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k-NORMAL SURFACES

EVGENY FOMINYKH AND BRUNO MARTELLI

Abstract. Following Matveev, a k-normal surface in a triangulated 3-manifold is a
generalization of both normal and (octagonal) almost normal surfaces. Using spines,
complexity, and Turaev-Viro invariants of 3-manifolds, we prove the following results:

• a minimal triangulation of a closed irreducible or a bounded hyperbolic 3-manifold
contains no non-trivial k-normal sphere;

• every triangulation of a closed manifold with at least 2 tetrahedra contains some
non-trivial normal surface;

• every manifold with boundary has only finitely many triangulations without non-
trivial normal surfaces.

Here, triangulations of bounded manifolds are actually ideal triangulations. We also
calculate the number of normal surfaces of nonnegative Euler characteristics which are
contained in the conjecturally minimal triangulations of all lens spaces Lp,q.

Introduction

We study in this paper the existence and number of (generalizations of) normal surfaces
in various triangulated 3-manifolds. Theorem 1 below concerns the existence of (a gener-
alization of) normal spheres in minimal triangulations. Theorems 2 and 3 then show that,
with finitely many exceptions, all triangulations of a given manifold contain non-trivial nor-
mal surfaces. Finally, Theorem 5 calculates the number of normal surfaces of genus 0 and 1
in a family of triangulated lens spaces.

Normal surfaces. A normal surface in a triangulated 3-manifold is a surface intersecting
each tetrahedron in triangles and squares, as in Fig. 1-(1). Since every incompressible surface
(in an irreducible manifold) can be isotoped into normal position, normal surfaces can be
used to investigate the set of incompressible surfaces algorithmically.

An almost normal surface is usually defined by admitting also finitely many more types
of intersections with some tetrahedra, such as for instance the octagon of Fig. 1-(2). By a
beautiful result of Rubinstein and Thompson [11], almost normal surfaces can be used to
find algorithmically some important types of compressible surfaces, such as a 2-sphere in
S3.

Matveev defined in [7] a k-normal surface as a surface that intersects each tetrahedron in
polygons, having consecutive vertices in distinct edges of the tetrahedron, and incident to
each such edge at most k times. With this definition, a normal surface is just 1-normal, and
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(1) (2) (3)

Figure 1. Some normal discs in a k-normal surface. In (3) we may wind the
disc arbitrarily many times, getting discs with arbitrarily many intersections
with the edges of the tetrahedron.

an almost normal surface with octagons is 2-normal. Polygons may have arbitrarily many
edges as k increases, as suggested by Fig. 1-(3).

A surface which is k-normal for some k was also called spinal by Frohman and Kania-
Bartoszynska in [4]. We prove here the following.

Theorem 1. Let M be a closed irreducible or a bounded hyperbolic 3-manifold, different
from S3,RP3, and L3,1. A minimal triangulation of M does not contain any non-trivial
k-normal sphere, for all k.

When the manifold is bounded here we actually talk about ideal triangulations, see
Section 1 for definitions. Theorem 1 for normal spheres was known to Matveev in 1990,
and its proof is essentially contained in [6, Theorem B] as a byproduct of his complexity
theory. It was then extended to the 2-normal case by Jaco and Rubinstein [5], see [7] for a
short proof. We prove it in the general case using spines. It turns out that k-normal surfaces
are sometimes better studied with spines rather than with triangulations: the main reason
for that is that by cutting a spine along a k-normal surface we get another spine, while by
cutting a triangulation we get a polyhedral subdivision which is never a triangulation.

Existence of normal surfaces. A connection between normal surfaces and Turaev-Viro
invariants was noted in [4]. We use here a nice version of the homology-free 5th Turaev-Viro
invariant, called the t-invariant, due to Matveev, Ovchinnikov, and Sokolov [9], to prove the
following results.

Theorem 2. Every compact 3-manifold has only finitely many triangulations without non-
trivial normal surfaces.

Actually, it turns out that such exceptional triangulations have a fixed number of tetra-
hedra, depending only on the t-invariant of the manifold. Despite this fact, there are plenty
of triangulations without non-trivial normal surfaces: at least half of the ∼ 5000 minimal
triangulations of hyperbolic manifolds with 6 4 tetrahedra are so [1, 2], and the number
of such triangulations with n tetrahedra is bigger than ncn, for some c > 0 and all n > 0
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[3]. (The proofs of [3] actually show the same results for triangulations without non-trivial
k-normal surfaces.)

