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First-order correction to counter
the effect of eccentricity on the
hole-drilling integral method with
strain-gage rosettes
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Abstract
The offset between the hole and the centre of the strain-gage rosette is unavoidable, although usually small, in the hole-
drilling technique for residual stress evaluation. In this article, we revised the integral method described in the ASTM
E837 standard and we recalculated the calibration coefficients. The integral method was then extended by taking into
account the two eccentricity components, and a more general procedure was proposed including the first-order correc-
tion. A numerical validation analysis was used to consolidate the procedure and evaluate the residual error after imple-
menting the correction. The values of this error resulted limited to a few percentage points, even for eccentricities
larger than the usual experimental values. The narrow eccentricity limit claimed by the standard, to keep the maximum
error lower than 10%, can now be considered extended by approximately a factor of 10, after implementing the pro-
posed correcting procedure, proving that the effect of the eccentricity is mainly linear within a relatively large range.
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Introduction

Residual stresses can significantly influence the strength
of mechanical components, especially under cyclic fati-
gue loading.1 There are several experimental techniques
for measuring residual stresses.2 These include mechani-
cal methods (destructive or semi-destructive) based on
cuttings or local material removals to relieve the
embedded residual stresses, such as the contour
method,3 the ring core method4–6 and other specific
approaches adapted to the geometry of the components
investigated,7–11 or also combining the hole-drilling
method with the indentation.12 After the material has
been removed, a back calculation is required to obtain
the residual stress distribution that has been
relaxed.13,14 The hole-drilling method is the most popu-
lar and widely investigated.15,16 Its hardware is easily
implemented, it is relatively inexpensive and it directly
provides the stresses at a point; specifically, it averages
the stress on the small volume of the removed material.
Hole-drilling can be performed by measuring the entire
field of the relaxed deformation with optical methods17

both on the isotropic elastic materials, namely, steel or

other metallic alloys, and on the orthotropic materials
such as composite plates.18 However, the hole-drilling
technique is usually performed just with a strain-gage
rosette to measure the relaxed strains in the near area of
the drilled hole. There are many application examples
of this technique such as large components showing a
flat (or almost flat) surface,19 deep rolled or shot peened
flat specimens,20,21 and recently even on coated sur-
faces.22–25 The usual rosette for hole-drilling has three
grids angularly placed at 08, 2258, 908. Alternatively, the
08, 458, 908 grid pattern can be used without making any
difference, for the angular periodicity of the stresses,
unless a hole eccentricity is introduced. Figure 1 shows
the hole-drilling set-up with type A or type B three grid
rosettes according to the American Society for Testing
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and Materials (ASTM) standard. Besides the direction
2 at 458, rather than at 2258, type B has a smaller grid
width than grid length to prevent any geometry
interference.

After having measured and recorded the relaxed
strains, the integral method is usually considered for the
calculation of the residual stress distributions. The inte-
gral method was initially proposed by Schajer26,27 and
recently has been widely used and also conformed to
specific cases, such as medium thick plates28 and thin
plates,29 as well as being extended to optical methods.30

The ASTM E837-13a standard31 codifies the hole-
drilling integral method, with a strain-gage rosette. The
calculation proposed takes into account that a variable
distribution can be obtained, where the stresses are
assumed to be piecewise constant over each hole depth
increment. Then, the standard reports the calibration
coefficients (dimensionless and in matrix format) which
depend only on the geometry, thus enabling the resi-
dual stresses from the measured relaxed strains to be
calculated.

Error analysis is crucial for any residual stress
experimental technique; indeed, we recently proposed a
bending test rig for providing a validation concurrently
with the measure itself.32,33 Many investigations can be
cited from the literature considering different sources
of errors for the hole-drilling technique. The strain
measure uncertainty, which is the most important,34

can be reduced to some extent by following the regular-
ization procedure proposed by Schajer35 and then
implemented in the ASTM E837 starting from the 2008
issue. Another source of error affecting the hole-drilling
measures is the plasticity induced by the drilling,
for which we proposed a correction in a previous
study.36,37 The shape, radius and the position of the
hole are also the reasons for experimental uncertainty.
The flatness of the bottom surface was questioned by
Scafidi et al.38 and then by Nau and Scholtes,39 while
the problem of eccentricity was initially investigated
analytically by Ajovalasit40 for a thin workpiece where

a through-hole (plane stress) assumption can be used.
More recently, Beghini et al.41,42 introduced the influ-
ence function approach, for a blind hole in a thick
workpiece. The strain field was computed starting from
a database of numerical solutions, implementing a spe-
cific geometric configuration in which the components
of eccentricity are merely introduced as the geometry
parameters rather than being considered as a source of
error. The integral method according to the ASTM
E837 standard enables the residual stress calculation to
be easily implemented, but the presence of hole eccentri-
city is a limitation. The standard requires a nearly per-
fect concentricity between the hole and the rosette. The
prescribed maximum allowable eccentricity value is
0:004D so that the maximum eccentricity is 0:02mm
for the usual rosettes with D=5:13mm. The current
positioning accuracy is usually in the order of a few
hundredths of millimetres; thus, the eccentricity values
are sometimes higher than this standard limitation. The
numerical simulations, as reported below, showed that
an eccentricity in the order of these values can introduce
some percentage points of error on the residual stress
components. In order to improve the integral method,
this article proposes a correction procedure based on
the first-order linearization of the calibration matrices,
which considerably extends the tolerable eccentricity.

