. in ΩT

and by using that p ≥ 3
2 we get

α1 ≥
[

ν0 + ν1

(

p− 3

2

)

(δ + |Du|)p−2
]

≥ ν0 > 0.

Division of both sides of (4.10) by α1 is then legitimate and we infer that

|∂222u1| ≤ C
(

|D2
∗u|+

1

ν0

(

|∂1π|+ |∂tu1|+ |f1|
)

a.e. in ΩT .

Therefore, squaring and integrating over ΩT we get
∫ T

0

‖∂222u1(s)‖22 ds ≤
C

ν0

∫ T

0

(

‖D2
∗u(s)‖22 + ‖∂1π(s)‖22 + ‖∂tu1(s)‖22 + ‖f1(s)‖22

)

ds,

which, by the previous results is finite. This finally shows that D2u ∈ L2(ΩT ).

Step 3. The final step, which is not strictly required for the particle trajectories
uniqueness, is the regularity of the normal derivative of pressure. Nevertheless, we
include it for the sake of completeness. Under the same hypotheses we have

‖∂2π‖L2(0,T ;L2) ≤ C,

where the constant C depends on p, δ, ν0, ν1, ‖f‖W 1,2(0,T ;L2), ‖u0‖2,2, T , and Ω.

By using the second equation in (4.7a), one can write

|∂2π| ≤ c
(

ν0 + ν1(p− 2)(δ + |Du|)p−2
)

|D2u|+ |∂2ut|+ |f2| a.e. in ΩT .

Hence, straightforward calculations lead to
∫ T

0

‖∂2π(s)‖22 ds ≤ c

∫ T

0

(

[

ν0 + ν1δ
2(p−2)

]

‖D2u(s)‖22 + ‖∂2ut(s)‖22 + ‖f(s)‖22
)

ds,

and the assertion follows as a consequence of the previous results. �

We finally prove the same regularity results also in presence of the convective
term. We use a perturbation argument, treating (u · ∇)u as a right-hand side in
equation (1.1a).

Proof of Proposition 1.2. Here, we use the a priori estimates obtained for the prob-
lem (4.7) with external body force

F := −(u · ∇)u+ f.

In the derivation of estimates for ut we used that ‖f‖W 1,2(0,T ;L2), while in Lemma 4.2

the estimates depend essentially on the L2(ΩT )-norm of the external force. Hence,
by using Lemma 4.1 it is then sufficient to estimate ‖(u · ∇)u‖L2(0,T ;L2) in terms
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of second order derivatives of u, to follow the same calculations in Step 1–3 of the
previous result.

By applying Hölder, Gagliardo-Nirenberg, and Young inequalities and the energy
estimate, we get for each ε > 0

(4.11)
‖(u · ∇)u‖2 ≤ ‖u‖4‖∇u‖4 ≤ c‖u‖

1
2

2 ‖∇u‖
1
2

2 ‖∇u‖
1
2

2 ‖D2u‖
1
2

2

≤ cε‖∇u‖22 + ε‖D2u‖2.

By using the same calculations as in the previous proposition and the a-priori
estimates in (4.1) –especially that ∇u ∈ L∞(0, T ;L2(Ω))– we have

∫ T

0

(

‖u‖22,2 + ‖π‖21,2
)

ds ≤ C

∫ T

0

(

‖f‖22 + ‖ut‖22 + ‖(u · ∇)u‖22
)

ds

≤ C(p, δ, ν0, ν1, ‖f‖W 1,2(0,T ;L2), ‖u0‖2,2, T,Ω, ε) + ε

∫ T

0

‖D2u‖22 ds,

and, by choosing ε > 0 small enough, we end the proof. �

As a consequence of the above result we have full L2-space-time regularity of
the solution up to second-order space-derivatives, hence the uniqueness of particle
trajectories. The result is not optimal in view of application to uniqueness of
trajectories, in the sense that some of the hypotheses can be slightly relaxed. For
instance ft ∈ L2(ΩT ) and u0 ∈ W 2,2(Ω) can be removed (at the price of less
regularity on ut) by following a slightly different path as we do in the next section.

5. Proof of Theorem 1.2

In this section we finally address the problem of the uniqueness of particle tra-
jectories under “minimal” assumptions on the data. We will show how the previous
regularity result, together with Theorem 1.1, allow us to prove Theorem 1.2.

Proof of Theorem 1.2. In the same way as in the proof of Lemma 4.2, we perform
separately the a priori estimates for the normal and tangential derivative of the
time-weighted

√
t um (which we call

√
t u). In particular, here we do not use a lot of

regularity on ut, but we have to face with a non-smooth u0. By adapting standard
weighted estimates, we multiply the equation (1.1a) by −t ∂211u. Integrating by
parts, and with Young inequality we obtain

1

2

d

dt

(

t ‖∂1u‖22
)

+ ν0 t ‖∇∂1u‖22 + (p− 1)ν1 t I1(u)

≤ ν0
2
t ‖∂211u‖22 +

C

ν0
t
(

‖(u · ∇)u‖22 + ‖f‖22
)

+ ‖∂1u‖22.

