
SHADOWS, RIBBON SURFACES,

AND QUANTUM INVARIANTS

ALESSIO CARREGA AND BRUNO MARTELLI

Abstract. Eisermann has shown that the Jones polynomial of a n-
component ribbon link L ⊂ S3 is divided by the Jones polynomial of
the trivial n-component link. We improve this theorem by extending its
range of application from links in S3 to colored knotted trivalent graphs
in #g(S

2 × S1), the connected sum of g > 0 copies of S2 × S1.
We show in particular that if the Kauffman bracket of a knot in

#g(S
2 ×S1) has a pole in q = i of order n, the ribbon genus of the knot

is at least n+1
2

. We construct some families of knots in #g(S
2 × S1)

for which this lower bound is sharp and arbitrarily big. We prove these
estimates using Turaev shadows.
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1. Introduction

Thirty years after its discovery, we know only a few relations between the
Jones polynomial JL of a link L and its topological properties. A notable one
is Eisermann’s Theorem [9] which connects the Jones polynomial to four-
dimensional smooth topology. The theorem states that the Jones polynomial
of a n-component ribbon link is divided by the Jones polynomial of the trivial
n-component link.

Another four-dimensional object related to the Jones polynomial is Tu-
raev’s shadow. In this paper we reprove Eisermann’s Theorem using shad-
ows, and extend its range of application from links in S3 to colored trivalent
graphs in #g(S

2 × S1).
In this introduction, we first show how we re-prove Eisermann’s theorem

for links in S3, and later explain its extension to graphs in #g(S
2 × S1).
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S XD

Figure 1. If S ⊂ D4 is the trivially embedded annulus
bounding the unlink ∂S, a shadow X = S∪D is obtained by
attaching a disc D to its core.

1.1. Shadows. Shadows are simple two-dimensional polyhedra locally-flatly
embedded in four-manifolds. They were defined by Turaev [23, 24] and then
considered by various authors, see for instance [2, 3, 7, 8, 12, 14, 16, 21, 22,
25].

In this paper, a shadow X is a (simple, locally-flat) collapsible spine of
D4. Being a collapsible spine is a quite restrictive requirement: we want

(1) that D4 collapses to X (i.e. X is a spine of D4),
(2) that X collapses to a point (i.e. X is collapsible).

If we use the symbols ↘ and • to indicate collapsing and a point, we may
summarize that by writing

D4 ↘ X ↘ •

Recall that a ribbon surface is a properly embedded surface S ⊂ D4 that
can be put into Morse position with only minima and saddle points (no
maxima). The surface S may be disconnected and non-orientable. We will
start by proving the following purely topological fact:

Theorem 1.1. Every ribbon surface is contained in some shadow.

We single out a couple of examples.

Example 1.2. Consider the trivially embedded annulus S ⊂ D4 as in Fig. 1.
A shadow X containing S is constructed by attaching a disc D to its core.
Note that indeed D4 ↘ X ↘ •. See Example 2.4.

Example 1.3. The trivial ribbon disc (with one minimum and no saddles)
is itself a shadow of D4. However, a non-trivial ribbon disc D ⊂ D4 is
not a shadow: it collapses to a point, but it fails to be a spine of D4, see
Proposition 2.5. The shadow containing D may be rather complicate.

The hypothesis that the surface is ribbon is crucial here: there are sur-
faces (for instance, discs) that are not contained in any shadow. Indeed the
following implications hold for a properly embedded surface S ⊂ D4:

S ribbon =⇒ S contained in a shadow =⇒ S homotopically ribbon.

Recall that S is homotopically ribbon if the inclusion S3\∂S ↪→ D4\S induces
a surjective homomorphism on fundamental groups. It is easy to construct
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discs that are not homotopically ribbon, and hence are not contained in any
shadow, see Section 2.5.

The question whether every homotopically ribbon surface S is actually
ribbon is, to the best of our knowledge, open: the requirement that S is
contained in some shadow lies between these two properties and breaks this
question in two parts.

Question 1.4. Can we reverse any of the two implications above?

1.2. Quantum invariants. We then turn to quantum invariants. A shadow
X for a link L ⊂ S3 is a shadow X ⊂ D4 such that X∩S3 = L. An easy ho-
mological argument shows that X contains a unique surface S with ∂S = L.
The surface S is possibly disconnected and non-orientable, but it contains
no closed components.

Instead of the Jones polynomial JL we prefer to use the Kauffman bracket
〈L〉 that is more adapted to our purposes. The Kauffman bracket is a Lau-
rent polynomial in q that differs from JL only by some re-parametrization.

The shadowX can be used to calculate 〈L〉 via Turaev’s state-sum formula
[23, 24], and by analyzing carefully that formula we prove the following:

Theorem 1.5. Let X be a shadow for a link L ⊂ S3 and S ⊂ X be the
unique surface with ∂S = L. The Kauffman bracket 〈L〉 vanishes at least
χ(S) times at q = i.

The theorem provides some information only when χ(S) > 0. The two
theorems we stated imply Eisermann’s Theorem [9]:

Corollary 1.6. If a link L ⊂ S3 bounds a ribbon surface S then 〈L〉 vanishes
at least χ(S) times at q = i.

Proof. There is a shadow X for L that contains S by Theorem 1.1. Theorem
1.5 implies that 〈L〉 vanishes at least χ(S) times at q = i. �

Again, this corollary is relevant only when χ(S) > 0. Recall that a n-
component link L ⊂ S3 is ribbon if it bounds a ribbon surface that consists
of n discs. The interesting corollary is of course the following.

Corollary 1.7. If L ⊂ S3 is a n-component ribbon link then 〈L〉 vanishes
at least n times at q = i.

It is an immediate consequence of its definition that the Kauffman bracket
〈L〉 of any link L ⊂ S3 vanishes at q = i at least once, and hence Eisermann’s
Theorem actually provides some information only when n > 2. In particular,
unfortunately it says nothing about knots in S3.

1.3. Links in some other manifolds. The techniques we used to prove
Theorems 1.1 and 1.5 extend naturally in two directions. The first consists
in varying the ambient manifold.