Integral method

Within the concentricity assumption, the axial-
symmetric geometry allows a decoupling between the
components of stress with respect to the corresponding
relaxed strains. The residual stresses are related to the
relaxed strains according to the general relationship
introduced by Schajer26,27

er(q)=A(smax+smin)+B(smax � smin) cos (2q)

ð1Þ

where smax and smin are the principal residual stresses,
q is the angle of the generic rosette grid with respect to
the direction of smax and A and B are the two elastic
constants. After introducing a three-grid rosette with a
generic orientation with respect to the principal direc-
tions, the following matrix equation holds

(A+B) (A� B) 0
A A 2B

(A� B) (A+B) 0

2
4

3
5

sx

sy

txy

2
4

3
5=

e1
e2
e3

2
4

3
5 ð2Þ

in which 1, 2 and 3 are the three grid directions:
08, 2258, 908 or 08, 458, 908. Given that directions 1 and 3
are orthogonal and numbered as counter-clockwise
(CCW), a reference system for the problem is inherently
introduced, and the axes x and y for the residual stress
components can be oriented according to the directions
1 and 3, respectively (Figure 1). Alternatively, a clock-
wise (CW) orientation could be introduced (in agree-
ment with the ASTM E837 standard); however, the
orientation of grid 3 would be opposite to the direction

Figure 1. Hole-drilling method with type A and type B
rosettes according to the CCW numbering system.
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of the y-axis. The form of equation (2) suggests com-
bining the variables according to an equibiaxial stress,
and the related strain, plus two components of pure
shear stress and the relative strains

P=
(sy +sx)

2
,Q=

(sy � sx)

2
,T= txy

p=
(e3 + e1)

2
, q=

(e3 � e1)
2

,

t=
2e2 � (e3 + e1)

2
= e2 � p

ð3Þ

In the second of equation (3), the component of
strain t has been intentionally defined with the opposite
sign with respect to the ASTM standard in order to
have sign consistency between the shear stress txy and
the relaxed strain e2. For example, when the equibiaxial
stress component P is positive, then the strain p is nega-
tive; indeed, the coefficients A and B are both negative
since the measured strains are the relaxed deformations.
Similarly, when a positive shear stress txy is introduced,
the principal stress along the 458 angle is tensile; there-
fore, e2 turns out to be negative and thus t also has to
be negative. Having the grid direction 2 at 2258 makes
no difference and the last of equation (3) is still valid.
The opposite definition for the t strain component
would be consistent for a CCW rosette with the grid 2
direction at 1358, or alternatively at �458. However,
this is never the case for the type of rosettes usually
available, although the possible use of this scheme is
mentioned by Nau and Scholtes.39 On the other hand,
introducing the CW grid numbering system as shown
in the ASTM standard, the second grid is either in the
second quadrant (type A) or in the fourth quadrant
(type B), and consequently, the opposite definition for t
is correct, as reported in the standard. The numbering
system CCW was considered preferential for this study
since it simplifies the sign definition of the eccentricity
components with both the two orthogonal grids 1 and
3 oriented along the positive sign of the x- and y-axes.
After substituting the definitions of equation (3) into
equation (2), the three variables are decoupled; thus,
the matrix relating stresses and strains are diagonal
containing the two coefficients A and B

2A 0 0
0 2B 0
0 0 2B

2
4

3
5

P
Q
T

2
4

3
5=

p
q
t

2
4
3
5 ð4Þ

This linear dependence between the residual stresses
and the relaxed strains is a consequence of the elasticity
behaviour of the material. Therefore, equation (4) can
be rewritten with the explicit dependence of Young’s
modulus E and also the negative sign of the two coeffi-
cients can be emphasized

� 1

E

a 0 0
0 b 0
0 0 b

2
4

3
5

P
Q
T

2
4

3
5=

p
q
t

2
4
3
5 ð5Þ

where a and b depend on the Poisson’s ratio n and on
the ratios between the hole and the rosette dimensions,
but they do not depend on Young’s modulus.