As the following result shows, there is only one example with closed manifolds, and it is
the minimal triangulation T5,2 of the lens space L5,2, having one vertex and one tetrahedron.

Theorem 3. Every triangulation of any closed manifold except T5,2 contains a non-trivial
normal surface.

Remark 4. We actually prove in Section 3 a stronger version of Theorems 2 and 3: with the
same exceptions, every triangulation contains a non-trivial normal surface which intersects
every edge in at most 2 points.

The t-invariant is essential in the proof of both theorems. Since their construction [12] in
1992, Turaev-Viro invariants have been used essentially only as a concrete tool to quickly dis-
tinguish triangulated manifolds. This is the first “theoretical” application of these invariants
to 3-dimensional topology known to the authors.

Triangulated lens spaces. Using similar techniques we count the number of normal sur-
faces of non-negative Euler characteristic in the conjecturally minimal triangulations Tp,q

of all lens spaces. Let S(p, q) be the sum of all partial quotients in the expansion of p/q
as a regular continued fraction. The triangulation Tp,q contains S(p, q) − 3 tetrahedra, see
Section 4.

Theorem 5. Let (p, q) be coprime with p > 4.

(1) Tp,q contains no normal projective planes and no non-trivial normal spheres;
(2) the number τ(Tp,q) of distinct (up to normal isotopy) normal tori in Tp,q is

τ(Tp,q) =

{
S(p, q)− 3 if q = 1,
S(p, q)− 4 in all other cases;

(3) the number κ(Tp,q) of distinct (up to normal isotopy) normal Klein bottles in Tp,q is

κ(Tp,q) =

{
1 if p = 4n and q = 2n± 1 for some positive integer n,
0 in all other cases.

This paper is organized as follows. Precise definitions of all the concepts introduce above
are given in Section 1. Theorem 1 is proved in Section 2, while Theorems 2 and 3 are proved
in Section 3. Theorem 5 is proved in Section 4.

Acknowledgments. We warmthly thank Sergei Matveev for some helpful discussions.

1. Surfaces and triangulations

We fix here the terminology used in the Introduction and in the rest of the paper.
Let T be a simplicial face-pairing of some tetrahedra, and |T | its support. Here, T is a

triangulation of a closed 3-manifold M when M = |T |. Tetrahedra are then not necessarily
embedded in M . If M has boundary, we say that T is a triangulation of M if M is |T | minus
open stars of all its vertices (the latter is usually an ideal triangulation in the literature:
here we suppress the word “ideal” for simplicity).

Let now T be a triangulation of some compact 3-manifold M . We say that a closed
embedded surface Σ ⊂ M is k-normal to T if the following holds:
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Figure 2. Some neighborhoods of points in an almost simple polyhedron.

• Σ is transverse to T and disjoint from ∂M ;
• Σ intersects each tetrahedron in discs, called normal discs ;
• Σ intersects each triangular face in arcs connecting distinct edges;
• each normal disc intersects each edge of the tetrahedron in at most k points.

In a 1-normal surface, normal discs are triangles and squares as in Fig. 1-(1), while in a
2-normal surface they can also be octagons as in Fig. 1-(2). Normal discs can be polygons
with arbitrarily many edges as k grows, as suggested by Fig. 1-(3).

A normal surface is then just a 1-normal surface. A trivial normal surface is one made
only of triangles. Depending on whether the manifold is closed or not, a connected trivial
normal surface is either the link of a vertex or parallel to the boundary.

Two k-normal surfaces in a triangulation T , intersecting each edge of T in the same
number of points are easily related via an isotopy, called normal isotopy.

A triangulation of a 3-manifold is minimal if the manifold cannot be triangulated with
fewer tetrahedra.

We say that a compact 3-manifold M with boundary is hyperbolic if it admits (after
removing all tori from ∂M) a complete hyperbolic metric of finite volume (possibly with
cusps and geodesic boundary). By Thurston’s Hyperbolicity Theorem for Haken manifolds,
this is equivalent to ask that every component of ∂M has χ 6 0, and M does not contain
essential surfaces with χ > 0.

2. Complexity

2.1. Definition. The proof of Theorem 1 relies heavily on complexity theory. We survey
here the definition and some of its properties. We start with the following.

Definition 6. A compact 2-dimensional polyhedron P is almost simple if the link of every

point in P is contained in the graph .