Costantino [4] has defined the Kauffman bracket 〈L〉 of a framed link

L ⊂ #g(S
2 × S1)
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Figure 2. A knot K in #g(S
2 × S1). To get #g(S

2 × S1)
simply double the handlebody in the picture. We draw here
the case g = 3, the general case is obvious from the picture.
Note that the knot is null-homotopic.

in a connected sum of any g > 1 copies of S2 × S1. The Kauffman bracket

〈L〉 is now a rational function on q
1
2 which may have poles at some roots of

unity, including the value q = i we are interested in. So we define

ordi〈L〉 ∈ Z ∪ {+∞}

to be the maximum integer k such that 〈L〉
(q−i)k−1 vanishes in q = i. This is

the first exponent of the Laurent expansion of 〈L〉 at q = i.
The notion of ribbon surface extends naturally to any closed 3-manifold

M : a ribbon surface is a properly embedded surface in Morse position inside
M × [0, 1], with boundary in M × 0, and without maxima. Equivalently, it
is an immersed surface in M having only ribbon singularities, see Section
2.1. We generalize Eisermann’s theorem as follows:

Theorem 1.8. If a link L ⊂ #g(S
2 × S1) bounds a ribbon surface S then

ordi〈L〉 > χ(S).

This theorem is potentially stronger in #g(S
2 × S1) than in S3 because

now ordi〈L〉 can be an arbitrarily small negative number. In particular it
provides non-trivial informations also for knots, as the following example
shows.

Example 1.9. The framed knot K ⊂ #g(S
2 × S1) drawn in Fig. 2 has

〈K〉 = (−1)1−gq−
3g
2

(1 + q2 + q4 + q6)g

(q + q−1)2g−1

and hence ordi〈K〉 = g − (2g − 1) = 1− g. Therefore K bounds no ribbon
surface S with χ(S) > 1− g. In particular, it is not a ribbon knot.

The ribbon genus of a knot K is the minimum genus of an orientable
connected ribbon surface S with ∂S = K. As a consequence, the ribbon
genus of the knot K shown in Fig. 2 is at least g

2 . In general we get:

Corollary 1.10. Let K ⊂ #g(S
2 × S1) be a knot. Then:

• if 〈K〉 does not vanish at q = i, the knot is not ribbon,
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• if 〈K〉 has a pole at q = i of order n > 0, the ribbon genus of K is
at least n+1

2 .

The following example illustrates a family of knots for which this lower
bound on the ribbon genus is sharp and arbitrarily big.

Example 1.11. Let S be a compact orientable surface with boundary. The
boundary of the four-manifold S ×D2 is diffeomorphic to #g(S

2 × S1) for
g = 1− χ(S). The link L = ∂S inside #g(S

2 × S1) has

〈L〉 = (−q − q−1)χ(S)

and hence ordi〈L〉 = χ(S). Therefore S is a ribbon surface of maximal Euler
characteristic (among those having L as boundary). The lower bound given
by Theorem 1.8 is sharp on these links. We can choose L to be a knot by
picking a surface S with one boundary component, and we can choose χ(S)
to be arbitrarily small by increasing the genus of S.

Remark 1.12. Similar lower bounds for the slice genus of the knots and links
considered in Examples 1.9 and 1.11 can be constructed by other methods,
see Remark 5.9: these basic examples were chosen primarily because their
Kauffman bracket can be easily calculated by hand.

Since the lower bound furnished by the Kauffman bracket is non-trivial
on these simple examples, it might hopefully say something relevant on more
elaborate ones: we briefly discuss the slice/ribbon conjecture and its possible
extensions in Section 7.4.

1.4. Knotted trivalent graphs. The second extension consists of taking
trivalent graphs instead of just links. The Kauffman bracket 〈G〉 is defined
for colored framed knotted trivalent graphs G in S3 and more generally in
#g(S

2 × S1). These objects are often called ribbon graphs, but we do not
use this terminology here to avoid confusion with ribbon surfaces.

The coloring of G is the assignment of a non-negative integer to every
edge or knot component of G, such that at every vertex v ∈ G the colors
a, b, c of the incident edges fulfill the triangle inequalities and have even sum
a+ b+ c. Thanks to these admissibility conditions, the numbers

a+ b− c
2

,
b+ c− a

2
,

c+ a− b
2

are non-negative integers. We say that the vertex v is red if at least two of
these integers are odd. The edges in G having an odd color form a sublink
L ⊂ G called the odd sublink.

The Kauffman bracket 〈G〉 of G is still a rational function in q
1
2 . The

following theorem generalizes Theorem 1.8 from links to graphs.

Theorem 1.13. Let G be a colored framed knotted trivalent graph in S3 or
#g(S

2 × S1) and L ⊂ G be its odd sublink. If L bounds a ribbon surface S
then

ordi〈G〉 > χ(S)− r

2
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where r is the number of red vertices in G.

The theorem applies in particular to colored links:

Corollary 1.14. Let G be a colored framed link in S3 or #g(S
2 × S1) and

L ⊂ G be its odd sublink. If L bounds a ribbon surface S then

ordi〈G〉 > χ(S).

Hence in particular Eisermann’s Theorem holds as is for links colored
with odd numbers.

1.5. Proofs. The proof of Theorem 1.13 splits into two parts: the topolog-
ical Theorem 1.1, and the more technical Theorem 1.5, both extended from
links in S3 to graphs in #g(S

2 × S1).
While the topological side of the story is a one-page proof, the technical

part needs a long case-by-case analysis that we would have never pursued if
we were not aware of Eisermann’s Theorem. We easily localize the proof of
Theorem 1.13 to the case where G is one of the three planar graphs

, ,

in S3. The graph is a well-known building block in quantum topology
(closely related to the quantum 6j-symbols) and its Kauffman bracket is a
quite complicate rational function in q, see Section 3.4.

To prove Theorem 1.13 we examine carefully this rational function near
q = i for all possible parities of the six numbers coloring the edges of the

graph, and check that the inequality ordi > χ(S) − r
2 is fulfilled (quite

miraculously) in all cases (and it is almost always an equality!). The adden-
dum r

2 in the formula is absolutely necessary, as the following shows.

Example 1.15. The Kauffman bracket of the graph G = 2,2,2 colored
with 2, 2, 2 is

〈G〉 = −(q3 + q + q−1 + q−3)(q2 + 1 + q−2)

(q + q−1)2

and has a pole in q = i of order 1, i.e. ordi(G) = −1. The odd sublink of G
is empty and hence bounds the empty ribbon surface S that has χ(S) = 0.
The formula ordi(G) > χ(S) − r

2 holds because both vertices of G are red
and hence r = 1, giving −1 > 0− 1.