The stress–strain relation of equation (5) only con-
siders a single value of the stress state, which is assumed
to be uniform along the depth. In the specific case of
small thickness, plane stress, this relationship can be
further developed by making explicit the dependence
on the Poisson’s ratio n which only applies on the equi-
biaxial stress component, thus obtaining equation (6)

� 1

E

a(1+ n) 0 0
0 b 0
0 0 b

2
4

3
5

P
Q
T

2
4

3
5=

p
q
t

2
4
3
5 ð6Þ

where, according to equation (5), a= a(1+ n),b= b.
Now the coefficients a and b are scalar, positive, dimen-
sionless and only depend on the geometry ratios, while
they do not depend on the size. When the method is
applied to a surface of a bulk component (blind hole),
and the state of stress can be assumed to be uniform up
to the final depth of the hole, the dependence on the
Poisson’s ratio according to equation (6) only has an
approximate validity. However, this effect can be
neglected, since it produces a perturbation of the values
in the order of a few percentage points, as discussed
below. Thus, the dependency on n can also be kept for
the blind hole problem, as proposed in equation (6)
which tolerates some inaccuracy; otherwise, a recalcula-
tion of the coefficients is required for any value of n.

A major development of the method is the introduc-
tion of a possible non-uniform distribution, in which
the components of stress are introduced as uniform
stepwise. There are thus three independent components
for each increment of the hole. In this case, the scalars
p, q, t and P,Q,T are replaced with vectors and the
coefficients a, b are replaced with the calibration coeffi-
cient matrices

� 1+ n

E
�aP= p, � 1

E
�bQ= q, � 1

E
�bT= t ð7Þ

Vectors P=(P(1),P(2), . . . ,P(n))T,Q,T and similarly
p=(p(1), p(2), . . . , p(n))T, q, t represent the stresses and
strains following the logic of decoupling, introduced
previously, and i=1, 2, . . . n are the depth positions
along the increments of the hole. The matrices �a and �b
are lower triangular since the residual stress of the
material removed in the previous steps has a (linear)
cumulative effect on the relaxed strains, while the resi-
dual stress of the material below, which still has to be
removed, has no effect on the relaxed strains.
Therefore, the coefficients aij and bij of the matrices �a
and �b are all positive for i5j, while they are 0 for i\ j.
For example, just with three drilling steps, the coeffi-
cient matrices are

�a=
a11 0 0
a21 a22 0
a31 a32 a33

2
4

3
5, �b=

b11 0 0
b21 b22 0
b31 b32 b33

2
4

3
5 ð8Þ
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The integral method with variable stress distribu-
tion, which is summarized in equation (7), just requires
the axial symmetry of the removed material shape and
the orientation of the measurement grids according to
the 08, 2258(458), 908 scheme. Thus, the method can be
extended to different problems that share these geo-
metric characteristics, such as the ring core method
where material removal is annular and the grids are
superimposed on the central volume according to the
same angular pattern.

Extension of the integral method to the eccentricity

When an eccentricity between the drilled hole and the
rosette is introduced, even if small, equation (1) is no
longer valid. Therefore, it is not possible to decouple
the p, q, t components and a new formulation is
required. By following a more general approach, a lin-
ear relationship between all the components of stress
and strain can still be proposed, equation (9)

� 1

E
�AS= e ð9Þ

where S=(s(1)
x ,s(1)

y , t(1)xy , . . . ,s(n)
x ,s(n)

y , t(n)xy )
T is the vec-

tor of all the components of residual stresses, collected
in blocks of three terms, for different values of depth,
and similarly e=(e(1)1 , e(1)2 , e(1)3 , . . . , e(n)1 , e(n)2 , e(n)3 )T is the
vector of the relaxed strains. Since the three compo-
nents of stresses and strains are arranged in blocks, �A
is a lower triangular 333 block matrix. An example
with three depth increments is reported below

�A=

A
(11)
11 A

(11)
12 A

(11)
13 0 0 0 0 0 0

A
(11)
21 A

(11)
22 A

(11)
23 0 0 0 0 0 0

A(11) A(11) A(11) 0 0 0 0 0 0

A
(21)
11 A

(21)
12 A

(21)
13 A(22) A(22) A(22) 0 0 0

A
(21)
21 A

(21)
22 A

(21)
23 A(22) A(22) A(22) 0 0 0

A
(21)
31 A

(21)
32 A

(21)
33 A(22) A(22) A(22) 0 0 0

A
(31)
11 A

(31)
12 A

(31)
13 A(32) A(32) A(32) A(33) A(33) A(33)

A
(31)
21 A

(31)
22 A

(31)
23 A(32) A(32) A(32) A(33) A(33) A(33)

A
(31)
31 A

(31)
32 A

(31)
33 A(32) A(32) A(32) A(33) A(33) A(33)

2
666666666666666666664

3
777777777777777777775

ð10Þ

The coefficients A(ij)
hk have the indexes: h, k=1, 2, 3

and i=1, . . . , n, j=1, . . . , i where, similarly to above,
n is the total number of drilling steps. Again these coef-
ficients do not depend on Young’s modulus, but do
dependent on the Poisson’s ratio, and also on the geo-
metry ratios. More specifically, each of these coeffi-
cients also depends on the eccentricity. Therefore, the
power series expansion can be applied in terms of the
two eccentricity components along directions 1 and 3