Alternatively, P is almost simple if it is locally contained in the polyhedron shown in
Fig. 2-(3). A point, a compact graph, a compact surface are therefore almost simple. Three
important possible kinds of neighborhoods of points are shown in Fig. 2. A point having the
whole of as a link is called a vertex, and its regular neighborhood is shown in Fig. 2-(3).
The set V (P ) of the vertices of P consists of isolated points, so it is finite. Note that points,
graphs, and surfaces do not contain vertices.
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Figure 3. A spine of M dual to a triangulation.

A compact polyhedron P ⊂ M is a spine of a compact manifold M with boundary if M
collapses onto P . When M is closed, we say that P ⊂ M is a spine of M if M \ P is an
open ball.

Definition 7. The complexity c(M) of a compact connected 3-manifold M is the minimal
number of vertices of an almost simple spine of M .

As an example, a point is a spine of S3, and therefore c(S3) = 0. The complexity of a
disconnected manifold is just defined as the sum of the complexities of its components.

2.2. Properties. We list here some properties of c, proved in [6], which will be used in the
proof of Theorem 1. The first one is the following.

Theorem 8. Complexity is additive on connected sums. That is,

c(M#M ′) = c(M) + c(M ′)

for all manifolds M , M ′.

As suggested by Fig. 3, a triangulation of a manifold M with n tetrahedra is dual to a
polyhedron in M with n vertices. If M is compact with boundary, the polyhedron is a spine
of M . If it is closed, M \P consists of some h open balls, and by removing open small discs
from some appropriate h− 1 faces of P we get a spine of M . In both cases, we get a spine
with at most n vertices.

This shows that c(M) is less or equal than the number of tetrahedra in a minimal tri-
angulation of M . One key result in complexity theory, due to Matveev [6], says that the
converse is true on the most interesting 3-manifolds.

Theorem 9. Let M be a closed irreducible or a bounded hyperbolic 3-manifold, different
from S3,RP3, and L3,1. A minimal triangulation of M contains precisely c(M) tetrahedra.

2.3. From k-normal surfaces to spines. If Σ ⊂ M is a closed embedded surface in a
compact 3-manifold M , we denote by MΣ the (possibly disconnected) compact manifold
obtained from M by removing an open tubular neighborhood of Σ. We have the following
general result.

Proposition 10. Let T be a triangulation of a manifold M with n tetrahedra, and let Σ be
a non-trivial k-normal surface. Then c(MΣ) < n.
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(1) (2)

Figure 4. How to construct the graph X (1), and a retraction onto it (2).

Figure 5. A perturbation of a cone into an almost simple polyhedron.

Proof. We extend the construction shown in Fig. 3 to build a spine of MΣ with strictly less
than n vertices.

Let ∆ be an abstract tetrahedron of the triangulation. The surface Σ intersects ∆ in
discs, and each face of ∆ into arcs connecting distinct edges. For each such arc, draw
another parallel dashed arc closer to the nearest vertex, as in Fig. 4-(1). Also draw a central
Y -shaped dashed graph as in the figure. Do this on each triangular face, so that the dashed
arcs and graphs match along their endpoints. The resulting dashed object is a (possibly
disconnected) graph X in ∂∆ with 4 trivalent vertices.

The complement of Σ in ∆ consists of some topological balls. The boundary of each such
abstract ball B consists of some discs, arising from Σ, and one connected component ∂vB
coming from ∂∆, which contains a connected component X0 of the graph X . As shown in
Fig. 4-(2), X0 is a spine of ∂vB \ {vertices of ∆}. We can extend the collapse to a collapse
of B onto the subpolyhedron c(X0) ⊂ B obtained by coning X0 inside B.

We can force all dashed graphs and all collapses to match along the edges and faces of the
triangulation. As a result, the union P of all cones c(X0) is a spine of M . The polyhedron
P is made of points as in Fig. 2-(1, 2), except possibly at the vertices of the cones. Each

X0 is one of the following graphs: , , , and . The cones on the first three graphs
yield the pieces shown in Fig. 2. The cone on the fourth graph is not admitted in an almost
simple spine; however, it can be locally perturbed to an almost simple object as shown in
Fig. 5.
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Therefore P is (after a suitable perturbation) an almost simple spine of M . Each
produces one vertex of P , while the other graphs yield no vertices. There can be at most
one such graph for each ∆: this gives c(MΣ) 6 n. Equality holds if and only if there is one

for each tetrahedron. This happens precisely when Σ intersects each tetrahedron into
triangular faces, i.e. when Σ is trivial.

