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Abstract

A magnetic sail is an advanced propellantless propulsion system that uses the interaction between the

solar wind and an artificial magnetic field generated by the spacecraft, to produce a propulsive thrust

in interplanetary space. The aim of this paper is to collect the available experimental data, and the

simulation results, to develop a simplified mathematical model that describes the propulsive acceleration

of a magnetic sail, in an analytical form, for mission analysis purposes. Such a mathematical model is then

used for estimating the performance of a magnetic sail-based spacecraft in a two-dimensional, minimum

time, deep space mission scenario. In particular, optimal and locally-optimal steering laws are derived using

an indirect approach. The obtained results are then applied to a mission analysis involving both an optimal

Earth-Venus (circle-to-circle) interplanetary transfer, and a locally-optimal Solar System escape trajectory.

For example, assuming a characteristic acceleration of 1mm/s2, an optimal Earth-Venus transfer may be

completed within about 380 days.
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Nomenclature

a = semimajor axis of osculating orbit

a = propulsive acceleration, see Eq. (1)

ac = spacecraft characteristic acceleration

CD = drag coefficient

CL = lift coefficient

E = specific mechanical energy

h0, h1, k0, k1 = best fit coefficients, see Eqs. (2)-(3)

H = Hamiltonian function

îr = unit vector in the radial direction

îν = unit vector in the transverse direction

J = performance index

M = magnetic dipole vector

p = reference vector (with p � ‖p‖)

r = Sun-spacecraft distance (with r⊕ � 1AU)

sf = switching function, see Eq. (5)

t = time

T� = heliocentric polar reference frame, see Fig. 2

u = radial component of velocity

v = circumferential component of velocity

δ = pitch angle of vector p

η = thrust coefficient, see Eq. (1)

λ = adjoint variable

μ� = Sun’s gravitational parameter

ν = polar angle, see Fig. 2
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φ = thrust angle, see Fig. 2

τ = switching parameter

θ = sail angle of attack, see Fig. 2

Subscripts

0 = initial, parking orbit

1 = final, target orbit

Superscripts

∼ = critical

′ = reduced

· = time derivative

∧ = unit vector

1 Introduction

A magnetic sail (Magsail) is an advanced propellantless propulsion concept that was originally

proposed by Andrews and Zubrin [1,2,3,4,5] more than twenty years ago. A Magsail-based

spacecraft is essentially constituted by a large loop of conducting material carrying a current,

with a few shroud lines that are used to couple the loop with the payload, see Fig 1. The

artificial magnetic field generated by the current deflects the charged particles from the solar

wind thus producing, in the interplanetary space, a propulsive thrust that is nearly aligned

along the Sun-spacecraft direction. A transverse thrust component, albeit of modest magnitude,
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can also be obtained by inclining the sail’s reference plane (that is, the plane of the large loop).

A Magsail is currently a rather exotic propulsion system, because of the technical challenges

related to the practical feasibility of such a very large space structure. Indeed, in the original

solution proposed by Zubrin and Andrews [4] the loop radius could (theoretically) range from

some tens of kilometers up to some hundred kilometers, depending on the thrust level to be

obtained.

The Magsail concept has also inspired alternative solutions for exploiting the solar wind as a

means to create other kinds of propellantless propulsion systems. Two of the most interesting

solutions are the Mini-Magnetospheric Plasma Propulsion (M2P2), proposed by Winglee [6,7],

and the Electric Solar Wind Sail (E-sail) invented by Janhunen [8,9]. It is worth noting that

the theoretical model discussed by Andrews and Zubrin [1] has been confirmed in recent years

by a number of numerical simulations and experimental results, in which different scale models

of a Magsail have been investigated [10,11,12,13,14,15,16,17]. The results of these studies give

important information on the propulsion system performance in terms of the main design

parameters as, for instance, the loop radius.