A
(ij)
hk =A

(ij)
0, hk+

∂

∂e1
A

(ij)
hk e1 +

∂

∂e3
A

(ij)
hk e3 +

1

2

∂2

∂e21

A
(ij)
hk e

2
1 +

1

2

∂2

∂e23
A

(ij)
hk e

2
3 +

∂2

∂e1∂e3
A

(ij)
hk e1e3 + � � � ð11Þ

In equation (11), the two eccentricity components e1
and e3 are introduced. Their definition intended here is
the offset of the hole with respect to the rosette, which
is positive according to the x,y-axes. Provided that x is
rightwards and y upwards (Figure 1), when the hole
centre is right-shifted, with respect to the grid centre, e1
is positive; similarly, e3 is positive when the hole centre
is up-shifted. The opposite definition of the eccentricity
components, or the use of the CW numbering system,
would be equally possible but involving a revision of
the derivative coefficient signs. As expected, and con-
firmed by the numerical analysis reported below, the
higher order contributions are negligible, especially for
relatively small eccentricity values; thus, it suffices to
focus only on the first two linear terms. Furthermore,
as matrix �A is dimensionless, the derivative terms can
also be put in a dimensionless form just by multiplying
by a characteristic length of the problem, for example,
the average diameter D of the strain-gage rosette, equa-
tion (12)

A
(ij)
hk =A

(ij)
0, hk+a

(ij)
1, hkh1 +a

(ij)
3, hkh3 ð12Þ

where the dimensionless derivative coefficients and the
eccentricity components are

a
(ij)
1, hk=D

∂

∂e1
A

(ij)
hk ,h1 =

e1
D

a
(ij)
3, hk=D

∂

∂e3
A

(ij)
hk ,h3 =

e3
D

ð13Þ

The coefficients A(ij)
0, hk,a

(ij)
1, hk,a

(ij)
3, hk can be collected into

block triangular matrices

�A0 = ½A(ij)
0, hk�, �ae1 = ½a(ij)

1, hk�, �ae3 = ½a(ij)
3, hk� ð14Þ

and finally, matrix �A can be reconstructed, and
approximated to the first order, as

�A= �A0 + �ae1h1 + �ae3h3 ð15Þ

Clearly, the availability of matrix �A allows to solve
the inverse problem, that is, to determine the profile of
the residual stresses from the measured relaxed strains,
just by calculating the inverse matrix. Given the rather
low size of the matrix, the inversion of �A does not
involve numerical difficulties and the stress components
S can be easily obtained from the measured strains e

S=�E�A
�1
e ð16Þ

Being the stress component decoupling not used, a
three-grid rosette with 08, 2258(458), 908 pattern is no
longer strictly required. A different angular pattern
could be proposed or even a higher number of grids
could be considered to increase the strain-gage sensitiv-
ity. For example, with four grids instead of just three,
the matrix would be 433 block and the inverse prob-
lem solved with the pseudoinverse matrix rather than
the square inverse. An example of a rosette with four
grids is type D reported by Schajer,15 which has a

434 Journal of Strain Analysis 51(6)

 at Biblioteca di Scienze on July 11, 2016sdj.sagepub.comDownloaded from 

http://sdj.sagepub.com/


specific applicability when a correction of the plasticity
effect is required.36

Symmetry properties

As shown in Figure 2, the hole eccentricity affects the
sensitivity of the grids. When the eccentricity is along
the direction of the grid, the sensitivity is higher if the
hole is closer to the grid; thus, the absolute value of the
measured relaxed strain is larger. On the other hand, if
the eccentricity displacement is transversal, a portion of
the grid has a higher sensitivity, while the other side has
a lower sensitivity and this implies, for symmetry, that
the first-order derivative is 0. In fact, some of the coeffi-
cients of the matrices �ae1, �ae3 turn out to be null. If an
opposite grid is placed at the other side of the hole and
connected in series (Figure 2), another feature of sym-
metry is introduced. Consequently, even the eccentricity
first-order sensitivity along the grid direction is reduced
to 0, and the derivative matrices are both entirely null.
This situation is clearly of interest. In fact, the first
order is systematically cancelled, and procedure p, q, t
can be followed without any notable effect caused by
the eccentricity. A commercially available rosette of
six grids (two grids for each of the three directions)
was tested by Beghini et al.43 and the reduced sensitiv-
ity to the eccentricity was experimentally verified.
However, introducing another grid for each measure-
ment direction makes the rosette more complicated to
manage, and also more expensive. Thus, this kind of
rosette is not commonly used despite its inherent
advantage. Nau and Scholtes39 reported a rosette with
up to eight grids and discussed how to connect them
in different configurations and also highlighted the
reduced sensitivity on the hole eccentricity. The
rosette type C reported in the ASTM standard also
has an opposite grid for each of the three directions;
however, one side is radial and the other side is along
the hoop direction. For this reason, the interaction
is opposed to the compensation since the strain

measured on one side has the opposite sign with
respect to the other side; indeed, each couple of
strain-gages has to be connected as half-bridge. On
the contrary, the ring core method is another interest-
ing example of compensating eccentricity. The three
grids are attached to the inside volume; thus, the
eccentricity produces a smaller distance from the
annular cut in one region and a higher distance in
the opposite region of the grid. Therefore, the sensi-
tivity of each grid is compensated for and the first-
order matrices �ae1, �ae3 are 0. This means that the
procedure p, q, t with decoupled components can be fol-
lowed regardless of even relatively large eccentricities.