1.6. Structure of the paper. We define ribbon surfaces and shadows in
Section 2, where we also prove the topological Theorem 1.1. In Section 3 we
introduce the Kauffman bracket and recall Turaev’s formula that computes
it as a state-sum on a shadow. In Section 4 we prove the more technical
Theorem 1.5. In Section 5 we generalize everything from S3 to #g(S

2×S1).
In Section 6 we re-prove Turaev’s state-sum formula. Section 7 is devoted
to some open questions for further research.
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Figure 3. A ribbon singularity

Figure 4. A ribbon disc in D4 in Morse position with two
minima and one saddle. Each regular level gives a link in S3.

1.7. Acknowledgements. We would like thank Francesco Costantino, Paolo
Lisca, and Dylan Thurston for many helpful conversations.

2. Shadows and ribbon surfaces

We introduce ribbon surfaces and shadows, and then prove Theorem 1.1
which says that every ribbon surface is contained in some shadow.

2.1. Ribbon surfaces. A properly embedded smooth surface S ⊂ D4 is
ribbon if one of the following equivalent conditions holds:

• the surface S may be isotoped to an immersed surface in S3 having
only “ribbon” singularities as in Fig. 3,
• the surface S may be isotoped in D4 into Morse position, with only

minima and saddle points (no maxima) as in Fig. 4.

Every ribbon surface S can be constructed from a planar diagram as in
Fig. 5, consisting of some disjoint circles and some arcs connecting them in
space.

2.2. Shadows. A simple polyhedron X is a 2-dimensional compact polyhe-
dron where every point has a neighborhood homeomorphic to one the five
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Figure 5. Every ribbon surface can be constructed from a
planar diagram with some disjoint circles representing the
minima and some edges connecting them representing the
saddles (left). The surface is obtained by filling the circles
(yellow) and thickening the edges to (orange) bands.

(1) (2)

(5)

(3)

(4)

Figure 6. Neighborhoods of points in a simple polyhedron.

types (1-5) shown in Fig. 6. The five types form subsets of X whose con-
nected components are called vertices (1), interior edges (2), regions (3),
boundary edges (4), and boundary vertices (5). The points (4) and (5) alto-
gether form the boundary ∂X of X. An edge is either an open segment or
a circle; a region is a (possibly non-orientable) connected surface.

Definition 2.1. A shadow for D4 is a simple polyhedron X ⊂ D4 such that
the following holds:

• X is properly embedded, that is ∂X = X ∩ S3,
• X is locally flat: every point p ∈ X has a neighborhood U in D4

diffeomorphic to B3 × (−1, 1) with U ∩X contained in B3 × 0 as in
Fig. 6,
• X collapses onto a point,
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Figure 7. A knotted trivalent graph (left) and its shadow
(right). The shadow contains three interior vertices (green).

• D4 collapses onto X.

The first two conditions are just reasonable requirements one assumes
when considering simple polyhedra inside four-manifolds; on the other hand,
the last two conditions are quite restrictive and can be summarized by writ-
ing

D4 ↘ X ↘ •
where • indicates a point.

2.3. Knotted trivalent graphs. A knotted trivalent graph is a smooth
graph in S3 where every vertex has valence 3, and knot components are
also admitted. So in particular a link is a knotted trivalent graph without
vertices.

The boundary G = ∂X of a shadow X ⊂ D4 is a knotted trivalent graph
in S3, and we say that X is a shadow of G. Although the definition of shadow
seems very restrictive, it turns out that every knotted trivalent graph has
at least one shadow (and in fact, infinitely many):

Proposition 2.2 (Turaev). Every knotted trivalent graph G ⊂ S3 has a
shadow.

Proof. This result was first proved by Turaev [23] in a more general context;
here we follow the proof contained in [7, Theorem 3.14]. Pick a diagram
for G as in Fig. 7-(left). We suppose that there is a smallest closed disc
D containing the diagram like the yellow one in Fig. 7-(right). This is
equivalent to ask that the diagram is connected and no vertex of the diagram
disconnects it: these conditions can be easily achieved using Reidemeister
moves.

If we push the yellow disc D entirely inside D4, we obviously get D4 ↘
D ↘ •. We enlarge D by adding a cylinder above G as sketched in Fig. 7-
(right). The resulting object X is a shadow for G: we still have D4 ↘
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S

X
=

Figure 8. How to build a shadow X containing a given
ribbon surface S. We show here the construction for the
ribbon annulus S.

X ↘ •, and X is easily seen to be a properly embedded locally flat simple
polyhedron with ∂X = G. �

2.4. Ribbon surfaces in shadows. We are ready to prove Theorem 1.1:

Theorem 2.3. Every ribbon surface S is contained in a shadow X with
∂X = ∂S.

Proof. Construct S from a planar diagram G as in Fig. 5-(left). Via Reide-
meister moves we may suppose that there is a smallest closed disc containing
G. The diagram G identifies a knotted trivalent graph and we construct a
shadow X for G using the algorithm described in the proof of Proposition
2.2.

Note that X contains the yellow discs of Fig. 5-(right). To complete the
construction, we simply add to X the orange bands shown in Fig. 5-(right),
and then push their interior a bit inside D4. We end up with a shadow X
containing the whole of S and with ∂X = ∂S. �

Example 2.4. Fig. 8 illustrates the construction in a simple case. The
ribbon surface S ⊂ D4 is a trivially embedded annulus with boundary L =
∂S the unlink with two components; the annulus S in Morse position has
one minimum and one saddle, and it is hence a ribbon surface constructed
from the graph G shown in Fig. 8-(top-right): a circle (the minimum) with a
diameter (encoding the saddle). A shadow for G is shown in Fig. 8-(bottom-
left). By adding a band we obtain a shadow X for L containing S, and X
is just S with a disc attached to its core. Note that indeed X is a spine of
D4 that collapses to a point.
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When the ribbon surface S is a disc, it collapses to a point, and hence
one might wonder whether we could simply take X = S as a shadow. We
show that this works only in the trivial case (the trivial ribbon disc is the
one with one minimum and no saddle, having the trivial knot as boundary).

Proposition 2.5. A properly embedded disc D ⊂ D4 is a shadow if and
only if D is isotopic to the trivial ribbon disc (and hence ∂D is the unknot).

Proof. The disc D collapses to a point, so D is a shadow of D4 if and only
if D4 ↘ D. This holds if and only if D4 is a regular neighborhood of D. A
regular neighborhood of D is a product bundle D × D2, hence D4 ↘ D if
and only D4 = D ×D2. This holds precisely when D is trivial. �

We have proved that every ribbon disc D is contained in a shadow X,
but X may in fact be quite complicated.