In this context, the aim of this paper is twofold. On one side the available Magsail exper-

imental data are collected and translated into a mathematical thrust model, suitable for a

preliminary mission design in a two-dimensional framework. The second aim is to employ the

thrust model for optimizing the Magsail-based spacecraft performance in a deep space mission

scenario, in which both the planet’s gravitational attraction and the size of the planetary mag-

netosphere are neglected. The analysis described in this paper complements a similar study on

optimal space missions for spacecraft equipped with advanced propulsion systems based either

on an M2P2 [18,19], or on an E-sail [20,21,22]. In particular, the succeeding control laws for

truly-optimal and locally-optimal deep space trajectories are obtained in a closed-form solu-

tion. These control laws are then applied in the analysis of a two-dimensional Earth-Venus

interplanetary transfer, and for a Solar System escape mission.
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2 Propulsive Acceleration Model

For mathematical purposes it is useful to introduce a heliocentric polar reference frame T�(r, ν),

of unit vectors îr and îν , where ν is the spacecraft polar angle measured counterclockwise from

a fixed direction, while r is the Sun-spacecraft distance. With reference to Fig. 2, the orientation

of the magnetic dipole moment vector M̂ � M/ ‖M‖, which is approximately orthogonal to

the sail’s reference plane, is univocally defined by the so called angle of attack θ. Figure 2 also

shows the thrust angle φ ∈ [−π/2, π/2], that is, the angle between the propulsive acceleration

vector a and the radial direction îr. Note that, in general, θ �= φ.

The theoretical analysis by Zubrin and Andrews [4], and the results obtained from numerical

simulation and experimental tests on scale models [16,17], have shown that the propulsive

thrust of a Magsail system may be expressed as a function of r and θ. However, the solar

wind and the sail’s magnetic field interact each other in a rather complex way. An accurate

mathematical model is therefore difficult to obtain. To simplify the analysis, two limiting cases

(or operation modes) are usually considered in the literature [23] depending on the size of the

Magsail’s magnetic cavity. The first case, referred to as “case A”, corresponds to a very large

Magsail with a loop radius on the order of some hundreds kilometers. The second case, or “case

B”, corresponds to a smaller Magsail, with a loop radius on the order of some kilometers [10,16].

According to Kojima et al. [23], case A is consistent with the so called “thin magnetopause

mode”, whereas case B refers to the “thick magnetopause mode”, see Fig. 3 of Ref. [23].

The performance of a Magsail-based spacecraft can be suitably described as a function of

the characteristic acceleration ac. The latter, in analogy to the nomenclature adopted for a

photonic solar sail [24,25,26], is defined as the maximum propulsive acceleration at a reference

Sun-spacecraft distance of r⊕ � 1AU. Bearing in mind the definition of ac, and taking into

account the results of the experimental tests, the Magsail propulsive acceleration a may be
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written as

a = τ ac

(
r⊕

r

)η (
CD(θ) îr + CL(θ) îν

)
(1)

where η is the thrust coefficient (η = 2 for case A, η = 4/3 for case B), whereas τ = {0, 1}

is the switching parameter that models the Magsail on/off condition and is introduced to

account for the presence of coasting arcs in the spacecraft deep space trajectory. Note that the

selected value of the thrust coefficient η is consistent with the analytical results of Zubrin and

Andrews [4] and Kajimura et al. [16], assuming that the solar wind density varies as 1/r2 (see

for example Eqs. (1) and (2) of Ref. [16], and Eqs. (3) and (11) of Ref. [4]).

The propulsive thrust may be theoretically switched off by setting the current within the loop

to zero. However, such an event must be considered with care for problems related to possible

electric power deficiency. The reason is that in the original concept by Zubrin and Andrews [4]

the large loop constituting the Magsail is made of superconducting material. As a result, once

the propulsion system is switched on (at the beginning of the mission), the required current

in the loop can be maintained with a modest power consumption. Nonetheless, assuming that

the electric power is provided by solar panels, if the current is zeroed at a distance r � r⊕ to

get a coasting arc, the power necessary for a succeeding thrust restart could not be available

onboard (recall that the solar panels available power roughly scales proportional to 1/r2).

Returning to Eq. (1), the dimensionless coefficients CD and CL are usually referred to as drag

and lift coefficient [17], in analogy to the nomenclature adopted for atmospheric flight mechan-

ics problems. The drag coefficient CD models the component of the propulsive acceleration in

the radial direction, that is, in the (nominal) propagation direction of the solar wind. Note

that CD is strictly positive, that is, the radial thrust is always directed away from the Sun.