For common hole-drilling, without any compensat-
ing extra grid, the problem reformulated according to
equation (9) seems to require many terms. In reality,
the symmetry properties reduce the number of free
parameters of the matrix �A and its derivatives, thus
making the approach more accessible. Matrix �A0, which
is matrix �A in the case of no eccentricity, is a combina-
tion of the coefficients of the two matrices �a and �b pre-
viously introduced. It is thus an ‘inflated’ reissue (since
it has more coefficients) of �a and �b. but offers a frame-
work for the extension to the eccentricity problem. The
following relationship (which is equivalent to equation
(2)) offers the easiest way to calculate the coefficients of
this matrix

A
(ij)
0, 11 A

(ij)
0, 12 A

(ij)
0, 13

A
(ij)
0, 21 A

(ij)
0, 22 A

(ij)
0, 23

A
(ij)
0, 31 A

(ij)
0, 32 A

(ij)
0, 33

2
664

3
775=

(1+ n)aij + bij
2

(1+ n)aij�bij
2 0

(1+ n)aij
2

(1+ n)aij
2 bij

(1+ n)aij�bij
2

(1+ n)aij + bij
2 0

2
664

3
775 ð17Þ

Equation (17) only shows a single block of the matrix
�A0; anyway, this reconstruction is valid for all the
blocks on the diagonal i= j and for any other block
below the diagonal i. j. A symmetry property also
relates matrices �ae1 and �ae3. Given the angular pattern
08, 2258(458), 908 of the grids, the derivation terms with
respect to the components of eccentricity are the same
but in different positions. Thus, one of the two can be
obtained by the other just through simple permutations
of the coefficients. For example, if �ae1 is already avail-
able, �ae3 is obtained by the following matrix equation
(this relationship is only valid for a CCW system of
directions 1 and 3)

�ae3 = �PL�ae1
�PR ð18Þ

in which �PL and �PR are the two permutation left and
right matrices, respectively, and they are 333 block
diagonal containing only 0 and 1 in specific positions.
The following is an example with three blocks of these
permutation matrices

Figure 2. Grid sensitivity to longitudinal and transversal
eccentricity components.
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�PL =

0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0

2
66666666666664

3
77777777777775

,

�PR =

0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1

2
66666666666664

3
77777777777775

ð19Þ

Finite element modelling

A parametric finite element (FE) model was implemen-
ted to determine the coefficients of the matrices intro-
duced above. The axial-symmetric geometry enabled
structural plane harmonic elements (ANSYS Plane25)
to be used. A full three-dimensional model, as pro-
posed by Aoh and Wei44 and Xiao and Rong,45 was

avoided in order to produce a very high spatial resolu-
tion in the region of interest with multiple nested refine-
ments (Figure 3). The mesh division at the hole region
was as small as one-hundredth of the radius, which was
assumed equal to 1mm as reference. The accuracy of
the FE model was estimated to be approximately 1%,
by comparing the numerical results with the analytical
solution of the Kirsch equations, after reducing (just
for benchmarking) the model height to a single row of
elements and simulating a plane stress problem.

Two types of load were imposed on the axial-
symmetric harmonic model: equibiaxial and pure shear.
As reported in Figure 4, the equibiaxial was obtained
with the harmonic order zero, while the pure shear was
obtained with the harmonic order 2, which is the ten-
sorial dependence. To obtain the first load type, the
removal of material with residual stress embedded was
simulated as the application of pressure on the free
cylindrical surface of the hole. Then, the pure shear
was obtained as pressure (symmetric with respect to
q=0 angular coordinate) superimposed on a distribu-
tion of tangential traction with a relative phase equal
to 458 (anti-symmetric). These two load conditions,
applied as uniform steps at different hole increments,
enabled all the calibration coefficients to be obtained.
Initially, without eccentricity, the procedure for aij and
bij coefficients required the evaluation of p and q strain
components, respectively, given by the combination of
directions 1 and 3 alone. On the other hand, all the
grids were considered for the more general case with
eccentricity, and the stresses sx and sy were obtained
as the subtraction and sum of the equibiaxial and shear
components, respectively.

According to equations (7) and (9), the calibration
coefficients can be interpreted as the relaxed strains
induced by unitary residual stresses. The strains mea-
sured by the grids were numerically simulated from the
FE analysis displacements by considering the angular q

dependence. The displacement fields on the upper

Figure 3. Plane FE model with axial-symmetric harmonic
elements and multiple nested refinements.