2.5. Non-ribbon surfaces. One may wonder whether every surface S is
contained in a shadow. We now show that this is not true: indeed being
contained in a shadow is quite restrictive. Recall that a properly embedded
surface S ⊂ D4 is homotopically ribbon if the inclusion

(S3 \ ∂S) ↪→ (D4 \ S)

induces an epimorphism on fundamental groups

π1(S
3 \ ∂S)� π1(D

4 \ S).

For a general surface S, the following implications hold:

S ribbon =⇒ S contained in a shadow =⇒ S homotopically ribbon.(1)

We have already proved the first implication, so we now turn to the second.

Proposition 2.6. If S is contained in a shadow X then it is homotopically
ribbon.

Proof. The shadow X contains S and is hence obtained from S by adding
cells of index 0, 1, or 2. Therefore a regular neighborhood N(X) of X is
obtained from a regular neighborhood N(S) of S by adding handles of index
0, 1, or 2. Since X is a spine of D4, we can take N(X) = D4.

By turning handles upside-down we get that D4 \N(S) is obtained from
a collar of S3 \N(∂S) by adding handles of index 4, 3, or 2. Since there are
no 1-handles, the inclusion

S3 \N(∂S) ↪→ D4 \N(S)

induces a surjection on fundamental groups. �

We do not know if any of the two implications in (1) can be reversed. It is
easy to construct some surface S that is not homotopically ribbon, and such
an S cannot be contained in a shadow. The following example is certainly
known to experts and we include it for completeness.
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=  A  + A
–1

=  –A –A
2 –2

Figure 9. The Kauffman bracket relations.

Proposition 2.7. The trivial knot bounds some disc that is not homotopi-
cally ribbon.

Proof. Pick a knotted sphere S2 ⊂ S4 whose complement has non-cyclic
fundamental group G, for instance a spun knot [20, Chapter 3.J].

By tubing one such knotted sphere with a trivial properly embedded disc
we get a disc D2 ⊂ D4 such that π1(D

4 \D2) = G. Since ∂D2 is the trivial
knot, the complement S3 \ ∂D2 is a solid torus and has cyclic π1. The map

π1(S
3 \ ∂D2) −→ π1(D

4 \D2)

cannot be surjective since the left group is cyclic and the right one is not. �

2.6. Enlargement. We prove here a stronger version of Theorem 2.3:

Theorem 2.8. Let S ⊂ D4 be a ribbon surface and G ⊂ S3 a knotted
trivalent graph containing ∂S. There is a shadow X of G containing S.

Proof. The ribbon surface S is obtained from some planar diagram contain-
ing circles and edges as in Fig. 6-(left), and the link L = ∂S ⊂ G is as in
Fig. 6-(right).

The graph G contains L and up to isotopy we may suppose that G \ L
is attached to L only at the circles. Then we can proceed exactly as in the
proof of Theorem 2.3 to get a shadow X of G containing S. �

3. Shadows and the Kauffman bracket

We introduce the Kauffman bracket and Turaev’s shadow formula.

3.1. Kauffman bracket. The Kauffman bracket 〈L〉 of a framed link L ⊂
S3 is a polynomial in Z[A,A−1] defined using the skein relations shown in
Fig. 9. The variables q = A2 or t = A4 are often used instead of A: the
famous Jones polynomial of an oriented (but unframed) link is obtained
from the Kauffman bracket simply by taking t = A4 and assigning to the
oriented link its Seifert framing. We will work with the variable q = A2.
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Figure 10. The (n + 1)th Jones-Wenzl projector is defined
recursively with this formula.

3.2. Eisermann Theorem. Eisermann has proved in [9] the following fact.

Theorem 3.1 (Eisermann). If S ⊂ D4 is ribbon then 〈∂S〉 has a zero in
q = i of order at least χ(S).

The theorem provides some information only when χ(S) > 0. A n-
component link L is ribbon if it bounds a ribbon surface consisting of n
discs.

Corollary 3.2. If a n-component link L is ribbon then 〈L〉 has a zero at
q = i of order n.

Eisermann has shown that this is the maximum order one can achieve:
for every n-component link we have

1 6 ordi〈L〉 6 n

and both extremes may arise. In particular, when n = 1 we always get
ordi〈L〉 = 1 and hence Corollary 3.2 gives no information on knots.

Note that if we modify the framing of L the Kauffman bracket 〈L〉 changes

by a power of A = q
1
2 and hence its vanishing order at q = i is unaffected:

therefore we can neglect the framing in our investigation.
The Kauffman bracket of a link may also be calculated using shadows via

a state-sum formula. To explain this construction, due to Turaev, we need
to introduce some objects.

3.3. Colored ribbon graphs. A framed knotted trivalent graph G ⊂ S3 is
a knotted trivalent graph equipped with a framing, i.e. an oriented surface
thickening of the graph considered up to isotopy. An admissible coloring of
G is the assignment of a natural number (a color) at each edge of G such
that the three numbers i, j, k coloring the three edges incident to a vertex
satisfy the triangle inequalities, and their sum i+ j + k is even.

There is a standard way to define the Kauffman bracket 〈G〉 of a colored
framed knotted trivalent graph G ⊂ S3, which agrees with the above defi-
nition on framed links with all components colored by 1. The bracket 〈G〉
will be a rational function in q

1
2 and not a Laurent polynomial in general –

although it turns out a posteriori to be very close to a polynomial, see [5].
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Figure 11. A colored framed knotted trivalent graph de-
termines a linear combination of framed links: replace ev-
ery edge with a Jones-Wenzl projector, and connect them
at every vertex via non intersecting strands contained in the
depicted bands. For instance there are exactly i+j−k

2 bands
connecting the projectors i and j.

Figure 12. Three important planar colored framed trivalent
graphs in S3.

To define 〈G〉 we must introduce the quantum integer

[n] =
qn − q−n

q − q−1
= q−n+1 + q−n+3 + . . .+ qn−3 + qn−1.

The Jones-Wenzl projector is a linear combination of framed arcs, defined
recursively in Fig. 10. The admissibility requirements on colors allow to
associate uniquely to G a linear combination of framed links by putting the
kth Jones-Wenzl projector at each edge colored with k and by substituting
vertices with bands as shown in Fig. 11.

3.4. Three important planar graphs. Three basic planar framed triva-

lent graphs , , and in S3 are shown in Fig. 12. Their Kauffman
brackets are some rational functions in q that we now describe.

We recall the usual factorial notation

[n]! = [1] · · · [n]

with the convention [0]! = 1. Similarly we define the generalized multino-
mials: [

m1, . . . ,mh

n1, . . . nk

]
=

[m1]! · · · [mh]!