On the other hand the lift coefficient CL, which models the transverse thrust component, may

take a negative value, meaning that a · îν may be less than zero.

In other words, a Magsail-based spacecraft is able to change the angular momentum of the
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osculating orbit. However, the presence of a transverse thrust component requires the capability

of rotating the sail’s reference plane. In principle this is possible by displacing the center of

mass of the Magsail with respect to its center of pressure. Even though such a solution may be

difficult to accomplish due to the large dimension of the loop radius, it has been theoretically

discussed by Zubrin and Andrews [4].

Numerical simulations and experimental tests [16,17] show that the drag and lift coefficients are

both functions of θ. However, the relationships CD = CD(θ) and CL = CL(θ) present different

behaviors according to whether the Magsail falls within case A or case B. This is clearly

illustrated in Fig. 3, which has been obtained using the numerical data taken from Ref. [16].

Note that unlike Ref. [16], in which the radial and transverse thrust components are given in the

range θ ∈ [0, π/2], Fig. 3 extends the variation range of θ to the interval [0, π]. This is possible

by taking into account the symmetry properties of the drag and lift coefficients [17]. In fact,

it may be shown that CD(θ+ π/2) = CD(−θ+ π/2), whereas CL(θ+ π/2) = −CL(−θ+ π/2),

as is confirmed by numerical simulations [27]. Also note that the coefficients CD and CL of

Fig. 3 have been normalized with the maximum value of the drag coefficient. Accordingly, the

maximum value of CD in Fig. 3 is unitary, while the actual maximum value of CD is directly

accounted for in the value of the characteristic acceleration ac.

The numerical/experimental data (black squares and triangles of Fig. 3) may be described

with the following analytical relationships

CD = h0 + h1 cos (2 θ) (2)

CL = k0 sin (2 θ) + k1 sin (4 θ) (3)

where the best fit coefficients h0, h1, k0, and k1 are all given in Table 1. Equations (2) and (3)

are useful for the analysis of the optimal control law to be discussed next, and are drawn in

Fig. 3 in solid line.
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Note that the magnitude of the transverse component of the propulsive acceleration (a · îν)

is anyway much smaller than the radial component (a · îr) . This is clearly illustrated in

Fig. 4, which compares the two propulsive acceleration components for case A and case B.

The solid line represents the locus of points along which the vector endpoint of the normalized

propulsive acceleration is constrained to lie when the Sun-spacecraft distance is 1AU. For the

sake of comparison the figure also shows the normalized propulsive acceleration, at the same

Sun-spacecraft distance, for a perfectly reflecting photonic solar sail [28,29] and an E-sail. It

is worth noting that the thrust angle φ for a Magsail does not exceed about 12 deg, while the

same thrust angle for an E-sail [30] may reach up to 30 deg.

3 Optimal Control Laws

The aim of this section is to find the optimal control laws of a Magsail for two different mission

applications. The first one consists of the solution of a minimum time transfer trajectory in

a two-dimensional heliocentric mission scenario. The solution of this problem is useful for the

analysis of interplanetary transfers or for estimating the minimum time necessary to reach a

given distance from the Sun. The second problem is to find the control law that maximizes the

instantaneous rate of change of the specific mechanical energy of a spacecraft in interplanetary

space. The latter problem may be used for the study of a direct trajectory for a locally-

optimal Solar System escape. With minor adjustments the same control law can also be applied

to the analysis of locally-optimal escape trajectories from a planetary gravitational field [5].

Note however that in a planetocentric mission the Magsail would work within the Earth’s

magnetosphere and the corresponding thrust would be obtained by exploiting the planet’s

magnetic field rather than the solar wind [5].