Figure 4. Simulation of material removal for the equibiaxial
and the pure shear stress load types.
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surface are shown in Figure 5 for the two load types.
The displacements along the grid direction, which is
slightly different from the radial direction due to the
grid width, were calculated and averaged at several
integration points along the two opposite sides of the
grid. The strain was obtained by computing the differ-
ence of the averages at the two sides and finally by
dividing by the grid length. This calculation is easier
and faster and still equal to computing the average
strain over the whole grid area, and for more details
see, in particular, Nau and Scholtes.39 Finally, this
numerical analysis was also performed with eccentri-
city, following the same procedure, after updating the
actual position of the grids with respect to the hole cen-
tre. A square array of eccentricity component values
has been considered in order to obtain the (numerical)
derivatives of the calibration coefficients.

Calibration coefficient matrices

Standard calibration coefficients with no eccentricity

Although already available on the ASTM E837 stan-
dard,31 the calibration matrices �a and �b were recalcu-
lated as a benchmark of the numerical procedure, and
also to provide an update of the coefficients with the
very accurate FE model shown above. The exact com-
bination of rosette dimensions, hole diameter and hole
depth step is required to validate any single set of aij
and bij calibration coefficients. The choice of other
dimension ratios involves different coefficients, which
need the calculation to be repeated. In fact, the use of
an automated algorithm is recommended whereby any
geometry configuration can be inputted to generate
these coefficients.41,42 The specific dimensional combi-
nations reported in the ASTM standard are considered
here, and the calibration coefficients are provided in
Tables 1–4 of the online Appendix (available at: http://
sdj.sagepub.com/), for type A and type B rosettes. The
ASTM standard suggests the use of either millimetres

or inches as length units, however, with a simplified
rounding. The coefficients according to both the stan-
dard millimetres and inch dimensions were calculated
and can be found in the tables in the online Appendix.
The effect of the approximated conversion was quanti-
fied and the coefficient differences are in the order of a
few percentage points up to 5%. Using inches, a com-
parative analysis between the calculated coefficients
with this model and the values reported in the ASTM
standard is provided in Figure 6 for type A. The histo-
grams highlight that the differences are limited to a few
percentage points mainly at, and near to, the matrix
diagonal. Very similar comparison results were also
obtained for type B.

The role of the Poisson’s ratio n as reported in equa-
tion (7) is valid, in principle, only for the plane stress
problem, which is a very accurate approximation of the
through-thickness hole on a thin plate. As discussed
above, the calibration coefficients actually have a more
general dependence with respect to the Poisson’s ratio
and the plane stress form is only approximated. In order
to quantify the error introduced by assuming no depen-
dence of the coefficients on the Poisson’s ratio, the FE
analysis was repeated with n=0:35 and the coefficients
were recalculated accordingly. This comparison analysis
returned similar coefficient values, and again two histo-
grams with percentage differences are reported in Figure
7. These differences are still in the order of a few per-
centage points, and the highest discrepancies are for the
initial depths. Similar results were also obtained by Nau
et al.46 confirming the validity of this analysis. The usual
structural metal alloys never show very large Poisson’s
ratio differences from the reference n=0:3 value. Thus,
the form of equation (7) can be considered as satisfacto-
rily accurate, after substituting the appropriate value of
n for the specific material, and using the calibration
coefficients derived with n =0:3. In fact, all the coeffi-
cients in the tables in the online Appendix are reported
for reference n=0:3 alone.

Figure 5. Type A rosette, displacement fields for (a) the equibiaxial and (b) the pure shear load components.
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First-order correction for eccentricity

All the coefficients in matrix �A were calculated for an
array of eccentricities using directions 1 and 3 as refer-
ence system. Initially, a large eccentricity range
60:3mm was considered for the rosette diameter
D=5:13mm. As an example, Figure 8(a) shows the
dependence of a single coefficient of the matrix, and
similar trends were obtained for all the other coeffi-
cients. The dependency of the coefficients on the eccen-
tricity is essentially linear thus, according to equation
(11), the higher order terms introduce a further contri-
bution which turns out to be minor, especially near the
zero eccentricity origin. By reducing the investigated
eccentricity range to 60:05mm, which is still more than
twice the eccentricity allowed by the ASTM standard,
Figure 8(b) highlights that the linear dependency is an
extremely accurate model and the residual difference is
negligible. On the other hand, if a second compensating
grid is introduced for each direction, or another self-
compensating problem is investigated such as the ring
core method, the tangent plane at the origin is perfectly

horizontal as the first-order partial derivatives are 0. In
these cases, the higher order terms still play a marginal
role, thus the p, q, t procedure is accurate and the pro-
posed generalization is unnecessary. The matrix �ae1

was calculated by (numerically) determining the partial
derivatives on the small range of Figure 8(b) and just
by considering a single eccentricity component, specifi-
cally direction 1. The coefficients of the matrix �ae1 are
listed in Tables 5 and 6 of the online Appendix (avail-
able at: http://sdj.sagepub.com/), for the ASTM stan-
dard type A and type B rosettes, respectively. The
other derivative matrix �ae3 can be easily calculated
from equation (18), and finally the matrix �A is obtained
with equation (15). When a generic couple of eccentri-
city components is introduced, the matrix �A has no
more 0 values at or below the block diagonal; hence,
the proposed method is effectively exploited.