[n1]! · · · [nk]!
.
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R

Figure 13. A region R in a shadow X. The shadow X
induces on every component of ∂R an interval sub-bundle of
the normal bundle in D4, painted here in yellow.

When using these generalized multinomials we will always suppose that

m1 + . . .+mh = n1 + . . .+ nk.

The evaluations of , and are:

a = (−1)a[a+ 1],

a,b,c = (−1)
a+b+c

2

[
a+b+c

2 + 1, a+b−c2 , b+c−a2 , c+a−b2
a, b, c, 1

]
,

a b
c
e
d

f

=

[
�i −4j

a, b, c, d, e, f

]
·

min�i∑
z=max4j

(−1)z
[

z + 1
z −4j ,�i − z, 1

]
.

In the latter equality, triangles and squares are defined as follows:

41 =
a+ b+ c

2
, 42 =

a+ e+ f

2
, 43 =

d+ b+ f

2
, 44 =

d+ e+ c

2
,

�1 =
a+ b+ d+ e

2
, �2 =

a+ c+ d+ f

2
, �3 =

b+ c+ e+ f

2
.

The indices in the formula vary as 1 6 i 6 3 and 1 6 j 6 4, so the term

�i −4j indicates 3× 4 = 12 numbers. The formula for was first proved
by Masbaum and Vogel [17]. These formulas are all rational functions in q
that may have poles in 0,∞, and at some root of unity, sometimes including
the value q = i we are interested in.

3.5. Gleams. Let X ⊂ D4 be a shadow of a framed knotted trivalent graph
G ⊂ S3. Every region R ⊂ X is equipped with a gleam, a half-integer that
generalizes the Euler number of closed surfaces embedded in oriented four-
manifolds. The gleam is defined as follows.

The boundary ∂R of R consists of some closed curves, see Fig. 13. If R is
disjoint from G, the shadow X provides an interval bundle over ∂R as shown
in the figure, which is an interval sub-bundle of the normal bundle of ∂R in
D4. If R is incident to some edge of G, the interval bundle is provided by
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the framing of G. (The boundary ∂R is actually only immersed in general,
but all these definitions work anyway.)

Let R′ be a generic small perturbation of R with ∂R′ lying in the interval
bundle at ∂R. The surfaces R and R′ intersect only in isolated points, and
we count them with signs:

gl(R) =
1

2
#(∂R ∩ ∂R′) + #(R ∩R′) ∈ Z

2

The half-integer gl(R) is the gleam of R and does not depend on the chosen
R′. Note that the contribution of #(∂R ∩ ∂R′) above one component of
∂R is even or odd, depending on whether the interval bundle above it is an
annulus or a Möbius strip.

3.6. Shadow formula. Finally, we recall how to compute the Kauffman
bracket of a colored framed knotted trivalent graph G ⊂ S3 using shadows.

LetX be a shadow forG. An admissible coloring σ forX is the assignment
of a color to each region of X, such that for every interior edge of X the
colors of the three incident regions form an admissible triple. We also require
that σ extends the given coloring of G, i.e. a region R ⊂ X incident to an
edge e of G must be given the same color as e.

The evaluation of the coloring σ is the following function:

〈Xσ〉 =

∏
f

χ(f)

f qf
∏
v

χ(v)

v

∏
v∂

χ(v∂)

v∂∏
e

χ(e)

e

∏
e∂

χ(e∂)

e∂

.(2)

Here the product is taken on all regions f , interior edges e, interior vertices
v, boundary edges e∂ , and boundary vertices v∂ . The symbols

f , e, v, v∂ , e∂

indicate the Kauffman bracket of these graphs, colored respectively as f or
as the regions incident to e, v, v∂ , e∂ .

The phase qf is the following monomial in q
1
4 :

qf = (
√
−1)2gcq−

gc
2
(c+2)

where g and c are the gleam and the color of f , respectively.
The Euler characteristic χ(v) and χ(v∂) of vertices are obviously 1 and

are included only for aesthetic reasons.

Theorem 3.3 (Turaev). Let G ⊂ S3 be a colored framed knotted trivalent
graph and X any shadow for G. We have

〈G〉 =
∑
σ

〈Xσ〉

where the sum is taken on all colorings σ of X that extend that of G.

We give a complete proof of this formula in Section 6.
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4. Estimates at q = i

We prove all the needed estimates at q = i. The main result of this section
is Theorem 4.4, which is the technical core of the paper.

4.1. Subsurfaces. We will need the following.

Proposition 4.1. Let X be a shadow of a trivalent knotted graph G ⊂ S3.
There are natural 1-1 correspondences:{

properly embedded
surfaces S ⊂ X

}
←→ H2(X,G;Z2)←→ H1(G;Z2)←→

{
links
L ⊂ G

}
.

The correspondence sends S to L = ∂S. The empty surface is included.

Proof. The morphism ∂ : H2(X,G;Z2) → H1(G;Z2) is an isomorphism be-
cause X is contractible and hence Hi(X;Z2) = {e} for i = 1, 2. Using
cellular homology, every Z2-homology class in (X,G) is realized by a unique
cycle, and that cycle is a surface since X has simple singularities. �

Let now σ be an admissible coloring for X. Its reduction modulo 2 is a
cycle inH2(X,G;Z2) because the admissibility relation around every interior
edge of X reduces to i+j+k ≡ 0 (mod 2). This cycle gives a surface Sσ ⊂ X
that consists of all regions in X having an odd color: we call Sσ the odd
surface of σ.

Analogously, an admissible coloring for G determines an odd link L ⊂ G
consisting of all edges with odd colors. Proposition 4.1 implies the following:

Corollary 4.2. Let G ⊂ S3 be a colored framed knotted trivalent graph and
X be any shadow for G. The odd surface Sσ ⊂ X of a coloring σ that extends
that of G is the unique surface whose boundary ∂Sσ is the odd sublink of G.
In particular Sσ does not depend on σ.

4.2. Red vertices. Let (a, b, c) be an admissible triple. Consider the fol-
lowing integers:

a+ b− c
2

,
b+ c− a

2
,
c+ a− b

2
.(3)

All the definitions we introduce are standard, except the following one
which is new. We say that the triple (a, b, c) is red if at least two of the
three integers in (3) are odd numbers.

Definition 4.3. Let G be a colored framed knotted trivalent graph. A
vertex is red if the colors of the three incident edges form a red triple.