It will be shown in the next section that the two previous problems can both be addressed using

the same control law type. To that end it is useful to solve the following auxiliary problem:
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Given a prescribed vector p belonging to the orbital plane, find the control variables τ and

θ such that the projection of a along p is maximized. The latter problem may be solved as

follows. Let δ ∈ [−π, π] be the angle between p and the radial direction, such that

p = p
(
cos δ îr + sin δ îν

)
(4)

where p � ‖p‖ with p �= 0. From Eq. (1), the projection of a along p is

a · p = τ p ac

(
r⊕

r

)η

sf with sf � CD cos δ + CL sin δ (5)

Substituting the analytical relationships (2) and (3) into Eq. (5), sf may be written as a

function of δ and θ as

sf = [h0 + h1 cos (2 θ)] cos δ + [k0 sin (2 θ) + k1 sin (4 θ)] sin δ (6)

Because a · p depends linearly on τ , a bang-bang control law is optimal, that is

τ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if sf < 0

1 if sf > 0

(7)

where sf is given by Eq. (6). The presence of a coasting phase in the trajectory, corresponding

to τ = 0, is related to the instantaneous value of sf , which therefore plays the role of a switching

function.

From Eq. (5) the maximization of a ·p requires the maximization of sf with respect to θ. The

solution is illustrated in Fig. 5, in which the optimal values of θ are drawn as a function of δ

for both cases A and B. The same figure also shows the two shaded zones in which a coasting

phase occurs. In particular, the optimal thrust is different from zero (that is, τ = 1) when

−δ̃ < δ < δ̃, where δ̃ 	 100.5 deg for case A, and δ̃ 	 101.5 deg for case B.

There exists also a closed form solution for case A. In fact, because k1 = 0 (see Table 1), the
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maximization of sf with respect to θ is simple to obtain. The result is

θ =
1

2
arctan

(
k0
h1

tan δ

)
for case A (8)

which is in agreement with the curve drawn in Fig. 5(a).

Having found how to maximize a · p, it is now possible to address the previous problems of

minimum time orbit transfer and Solar System locally-optimal escape.

3.1 Minimum time orbit transfer

The first problem is to find the minimum time transfer trajectory between prescribed helio-

centric coplanar orbits. Assuming an initial time t0 � 0, the problem amounts to maximizing

the performance index J � −t1, where t1 is the time at which the spacecraft reaches the target

orbit.

Using Eq. (1) for the propulsive acceleration a, the spacecraft dynamics is described by the

following differential equations

ṙ = u (9)

ν̇ = v/r (10)

u̇ = −μ�

r2
+

v2

r
+ τ ac

(
r⊕

r

)η

CD (11)

v̇ = −u v

r
+ τ ac

(
r⊕

r

)η

CL (12)

where u and v are the radial and circumferential components of the spacecraft velocity and

μ� is the Sun’s gravitational parameter. The drag and lift coefficients CD and CL are given by

Eqs. (2)-(3) as a function of the angle of attack θ.
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Adopting an indirect approach, the Hamiltonian function associated to the problem is [31]

H � λr u+
λν v

r
+ λu

[
−μ�

r2
+

v2

r
+ τ ac

(
r⊕

r

)η

CD

]
+ λv

[
−u v

r
+ τ ac

(
r⊕

r

)η

CL

]
(13)

where λi is the adjoint to i-th state variable. The Euler-Lagrange equations are

λ̇r = −∂H

∂r
=

λν v

r2
− 2λu μ�

r3
+

λu v
2

r2
− λv u v

r2
+ τ η ac

rη⊕
rη+1

(λu CD + λv CL) (14)

λ̇ν = −∂H

∂ν
= 0 (15)

λ̇u = −∂H

∂u
= −λr +

λv v

r
(16)

λ̇v = −∂H

∂v
=

λv u− 2λu v − λν

r
(17)

Equation (13) may be conveniently rewritten as

H = H ′ + λr u+
λν v

r
+ λu

(
−μ�

r2
+

v2

r

)
− λv

u v

r
(18)

where

H ′ = τ ac

(
r⊕

r

)η √
λ2
u + λ2

v

⎛⎝ λu√
λ2
u + λ2

v

CD +
λv√

λ2
u + λ2

v

CL

⎞⎠ (19)

is that portion of the Hamiltonian that explicitly depends on the two control variables, τ and

θ.