�

2.4. Proof of Theorem 1. Let M be closed irreducible or bounded hyperbolic. A minimal
triangulation T contains precisely c(M) tetrahedra, by Theorem 9. If Σ is a non-trivial k-
normal sphere, Proposition 10 gives c(MΣ) < c(M). But M is irreducible, and hence MΣ =
M#B3 ⊔ B3; since c(B3) = 0 and c is additive on connected sums, we get c(MΣ) = c(M):
a contradiction. Theorem 1 is then proved.

3. Constructions of normal surfaces

3.1. Simple and special polyhedra. To prove Theorems 2 and 3 we need to introduce
some definitions.

A compact 2-dimensional polyhedron is simple if the link of any point is homeomorphic
to either , , or . That is, its regular neighborhood is one of those shown in Fig. 2. The
points of type (1), (2), and (3) form a stratification of P into vertices, 1-components and
2-components. The 1-stratum is the singular set S(P ), consisting of all points of type (2)
and (3). If 1-components are indeed open segments and 2-components are open discs, they
are called edges and faces, and the spine P is special.

As shown above in Fig. 3, a triangulation T is dual to a special polyhedron P . When M
has boundary, P is a spine of M . If M is closed, P is a spine of M minus some open balls.

3.2. Subpolyhedra and normal surfaces. Let P be a special spine. Assign a colour –
say, blue – to some faces of P . Let Q be the union of the (closed) blue faces. It is easy to
see that:

• Q is a simple polyhedron if and only if the number of blue faces incident to each
edge of P is either 0, 2, or 3, with multiplicity;

• Q is a surface if and only if such a number is either 0 or 2.

Moreover, it is also easy to see that every simple subpolyhedron arises in this way. This also
shows that closed surfaces in P are in natural bijection with H2(P,Z2).

Let P be dual to a triangulation T . The following facts are noted in [8]:

• if Q is a surface, then it is normal in T ;
• if Q is a simple polyhedron, the boundary of a small regular neighborhood of Q is
a normal surface in T .

A normal surface arising in this way is said to be respectively of type I and II. In fact, if a
vertex of P belongs to Q, then 4 possible configurations may arise, as shown in Fig. 6: the
same figure shows how each configuration gives rise to normal triangles and squares.

3.3. Universal subpolyhedron. Let T be a triangulation of a connected manifold M with
k > 0 boundary components, and let P be the dual spine. ThenM \P consists of k connected
components. Assign a colour – say, blue – to those faces of P which belong to the closure
of two distinct components of M \ P . It is easy to see that the union Ω of the (closed) blue
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Figure 6. Four possible configurations of a simple subpolyhedron Q near
a vertex of P . The faces belonging to Q are coloured. The boundary of
a regular neighborhood consists respectively of (1) two triangles (2) two
squares (3) two triangles and one square (4) four triangles.

faces is a simple subpolyhedron of P . The following proposition shows that if T does not
contain non-trivial normal surfaces of type I or II then Ω is in some sense universal.

Proposition 11. Suppose T does not contain any non-trivial normal surface of type I or
II. Then Ω is a surface with k − 1 connected components, each parallel to some component
of ∂M . Moreover, every proper simple subpolyhedron of P is a subsurface of Ω.

Proof. Suppose P contains a proper simple subpolyhedron Q. As we said above, it induces a
normal surface of type I or II, which must hence be trivial. Fig. 6 shows that configurations
(2) and (3) give rise to squares, and are thus ruled out. If one vertex of P is as in (4), all
vertices of P are so, because P is connected: in this case Q = P . We are therefore left only
with vertices of type (1); in particular, Q is a surface.

The union S1 ∪ S2 of two surfaces in P is a simple subpolyhedron, which is therefore
either a surface or the whole of P . The second case is easily ruled out since both S1 and
S2 look as in Fig. 6-(1) near the vertices. The subpolyhedron Ω is in fact the union of k
surfaces, each consisting of all faces separating one fixed boundary component to all others.
Therefore Ω is itself a surface (and not the whole of P ).

Finally, every other proper simple subpolyhedron Q is a trivial (i.e. boundary-parallel)
surface, and hence contained in Ω. It is also easy to conclude that Ω has k− 1 components.