4.3. The main technical theorem. Given a meromorphic function f(q)
defined in a neighborhood of q0, we denote by

ordq0f ∈ Z ∪ {+∞}

the maximum integer k such that f(q)/(q−q0)k−1 vanishes in q0. If ordq0f =
+∞ the function f vanishes in a neighborhood of q0, otherwise it has a
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Laurent expansion

f(q) = λ(q − q0)ordq0f + o
(
(q − q0)ordq0f

)
for some λ 6= 0. We will be interested in the case q0 = i. We want to prove
the following:

Theorem 4.4. Let X be a shadow colored by σ. We have

ordi〈Xσ〉 > χ(Sσ)− r

2

where r is the number of red vertices in ∂X.

This theorem and the topological Theorem 2.3 form altogether the core
of this paper. In contrast with the topological one, this theorem has a long
technical proof, to which we devote the rest of this section.

Before starting with the proof we single out some corollaries.

Corollary 4.5. Let G ⊂ S3 be a colored framed knotted trivalent graph. If
the odd link L ⊂ G bounds a ribbon surface S ⊂ D4 then

ordi〈G〉 > χ(S)− r

2

where r is the number of red vertices in G.

Proof. The ribbon surface S is contained in a shadow X of G by Theorem
2.8. We have

〈G〉 =
∑
σ

〈Xσ〉

which implies

ordi〈G〉 > min
σ

{
ordi〈Xσ〉

}
.

Every coloring σ of X extends the one of G and hence its odd surface Sσ ⊂ X
has boundary ∂Sσ = L. Such a surface is unique by Proposition 4.1 and
hence necessarily Sσ = S. Now Theorem 4.4 says that

ordi〈Xσ〉 > χ(S)− r

2

for all σ. �

A coloring of a link is odd if each component is colored with an odd
number.

Corollary 4.6. If a link L ⊂ S3 bounds a ribbon surface S then

ordi〈L〉 > χ(S)

for any framing and any odd coloring on L.

Eisermann’s Theorem corresponds to the case where all colorings are 1.



SHADOWS, RIBBON SURFACES, AND QUANTUM INVARIANTS 19

Corollary 4.7. Let G be a colored framed knotted graph. If the odd link
L ⊂ G is ribbon, then

ordi〈G〉 > |L| −
r

2
where |L| denotes the number of components of L and r is the number of red
vertices in G.

Proof. By hypothesis L bounds a ribbon surface S consisting with |L| discs
and hence χ(S) = |L|. �

The following case includes the graphs , , and :

Corollary 4.8. Let G ⊂ R2 be a colored planar graph. We have

ordi〈G〉 > |L| −
r

2

where |L| denotes the number of components of the odd (un-)link L ⊂ G and
r is the number of red vertices in G.

Proof. The odd link L is planar, hence trivial, hence ribbon. �

4.4. Localization of Theorem 4.4. We now localize the proof of Theorem

4.4, by reducing it to the building blocks , , and . The following
lemma will be proved in the next section.

Lemma 4.9. Let G be a colored , , or . We have

ordi〈G〉 > |L| −
r

2

where L is the odd (un-)link L ⊂ G and r is the number of red vertices in

G. If G = or then the equality holds.

Note that for G = , , we have:

• |L| = 1 if G contains some odd-colored edges,
• |L| = 0 otherwise.

We postpone the proof of Lemma 4.9 to the next section, and we now deduce
Theorem 4.4 from it.

Proof of Theorem 4.4 from Lemma 4.9. We have

〈Xσ〉 =

∏
f

χ(f)

f qf
∏
v v

∏
v∂ v∂∏

e

χ(e)

e

∏
e∂

χ(e∂)

e∂

The phase qf is a monomial in q and hence does not contribute to ordi〈Xσ〉.
We get

ordi〈Xσ〉 =
∑
f

χ(f) · ordi f +
∑
v

ordi v +
∑
v∂

ordi v∂

−
∑
e

χ(e) · ordi e −
∑
e∂

χ(e∂) · ordi e∂ .
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We now use Lemma 4.9. Note that for every colored , , involved,
we have |L| = 1 precisely when the corresponding stratum (vertex, edge, or
region) is contained in Sσ, otherwise we get |L| = 0. We denote by r(G) the
number of red vertices in G and we get:

ordi〈Xσ〉 >
∑
f⊂Sσ

χ(f) +
∑
v∈Sσ

1 +
∑
v∂∈Sσ

1−
∑
e⊂Sσ

χ(e)−
∑
e∂⊂Sσ

χ(e∂)

−
∑
v

r(v)

2
−
∑
v∂

r(v∂)

2
+
∑
e

r(e)

2

= χ(Sσ)−
∑
v

r(v)

2
−
∑
v∂

r(v∂)

2
+
∑
e

r(e)

2
.

Let e be an interior edge. The two vertices of e are colored by the same

triple (a, b, c): hence e has either zero or two red vertices. If an interior

vertex v of X is adjacent to e, then v has a corresponding vertex colored
by (a, b, c). If an exterior vertex v∂ is adjacent to e, then both vertices of

v∂ are colored as (a, b, c). From this we get∑
e

r(e) =
∑
v

r(v) +
∑
v∂

r(v∂)

2

and therefore

ordi〈Xσ〉 > χ(Sσ)−
∑
v∂

r(v∂)

4
= χ(Sσ)− r

2

because r(v∂) equals 2 when v∂ is red and 0 otherwise. �

4.5. Order of generalized multinomials. It remains to prove Lemma
4.9, and to do so we will need the following.

Proposition 4.10. We have

ordi[n] =

{
0 if n is odd,
1 if n is even,

ordi[n]! =

⌊
n

2

⌋
,

ordi

[
m1, . . . ,mh

n1, . . . nk

]
=

⌊
#
{

odd ni
}

2

⌋
−

⌊
#
{

odd mj

}
2

⌋
.

Proof. The function

[n] =
qn − q−n

q − q−1
=

q−n

q − q−1
(q2n − 1)

has simple zeroes at the (2n)th roots of unity (except q = ±1), hence at q = i
when n is even. The equality ordi[n]! = bn2 c follows. On the multinomial,
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recall that m1 + . . .+mh = n1 + . . .+ nh = N by hypothesis. We get

ordi

[
m1, . . . ,mh

n1, . . . nk

]
=
∑
i

⌊
mi

2

⌋
−
∑
j

⌊
nj
2

⌋

=

⌊
N

2

⌋
−
⌊

#
{

odd mi

}
2

⌋
−
⌊
N

2

⌋
+

⌊
#
{

odd nj
}

2

⌋
=

⌊
#
{

odd ni
}

2

⌋
−

⌊
#
{

odd mj

}
2

⌋
.