From Pontryagin’s maximum principle, the control variables must be chosen such that, at any

time, the Hamiltonian is an absolute maximum. This amounts to maximizing H ′ with respect

to τ and θ. Note that H ′ coincides with the expression a · p given by Eq. (5) provided that

p = λu îr + λv îν (20)

In other terms the optimal control law coincides with that drawn in Fig. 5 if

cos δ =
λu√

λ2
u + λ2

v

, sin δ =
λv√

λ2
u + λ2

v

(21)

The vector p of Eq. (20) coincides, in this case, with the well known Lawden’s primer vector [32].
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3.2 Locally-optimal Solar System escape

A minimum time Solar System escape trajectory [33] may be conveniently approximated [34,35]

by maximizing the instantaneous rate of change of the specific mechanical energy of the space-

craft E � (u2 + v2)/2− μ�/r. Using the equations of motion (9)–(12) it may be shown that

Ė = τ ac

(
r⊕

r

)η √
u2 + v2

(
u√

u2 + v2
CD +

v√
u2 + v2

CL

)
(22)

which coincides with a · p provided that

p = u îr + v îν (23)

Therefore p now represents the spacecraft velocity vector. As in the previous problem, the

optimal control law is drawn in Fig. 5 where

cos δ =
u√

u2 + v2
, sin δ =

v√
u2 + v2

(24)

4 Numerical Examples

The previously discussed control laws are used to simulate optimal trajectories for a Magsail-

based spacecraft in two mission scenarios.

4.1 Earth-Venus interplanetary transfer

As a first example, consider a circle-to-circle orbit transfer, starting from a parking orbit of

radius r = r⊕ = 1AU. This situation corresponds to a heliocentric transfer that follows an

Earth escape with zero hyperbolic excess velocity with respect to the planet. The final orbit

radius coincides with the mean radius of Venus’ heliocentric orbit, that is, r1 = 0.7233AU and

the Magsail characteristic acceleration is assumed to be ac = 1mm/s2.
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The two-point boundary value problem associated to the optimal control problem is constituted

by the four equations of motion (9)–(12) and the four Euler-Lagrange equations (14)–(17). The

boundary conditions are

r(t0) = r⊕ , ν(t0) = 0 , u(t0) = 0 , v(t0) =

√
μ�

r⊕

r(t1) = r1 , u(t1) = 0 , v(t1) =

√
μ�

r1
, λν(t1) = 0 , H(t1) = 1 (25)

where the last two equations follow from the transversality condition [36,37]. In particular,

according to Ref. [37], the (necessary but not sufficient) condition H(t1) = 1 allows a solution

to be found for the minimum flight time.

The simulation results are summarized in Table 2. Two mission scenarios have been studied,

one in which coasting arcs are allowed (τ = {0, 1}), and the second in which the propulsion

system is constrained to remain switched on (τ ≡ 1) for all the mission length. In the latter

circumstance τ is not a control variable, and the optimal control law for θ is that drawn in

Fig. 5 where the shaded regions are now deleted. Notably, the mission times for the two mission

scenarios are not much different. Likewise, the heliocentric trajectories are similar, as is shown

in Figs. 6(a) and 6(c). On the other hand, the optimal steering laws for θ are significantly

different, see Figs. 6(b) and 6(d).

Figure 7 shows the optimal transfer trajectory and the corresponding steering law for case B.

Even though the resulting trajectory is similar to that of case A, the control laws are signifi-

cantly different. This is due to the fact that the maximum value of the propulsive acceleration

is reached for different values of θ, see Fig. 3.
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4.2 Solar System escape mission

The second mission example involves the study of a Solar System escape trajectory using a

locally-optimal control law, which maximizes Ė . The escape trajectory is simulated by forward

integrating the equations of motion (9)–(12), using the previously discussed steering law, until

the escape condition E = 0 is met.

Assume that the spacecraft is initially moving along a circular parking orbit of radius r = r⊕

and belonging to the ecliptic plane. For symmetry reasons the initial true anomaly ν(t0) may be

set equal to zero. Therefore, the four boundary conditions necessary to integrate the equations

of motions are the first four of Eqs. (25).