Integrating in time and using the energy estimate to bound
∫ t

0 ‖∂1u‖2 ds it follows

(5.1)

t ‖∂1u(t)‖22 + ν0

∫ t

0

s ‖∇∂1u(s)‖22 ds+ ν1

∫ t

0

s I1(u(s)) ds

≤ C

ν0

[

‖u0‖22 +
∫ t

0

s
(

‖(u(s) · ∇)u(s)‖22 + ‖f(s)‖22
)

ds
]

a.e. in [0, T ].
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We take now the L2-inner product of (1.1a) with t ut. By suitable integrations by
parts, and using (4.2)-(4.3) we reach

t ‖ut‖22 +
ν0
2

d

dt

(

t ‖∇u‖22
)

+ ν1
d

dt

(

tM(u)
)

≤ t

(∣

∣

∣

∣

∫

Ω

(u · ∇)u ut dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω

f ut dx

∣

∣

∣

∣

)

+ ν0 ‖∇u‖22 + C ν1 M(u)

≤ t

4

(

‖(u · ∇)u‖22 + ‖f‖22
)

+
t

2
‖ut‖2 + ν0‖∇u‖22 + C ν1‖Du‖pp.

Integrating this inequality in time, by appealing to the energy inequality and re-
calling that M(u) ≥ 0, it follows that for a.e. t ∈ [0, T ]

(5.2)

ν0 t ‖∇u(t)‖22 +
∫ t

0

s ‖ut(s)‖22 ds

≤ C

[

‖u0‖22 +
∫ t

0

s
(

‖(u(s) · ∇)u(s)‖22 + ‖f(s)‖22
)

ds

]

,

where C depends on p, δ, ν0, ν1, T , and Ω.
Let us now focus on the normal derivatives of u. Arguing as in Step 2 of the

proof of Lemma 4.2, and replacing f with f + (u · ∇)u, we infer that

|∂222u1| ≤ C
(

|D2
∗u|+

1

2ν0

[

|∂1π|+ |ut|+
∣

∣(u · ∇)u
∣

∣+ |f |22
])

a.e. in ΩT .

Then, squaring, multiplying by t, and integrating over (0, t)× Ω, we find

(5.3)

∫ t

0

s ‖∂222u1(s)‖2 ds

≤ C

ν0

∫ t

0

s
(

‖D2
∗u(s)‖22 + ‖∂1π(s)‖22 + ‖ut(s)‖22 + ‖(u(s) · ∇)u(s)‖22

)

ds,

To control
∫ t

0
s ‖∂1π(s)‖22 ds we proceed again as in Step 2 of the proof of Lemma 4.2.

Thus, for a.e. t ∈ [0, T ], the following inequality holds true

∫ t

0

s ‖∂1π(s)‖22 ds

≤ C

∫ t

0

s
(

‖ut(s)‖22 + ‖∂1∇u(s)‖22 + δp−2I1(u)(s) + ‖f(s)‖22 + ‖(u(s) · ∇)u(s)‖22
)

ds

≤ C
[

‖u0‖22 +
∫ t

0

s
(

‖(u(s) · ∇)u(s)‖22 + ‖f(s)‖22
)

ds
]

,

where we have used relations (5.1) and (5.2). Once again we apply (5.1), so that
relation (5.3) gives, for a.e. t ∈ [0, T ]

∫ t

0

s ‖∂222u1(s)‖22 ds ≤ C
[

‖u0‖22 +
∫ t

0

s
(

‖(u(s) · ∇)u(s)‖22 + ‖f(s)‖22
)

ds
]

,

where C depends on p, δ, ν0, ν1, T , and Ω. Summing up the above inequality
with (5.1) and (5.2), we get for a.e. t ∈ [0, T ]

t ‖∇u(t)‖22 + ν0

∫ t

0

s ‖D2u(s)‖22 ds

≤ C
[

‖u0‖22 +
∫ t

0

s
(

‖(u(s) · ∇)u(s)‖22 + ‖f(s)‖22
)

ds
]

,
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whit C depending on p, δ, ν0, ν1, T , and Ω. The convective term can be estimated
as in (4.11) and choosing ε > 0 small enough we get, for a.e. t ∈ [0, T ],

t ‖∇u(t)‖22 + ν0

∫ t

0

s ‖D2u(s)‖22 ds

≤ cε

∫ t

0

(

s ‖∇u(s)‖22
)

‖∇u(s)‖22 ds+ C(p, δ, ν0, ν1, ‖f‖L2(0,T ;L2), ‖u0‖2, T,Ω).

Hence, by using Gronwall inequality over [λ, T ] (for any λ > 0), letting λ → 0+,
and by using the energy inequality we get

∫ T

0

t ‖D2u(t)‖22 dt ≤ C(p, δ, ν0, ν1, ‖f‖L2(0,T ;L2), ‖u0‖2, T,Ω).

Then, the assertion follows by means of Theorem 1.1. �
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