�

We can now evaluate , , and at q = i.

4.6. Orders of the circle, theta, and tetrahedron. It remains to prove
Lemma 4.9

Proof of 4.9. If G = then ordi a = ordi[a+ 1] equals 1 if a is odd and 0

if a is even: the odd link L is respectively G and ∅, therefore ordi a = |L|
in any case.

If G = we have

ordi a,b,c = ordi

[
a+b+c

2 + 1, a+b−c2 , b+c−a2 , c+a−b2
a, b, c, 1

]
=

⌊
#
{

odd a, b, c, 1
}

2

⌋
−

⌊
#
{

odd a+b+c
2 + 1, a+b−c2 , b+c−a2 , c+a−b2

}
2

⌋
= |L| − r

2
.

To prove the last equality, note that the first addendum is 0 if a, b, c are
even and 1 otherwise (there are either zero or two odd numbers in a, b, c by
admissibility), and L ⊂ G is respectively empty or a circle. Concerning the
second addendum, note that

a+ b+ c

2
+ 1 =

a+ b− c
2

+
b+ c− a

2
+
c+ a− b

2
+ 1

and hence one easily sees that the second addendum equals⌊
#
{

odd a+b−c
2 , b+c−a2 , c+a−b2

}
2

⌋
which is 1 if the triple is red and 0 otherwise, by definition.

For G = we do a long case-by-case analysis. We recall the formula

a b
c
e
d

f

=

[
�i −4j

a, b, c, d, e, f

]
·

min�i∑
z=max4j

(−1)z
[

z + 1
z −4j ,�i − z, 1

]
.
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with

41 =
a+ b+ c

2
, 42 =

a+ e+ f

2
, 43 =

d+ b+ f

2
, 44 =

d+ e+ c

2
,

�1 =
a+ b+ d+ e

2
, �2 =

a+ c+ d+ f

2
, �3 =

b+ c+ e+ f

2
.

Note that

a+ b+ c+ d+ e+ f =
∑
i

�i =
∑
j

4j .

We now estimate the factor

(4)

min�i∑
z=max4j

(−1)z
[

z + 1
z −4j ,�i − z, 1

]
in terms of the parity of the �j ’s and the 4i’s.

We first consider the case a+ b+ c+ d+ e+ f is even. In that case the
number of odd �i’s is 0 or 2, while the number of odd 4j ’s is 0, 2, or 4.
Using Proposition 4.10 we easily see that

ordi

[
z + 1

z −4j ,�i − z, 1

]
is a number that depends on the parity of z, on the number 0, 2 of odd �i’s
and 0, 2, 4 of odd 4j ’s according to the tables:

z even

0 �i 2 �i
0 4j 0 1
2 4j 1 2
4 4j 2 3

z odd

0 �i 2 �i
0 4j 4 3
2 4j 3 2
4 4j 2 1

By taking the minimum we get that the order at q = i of (4) is at least:

(5)

0 �i 2 �i
0 4j 0 1
2 4j 1 2
4 4j 2 1

The case a+ b+ c+ d+ e+ f odd is treated analogously: now the number
of odd �i’s is 1 or 3, and the number of odd 4i’s is 1 or 3. We get

z even

1 �i 3 �i
1 4j 1 2
3 4j 2 3

z odd

1 �i 3 �i
1 4j 3 2
3 4j 2 1

The order at q = i of (4) is hence at least:

(6)
1 �i 3 �i

1 4j 1 2
3 4j 2 1
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We now turn to the factor

(7)

[
�i −4j

a, b, c, d, e, f

]
.

The 12 numbers �i−4j are of type m+n−p
2 where (m,n, p) are the colors of

the edges incident to some vertex: there are 4 vertices and 3 such expressions
at each vertex; the 12 numbers correspond to the 12 red arcs in the picture

where the red arc corresponding to m+n−p
2 is the one parallel to the edges

m,n and opposite to p. The parities of these 12 numbers determine the
parities of all the quantities �i,4j , a, b, c, d, e, f , and hence also |L| and r

2 .
The possible configurations (considered up to symmetries of the tetrahedron)
are easily classified and are shown in Tables 1 and 2.

As the tables show, the needed inequality

ordi
(
(4)
)

+ ordi
(
(7)
)
> |L|+ r

2
is verified for all the configurations, except one bad case: when the �i’s are
all even and the 4j ’s are all odd we need to prove that

ordi
(
(4)
)

+ ordi
(
(7)
)
> −2

but we only get > −4. This bad case holds for instance when a = b = c =
d = e = f = 2 and hence �i = 4 and 4j = 3. If we look more carefully at
this example we find

2 2
2

2
2

2

=

[
1 · · · 1

2, 2, 2, 2, 2, 2

]
·

4∑
z=3

(−1)z
[

z + 1
z − 3, 4− z, 1

]
=

1

[2]6
· (−[4]! + [5]!)

=
[4]!

[2]6
· ([5]− 1).

Now it turns out that the difference

[5]− 1 = q4 + q2 + q−2 + q4 = (q + q−1)(q3 + q−3) = [2]
(
[4]− [2]

)
has order 2 at q = i: this difference produces a cancellation that increases
the order of (4) at q = i by two, giving overall the desired −4 instead of the
> −2 expected by the tables.

We now prove that this kind of cancelation holds in general, provided
that the �i’s are all even and the 4j ’s are all odd. The sum

min�i∑
z=max4j

(−1)z
[

z + 1
z −4j ,�i − z, 1

]
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odd �i’s odd 4j ’s red arcs ordi
(
(7)
)

ordi
(
(4)
)
|L| r

2 works?

0 0 0 > 0 0 0 yes

0 2 −1 > 1 1 1 yes

0 4 −6 > 2 0 2 no

2 0 −2 > 1 1 2 yes

2 2 −1 > 2 1 1 yes

2 2 −3 > 2 0 1 yes

2 4 0 > 1 1 0 yes

Table 1. For each case: the number of odd �i’s, of odd
4j ’s, the red arcs, the order of the first factor (7), of the
second (4) estimated in (5), the number of components of
the odd link |L|, and r

2 . If (7) + (4) > |L| − r
2 then the

estimate works (last column).

goes from the odd z = max4j to the even z = min�i and so contains an
even number of terms. Two subsequent terms z = 2k − 1 and z = 2k give

−
[

2k
2k − 1−4j ,�i − 2k + 1, 1

]
+

[
2k + 1

2k −4j ,�i − 2k, 1

]
that may be rewritten as

−
[

2k
2k − 1−4j ,�i − 2k, 1, 1, 1, 1

]
·

(
1∏

i[�i − 2k + 1]
− [2k + 1]∏

j [2k −4j ]

)
.
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odd �i’s odd 4j ’s red arcs ordi
(
(7)
)

ordi
(
(4)
)
|L| r

2 works?