The time interval t1 necessary to reach the escape condition is drawn in Fig. 8 as a function of

ac ∈ [3, 5]mm/s2 for both cases A and B. For comparative purposes, truly optimal trajectories

have been simulated using an indirect approach adapted from that discussed in Ref. [38]. The

results of this analysis have shown that locally-optimal escape trajectories are significantly dif-

ferent from truly-optimal trajectories when the characteristic acceleration is less than 3mm/s2.

The latter is thus the minimum value of ac reported in Fig. 8.

Note that for the selected range of variation of ac the locally-optimal trajectories are charac-

terized by r > r⊕ for all t ∈ [t0, t1]. A typical example of this trajectory class is illustrated

in Fig. 9(a). The reason for the time differences between cases A and B is that the space-

craft performance is strongly affected by the value of η, which models the way with which the

maximum propulsive acceleration varies as a function of the distance from the Sun.

Finally Fig. 9(b) shows the time histories of angle of attack θ, thrust angle φ, and flight path

angle, equal to arctan(u/v), for case B and ac = 3mm/s2. The figure also illustrates the

specific mechanical energy normalized by its initial value. Note that in the terminal phase of
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the trajectory the thrust angle is close to zero, that is, the propulsive acceleration is nearly

radially directed. The shape of the locally-optimal trajectory for case A, when a characteristic

acceleration of ac = 3mm/s2 is selected, is not shown because it is similar to that illustrated

in Fig. 9(a).

5 Conclusions

The propulsive acceleration of a Magsail has been described by means of a mathematical model

that captures the complex interactions between the magnetic field generated by the sail and

the solar wind, in a two-dimensional mission scenario. The drag and lift coefficient, which

define the magnitude of the propulsive acceleration, have been expressed in an analytical form

as a function of the sail’s angle of attack. The model has enabled the definition of optimal

and locally-optimal steering laws by means of an indirect approach, and these results are

new in the literature regarding magnetic sails. In particular, the problem of minimum time

transfer trajectory between prescribed heliocentric orbits and the problem of maximizing the

instantaneous rate of change of the orbital specific mechanical energy have been solved. The

structure of the steering law is the same for both problems. Numerical simulations involving a

minimum time Earth-Venus circle-to-circle interplanetary transfer and a Solar System escape

two-dimensional mission have been discussed, using the spacecraft characteristic acceleration

as a performance parameter.

A natural extension of the results discussed in this paper should involve the development of a

three-dimensional thrust model for a Magsail. Such a model would permit not only a thorough

analysis of an interplanetary transfer, but would also guarantee an estimate of the Magsail

performance for more advanced missions, such as those toward the Heliopause nose.
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coefficient case A case B

h0 0.8133 0.8312

h1 0.1867 -0.1688

k0 0.1485 -0.1338

k1 0 -0.03969

η 2 4/3

Table 1
Best fit coefficients and thrust coefficient η, see Eqs. (1)–(3).
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thrust model t1 [days]

τ = 1 378.2

case A

τ = {0, 1} 374.3

τ = 1 386

case B

τ = {0, 1} 372.8

Table 2
Earth-Venus (circle-to-circle) minimum transfer time for ac=1mm/s2.
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Figure 5. Optimal angle of attack θ as a function of angle δ.
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Figure 6. Numerical example of Earth-Venus optimal transfer for case A, with ac=1mm/s2 and the
data of Table 1.
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Figure 7. Numerical example of Earth-Venus optimal transfer for case B, with ac=1mm/s2 and the
data of Table 1.
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Figure 8. Flight time for Solar System escape using a locally-optimal control law and the data of
Table 1.

31 of 32



1AU

2AU

3AU

30

210

60

240

90

270

120

300

150

330

180 0

start

escape

Sun

parking orbit

(a) Locally-optimal trajectory.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

t t/ 1

[d
eg

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

t t� 1

E
/
|E

(t
0
)|

�

arctan( / )u v

�

escape

(b) Control angle and specific mechanical energy (t1 = 210 days).

Figure 9. Results of a Solar System escape mission for case B, with ac = 3 mm/s2 and the data of
Table 1.
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