�

There are plenty of triangulations T that satisfy the hypothesis of Proposition 11. As
shown in [3], this holds for instance when ∂M consists of a genus-g surface and h tori, and
T has g+ h tetrahedra. The number of such examples with n tetrahedra is bigger than ncn

for some c > 0 and all n, and the simplest one with at least two boundary components has
3 vertices [3].
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3.4. Turaev-Viro invariants. One of the simplest invariants of Turaev-Viro type is the t-
invariant defined by Matveev, Ovchinnikov, and Sokolov in [9]. It equals the homology-free
5-th Turaev-Viro invariant, and is defined as follows. Let ε be a fixed root of the polynomial
x2 − x− 1. Let P be a simple spine of a manifold M with boundary. Then

t(P ) =
∑

Q⊂P

(−1)vQεχ(Q)−vQ

where the sum is taken over all simple subpolyhedra Q of P , and vQ is the number of vertices
of Q. It turns out that this quantity does not depend on P and gives therefore a well-defined
invariant t(M) of M . If M is a closed manifold, we define t(M) as t(M \ B) where B is a
small open ball.

Like all (suitably normalized) Turaev-Viro invariants, t is multiplicative on connected
sums (of closed manifolds) and ∂-connected sums (of manifolds with boundary).

3.5. Proof of Theorem 2. Let M be a manifold with k > 1 boundary components, and
T be a triangulation of M with n tetrahedra. Let P be its dual spine. We prove that, with
finitely many exceptions, T contains a normal surface of type I or II.

If not, by Proposition 11 there is a boundary-parallel surface Ω ⊂ P containing all proper
simple subpolyhedra. Therefore

t(M) = t(P ) = (−1)nεχ(M)−n + t(Ω).

Suppose there are infinitely many spines P1, . . . , Pi, . . . of M without non-trivial normal
surfaces. Each Pi has ni vertices and contains some universal Ωi as above.

The quantity (−1)niεχ(M)−ni+t(Ωi) must not depend on i. Since Ωi is boundary-parallel,
it may vary only in a finite set of topological types: hence t(Ωi) varies in a finite set. On the
other hand, the number ni of vertices of Pi tends to ∞, since there are only finitely many
special spines with a given number of vertices. Therefore (−1)niεχ(M)−ni takes infinitely
many distinct values: a contradiction.

3.6. Proof of Theorem 3. Let T 6= T5,2 be a triangulation with n tetrahedra of some
closed 3-manifold M , and P be the dual special spine. We prove that T contains a non-
trivial normal surface of type I or II.

If not, Proposition 11 implies that there is a surface Ω ⊂ P containing all proper simple
subpolyhedra of P .

Suppose first that T has k > 2 vertices. Therefore P is a spine of M minus k small open
balls. This manifold can be written as a ∂-connected sum

(M \B)♮
(
S2 × [0, 1]

)
♮ . . . ♮

(
S2 × [0, 1]

)

︸ ︷︷ ︸

k−1

where B is a small open ball in M . By taking S2 as a spine for S2 × [0, 1] we see that
t
(
S2 × [0, 1]

)
= ε2 + 1. Since t is multiplicative on ∂-connected sums, we have:

t(P ) = t(M \B) · t
(
S2 × [0, 1]

)k−1
= t(M) · (ε2 + 1)k−1.

On the other hand, Ω consists of k − 1 disjoint spheres, and therefore

t(P ) = (−1)nεχ(P )−n + t(Ω) = (−1)nεk−n + (ε2 + 1)k−1.
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r r r

r

r

Figure 7. How to construct a spine of a lens space.

The t-invariant is an element of the ring Z[ε]. Since k > 1, the equality

t(M) · (ε2 + 1)k−1 = (−1)nεk−n + (ε2 + 1)k−1

implies that (ε2 + 1) divides εk−n. It is easy to see that ε2 + 1 = ε + 2 is not invertible in
Z[ε], while εi is so for all i: a contradiction.

Suppose now that T has one vertex. Let f be a face of P . By removing (the interior of)
f from P we get an almost simple polyhedron P ′ such that M \ P ′ is an open solid torus.
It collapses to a polyhedron P ′′ ⊂ P ′ which is the union of a simple polyhedron Q and a
1-dimensional graph. (Every almost simple spine collapses to a subpolyhedron of this kind,
called nuclear by Matveev in [7].)

Since Q is a proper subpolyhedron of P , it is empty by our assumption. Hence P ′′ is a
graph, and since M \ P ′′ is an open solid torus, the manifold M is a lens space. It is then
shown in [7, Theorem 8.1.28] that t(M) ∈ {0, 1, ε+ 1, ε2 + 1}. Since P contains no proper
subpolyhedron, we have t(P ) = (−1)nε1−n + 1, which belongs to {0, 1, ε+ 1, ε2 + 1} only if
n = 1 and t(P ) = 0.