The Poisson’s ratio dependence of matrix �A0 is given
by equation (17). The appropriate value of n can be
introduced in the calculation of each block along with
the coefficients of the matrices �a and �b. However, the

Figure 7. Percentage differences for the Poisson’s ratio, aij and bij in (a) and (b), respectively, comparing n = 0:35 coefficients with
the reference n = 0:3.

Figure 6. Percentage differences obtained with respect to the ASTM type A, aij and bij in (a) and (b), respectively.
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derivative matrix coefficient dependence on the
Poisson’s ratio is more complicated since the equibiax-
ial and the shear stress components are coupled. Thus,
there is no simple equation to take into account the
Poisson’s ratio for the derivative matrices, and the coef-
ficients reported in Tables 5 and 6 of the online
Appendix (available at: http://sdj.sagepub.com/), are
just defined for n=0:3. A recalculation would be
needed for any different values of n. However, the
Poisson’s ratio is usually very close to n=0:3, at least
for metals, as already discussed above. In addition, the
derivative matrices only provide a correction for matrix
�A; thus, the effect on the final result of a small varia-
tion in the Poisson’s ratio is marginal.

Validation analysis

Numerical tests are proposed in this section to validate
the introduced eccentricity correction procedure. Using
the algorithm developed by Beghini et al.41,42 based on
influence functions, any residual stress distribution can
be simulated solving the direct problem and the relaxed
strains along the depth predicted. The residual stress
distribution, which is assumed as being uniform for the
sake of simplicity, was initially back-calculated with the
integral method according to the standard, applying the
usual p, q, t procedure and neglecting the eccentricity.
The calculation was then repeated by introducing the
linear correction for matrix �A and solving the inverse
problem (equation (16)). Initially, a calculation example
was performed with both the eccentricity components
being not 0 and not equal. The eccentricities introduced
were in the order of a few hundredths of millimetres,
similar to the values in real tests with D=5:13mm
rosettes.32,47 The first calculation was implemented
with the type A rosette and eccentricity components
e1 =�0:02mm and e3 =0:05mm; thus, the overall
eccentricity is larger than the limit prescribed by the

standard:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 + e23

q
. 0:02mm. The eccentricity intro-

duced a perceptible error with respect to the reference

stresses (Figure 9(a)); then this error was almost com-
pletely eliminated after introducing the linear correction
(Figure 9(b)), therefore confirming the effectiveness of
the proposed procedure and the accuracy of the coeffi-
cients provided. The second calculation was repeated
with the same reference residual stresses but with type B
rosette and just a single component of eccentricity,
which, however, was 10 times larger than the limit
allowed by the standard. Maximum stress error in the
order of 40% was obtained as the result of the p, q, t
procedure, thus meaning a considerable effect due to
the large eccentricity (Figure 10(a)). As highlighted in
Figure 8, the linear component represents the actual
trend of the coefficients very well even for relatively
large eccentricities. Thus, the stress reconstruction with
the linear correction was still quite accurate, returning a
marginal residual error similar to the first example
without any correction (Figure 10(b)).

A wider analysis was then performed to test the
effect of eccentricity and verify the correction intro-
duced by the procedure, covering all the combinations
of eccentricity values and stresses. Six levels of eccentri-
city were considered: e1, e3 =0:02, 0:05, 0:07, 0:10, 0:15,
0:20mm and with 16 angular positions for each:
0:08, 22:58, . . . , 337:58. For all the combinations of
eccentricity radius and angle, three tests were separately
simulated for the stresses sx,sy, txy=100MPa. The
highest percentage difference was found along the depth
coordinate and saved for all the eccentricity and stress
combinations for both type A and type B rosettes. This
calculation was then repeated for the same combina-
tions of eccentricity and stresses applying the correction
procedure. Figure 11 highlights that the maximum
eccentricity errors increased linearly with the eccentri-
city, while the correction reduced the residual error by
limiting it to a few percentage points even for an eccen-
tricity as large as 0:1� 0:15mm, which is quite high
with respect to the usual best practice in the experi-
ments. The larger grid width of type A rosette averages
the strain distribution better; thus, type B rosette
experiences a higher eccentricity sensitivity when the

Figure 8. Eccentricity dependence of a single coefficient of matrix �A: (a) trend on a large range and (b) tangent plane on a small range.
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standard integral method is applied. With the proposed
correction, the higher sensitivity of type B rosette is
only evident for large eccentricity values, while in the
range where the linearity is predominant, the small resi-
dual error is very similar for the two rosette types.