Finally, a direct investigation shows that there is a unique spine with n = 1 vertices of
a lens space with t = 0. The lens space is L5,2 and the triangulation is T5,2, which indeed
does not contain any normal surface by Theorem 13 below, proved in [8].

Corollary 12. Every special spine of a closed manifold except the minimal spine of L5,2

contains a proper simple polyhedron.

4. Normal surfaces with nonnegative Euler characteristics in lens spaces

4.1. The triangulations Tp,q. Every lens space Lp,q has a candidate minimal triangulation
Tp,q, which is proved to be minimal only for finitely many values of (p, q), and conjectured
to be so in all cases. We compute here the number of normal surfaces of non-negative Euler
characteristic in each such triangulation.

We describe the triangulation Tp,q by drawing regular neighborhoods of the 1-skeleton
of the dual spine: see [7] for details. Let (p, q) be two positive coprime number, with
p > 4. We define the operators r, ℓ : Z ⊕ Z → Z ⊕ Z via the rules r(a, b) = (a, a + b) and
ℓ(a, b) = (a + b, b). The pair (q, p − q) can be obtained from the pair (1, 1) via a unique
sequence w of operators r, ℓ. We use the string w to construct the spine dual to Tp,q as
suggested in Fig. 7-down. For example, if (q, p− q) = (4, 17), then w = rrrrℓℓℓ. The spine
of L21,4 is shown in Fig. 7-up.

The following result was proved by Matveev and Fominykh in [8].
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Theorem 13. Let (p, q) be coprime with p > 4. Every connected normal surface in Tp,q is
either of type I or of type II.

Let S(p, q) be the sum of all partial quotients in the expansion of p/q as a regular continued
fraction. The string w contains S(p, q)−2 letters and thus Tp,q contains S(p, q)−3 tetrahedra.

4.2. Proof of Theorem 5. . Let P be the special spine dual to Tp,q. By Theorem 13, every
normal surface in Tp,q is determined by some simple subpolyhedron of P . Let us analyze
such polyhedra. One can easily see that every simple subpolyhedron G of P contains the
singular graph S(P ) of P . This implies that G can be obtained from P by removing some
faces of P . Denote by s the number of removed faces. Since the Euler characteristic χ(P )
of P is equal to 1, we have χ(G) = 1− s. Now we can conclude that Tp,q does not contain
any normal projective plane and any non-trivial normal sphere. Indeed, the boundary FG

of a small regular neighborhood of G, i.e. a normal surface of type II, is orientable and its
Euler characteristic is equal to 2− 2s. Therefore, FG is a sphere if and only if G = P . But
this sphere is, obviously, trivial. Finally, since P is not a surface, the Euler characteristic of
every normal surface of type I is less than 1.

As we know from [7], P has S(p, q) − 3 vertices and S(p, q) − 2 faces. Note that there
are at most two faces f1, f2 of P that are incident more than once to some edge e. It
can be checked directly that f1 = f2 if and only if the sequence w determining P consists
of operators r only, i.e. if q = 1. Since every simple subpolyhedron G of P contains the
singular graph of P , G contains both f1 and f2. Therefore, every normal surface of type I
is nonorientable.

Let us prove the second assertion. As we already know, every normal torus in Tp,q is a
surface of type II, i.e. it is the boundary of a small regular neighborhood of some simple
polyhedron G. Moreover, G is obtained from P by removing a face f 6= f1, f2 of P . If p = 5
and q = 2, then P contains no proper simple subpolyhedra and hence τ(T5,2) = 0. If q = 1,
then f1 = f2 and we have S(p, q)− 3 possibilities to choose f . For all other pairs (p, q) we
have f1 6= f2 and hence τ(Tp,q) = S(p, q)− 4.

Now let F be a normal Klein bottle. Then F is a surface of type I. Moreover, F = P \ f
for some face f of P . Since F contains the singular graph of P , f is the unique face of P
incident once to each edge of P . Analyzing P we can directly see that such a face f exists
if and only if the sequence w determining P is w = r l . . . l

︸ ︷︷ ︸

n−1

r for some positive integer n.

Finally, we have (2n− 1, 2n+ 1) = r ℓ . . . ℓ
︸ ︷︷ ︸

n−1

r(1, 1) and hence p = 4n, q = 2n− 1.

Note that the conclusion (3) of Theorem 5 agrees with the results of Rubinstein [10], since
any Klein bottle embedded in a lens space is incompressible and hence isotopic to a normal
surface.
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