Conclusion

We have described a generalization of the hole-
drilling integral method, which includes a correction
for the eccentricity of the hole with respect to the
strain-gage rosette. The eccentricity impairs the axial
symmetry of the problem; thus, the decoupling of the
stress components in an equibiaxial plus two shear
stresses is no longer allowed. Consequently, a single
matrix is needed to linearly relate the relaxed strains
to the residual stress components. After having

grouped the strains and the stresses in vectors along
the depth, this matrix is a lower triangular 3 3 3
block, and each of its coefficients can be expressed as
a power series of the eccentricity components. The
two linear terms alone already proved to be a very
accurate model for reproducing the eccentricity effect.
The matrix was then expressed as the zero eccentricity
term plus a linear correction of the two eccentricity
components by introducing the derivative matrices.
In addition, the 08, 2258(458), 908 grid pattern only
requires the knowledge of a single derivative matrix,
while the other can be obtained as a permutation of
the coefficients, for symmetry reasons. On the other
hand, if a compensating grid is applied for each direc-
tion, the first-order derivatives are 0 (similarly to the
ring core method) and the problem can still be formu-
lated with the usual combined stresses and strains.

Figure 9. Validation example with type A rosette: (a) error caused by the eccentricity and (b) almost perfect result with the first-
order correction.

Figure 10. Validation example with type B rosette: (a) error caused by a large eccentricity and (b) accurate result with the first-
order correction.
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A very refined plane and axial-symmetric harmo-
nic FE model was implemented and the calibration
coefficients were calculated. Initially, a revision of the
ASTM standard was proposed, according to the com-
bined stresses and strains. The derivative matrices
were then calculated and provided for both type A
and type B strain-gage rosettes. Finally, an extensive
numerical analysis was proposed both to validate the
procedure and to show the accuracy of the correction.
When the eccentricity is in the order of the small
allowed limit prescribed by the standard, the recon-
struction of the stress components with the eccentri-
city correction is very accurate. However, if the
eccentricity is small, its measure uncertainty can be of
the same entity of the eccentricity itself; thus, the
present correction is not recommended. On the other
hand, quite accurate results were still obtained with
larger eccentricities, approximately up to 10 times the
standard limit, since the linear first order is a fine
model even for relatively high eccentricity values. In
conclusion, the proposed procedure can significantly
increase the eccentricity allowed and, even when the
hole is produced with a large offset for any experi-
mental reason, the measure can still be useful instead
of being discarded or repeated.
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Appendix 1

Notation

�A calibration coefficient 333 block matrix
a, b calibration coefficients relating the P,Q,T

residual stresses to the p, q, t relaxed strains
�a, �b calibration coefficient matrices relating

the combined residual stresses and the
relaxed strains

A, B general elastic constants relating the
residual stresses to the relaxed strains

D average diameter of the strain-gage rosette
e vectors containing the blocks of the three

grid relaxed strains

442 Journal of Strain Analysis 51(6)

 at Biblioteca di Scienze on July 11, 2016sdj.sagepub.comDownloaded from 

http://sem-proceedings.com/09s/sem.org-SEM-2009-Ann-Conf-s044p03-Numerical-Study-Calibration-Coefficients-Hole-drilling-Residual.pdf
http://sem-proceedings.com/09s/sem.org-SEM-2009-Ann-Conf-s044p03-Numerical-Study-Calibration-Coefficients-Hole-drilling-Residual.pdf
http://sem-proceedings.com/09s/sem.org-SEM-2009-Ann-Conf-s044p03-Numerical-Study-Calibration-Coefficients-Hole-drilling-Residual.pdf
http://sem-proceedings.com/09s/sem.org-SEM-2009-Ann-Conf-s044p03-Numerical-Study-Calibration-Coefficients-Hole-drilling-Residual.pdf
http://sdj.sagepub.com/


E, n Young’s modulus and Poisson’s ratio of
the isotropic linear elastic material

h, k block indexes, for the matrix �A, ranging
from 1 to 3

i, j calibration matrix depth indexes,
i=1, . . . , n and j=1, . . . , i

n number of hole increments at the final
depth

p, q, t combined relaxed strains according to the
P,Q,T stresses

p, q, t vectors containing the combined strains
along the depth arranged in blocks

P,Q,T equibiaxial and shear combined stresses
P,Q,T vectors containing the combined stresses

along the depth arranged in blocks
S vectors containing the blocks of the three

uncombined residual stress components

Greek symbols

�ae1, �ae3 derivative matrices for the calibration
coefficient correction of 1 and 3
directions, respectively

DZ hole depth incremental step
er relaxed strain measured by a generic grid
e1, e2, e3 relaxed strains measured by the

08, 2258(458), 908 grids
h1,h3 dimensionless eccentricity components
smax,smin principal maximum and minimum

residual stresses
sx,sy, txy residual stress components according to

the rosette reference frame
q generic grid orientation with respect to

the maximum principal stress direction

Subscripts

�A0 calibration coefficient matrix �A with zero
eccentricity

D0 drilled hole diameter
e1, e3 eccentricity components along the

directions 1 (x) and 3 (y)
GL,GW strain-gage rosette grid length and grid

width
�PL, �PR left and right 333 block permutation

matrices
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