1 1 −1 > 1 1 1 yes

1 3 −2 > 2 1 1 yes

3 1 −3 > 2 1 2 yes

3 3 0 > 1 1 0 yes

Table 2. For each case: the number of odd �i’s, of odd
4j ’s, the red arcs, the order of the first factor (7), of the
second (4) estimated in (6), the number of components of
the odd link |L|, and r

2 . If (7) + (4) > |L| − r
2 then the

estimate works (last column).

The left factor has order 2 as prescribed by Table 1. Quite surprisingly, the
second factor ∏

j [2k −4j ]− [2k + 1] ·
∏
i[�i − 2k + 1]∏

i[�i − 2k + 1] ·
∏
j [2k −4j ]

.

has order at least 2: note that all the quantum integers in the formula are
quantum odd numbers; the denominator is a non-zero constant at q = i,
while the numerator has order > 2 thanks to the following lemma.

Lemma 4.11. Let x1, . . . , xn, y1, . . . , ym be odd non-negative integers with∑
j

(yj − 1) ≡
∑
i

(xi − 1) (mod 4).

Then

ordi

∏
i

[xi]−
∏
j

[yj ]

 > 2.

Proof. We set f(q) =
∏
i[xi] −

∏
j [yj ] and write

√
−1 instead of i to avoid

confusion. Now

[2k + 1](
√
−1) = (−1)k
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gives

f(
√
−1) = (−1)

1
2

∑
i(xi−1) − (−1)

1
2

∑
j(yj−1) = 0

since 1
2

∑
i(xi − 1) and 1

2

∑
j(yj − 1) have the same parity by hypothesis.

This gives ordif > 1. We now calculate the derivative f ′ of f . Note that

[n]′ =
n(qn−1 + q−n−1)(q − q−1)− (1 + q−2)(qn − q−n)

(q − q−1)2
.

vanishes when q =
√
−1 and n is odd, since both qn−1 + q−n−1 and 1 + q−2

do. Therefore the derivatives of
∏

[xi] and
∏

[yj ] both vanish at q =
√
−1

and hence f ′(
√
−1) = 0. Therefore ordif > 2. �

To conclude the proof of Lemma 4.9 we must verify that∑
j

(2k −4j − 1) ≡ 2k +
∑
i

(�i − 2k) (mod 4)

and apply Lemma 4.11. This is equivalent to
∑

j4j ≡
∑

i�i which is true

since actually
∑

j4j =
∑

i�i. �

5. Other manifolds

We extend everything from S3 to #g(S
2 × S1). We prove in particular

Theorems 1.8 and 1.13.

5.1. Ribbon surfaces. The notion of ribbon surface extends naturally
from S3 to every closed 3-manifold M . A properly embedded smooth surface
S ⊂M × [0, 1] with ∂S ⊂M × 0 is ribbon if one of the following equivalent
conditions holds:

• the surface S may be isotoped to an immersed surface in M having
only “ribbon” singularities as in Fig. 3,
• the surface S may be isotoped in M× [0, 1] into Morse position, with

only minima and saddle points (no maxima) as in Fig. 4.

Every ribbon surface S can be constructed from a graph embedded in M
as in Fig. 5, consisting of some disjoint circles bounding discs (the minima),
and some arcs connecting them in space (the saddles).

5.2. Shadows. Our definition of shadow is very restrictive and designed for
D4, and it cannot be extended harmlessly to manifolds other than S3.

Costantino has proposed in [4] a definition when Mg = #g(S
2 × S1) is

a connected sum of some g > 1 copies of S2 × S1. In that case Mg is
the boundary of the oriented four-dimensional handlebody H4

g made of one
0-handle and g one-handles.

Definition 5.1. A shadow for H4
g is a simple polyhedron X ⊂ H4

g such that
the following holds:

• X is properly embedded, that is ∂X = X ∩Mg,
• X is locally flat,
• X collapses onto a graph Y ,
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• H4
g collapses onto X.

The last two conditions can be summarized by writing

H4
g ↘ X ↘ Y.

The boundary G = ∂X of a shadow X ⊂ H4
g is a knotted trivalent graph

G ⊂Mg, and we say that X is a shadow of G.

Proposition 5.2 (Costantino [4]). Every knotted trivalent graph G ⊂ Mg

has a shadow X ⊂ H4
g .

Proof. Same proof as in Proposition 2.2, with a small variation. We set
H4
g = Dg ×D2 where Dg is a disc with g holes. Up to isotopy we can see G

as a diagram in the interior of Dg. Up to some Reidemeister move we can
suppose that there is a smallest closed disc with g holes D′g ⊂ Dg containing

G such that Dg \D′g is a collar of ∂Dg. We clearly have H4
g ↘ D′g ↘ Y for

some graph Y ⊂ D′g. We enlarge D′g by adding a cylinder above G and we
get a shadow X for G. �

5.3. Ribbon surfaces in a shadow. We can now extend Theorem 1.1
from S3 to Mg. A ribbon surface in a 4-manifold like H4

g is just a ribbon
surface in a collar of its boundary.

Theorem 5.3. Every ribbon surface S ⊂ H4
g is contained in a shadow X

with ∂X = S.

Proof. Same proof as in Theorem 2.3. We construct S from a graph G ⊂
#g(S

2×S1) as in Fig. 5 made of circles and arcs. Up to Reidemeister moves
we suppose that G is contained in a smallest disc with holes and we build a
shadow X for G as described in the proof of Proposition 5.2. Then we add
bands and push them inside H4

g . �

5.4. Kauffman bracket. The Kauffman bracket is also defined in Mg,
thanks to result of Hoste-Przytycki [13, 19] and (with different techniques)
to Costantino [4]. We briefly recall its definition.

Let M be an oriented 3-manifold. Consider the field Q(A) of all complex
rational functions with variable A and the abstract Q(A)-vector space V
generated by all framed links in M , considered up to isotopy. The skein
vector space K(M) is the quotient of V by all the possible skein relations
as in Fig. 9. An element of K(M) is called a skein.

Proposition 5.4. The skein vector space K(Mg) of Mg is isomorphic to
Q(A) and generated by the empty skein ∅.

Proof. This is due to Hoste and Przytycki [13, 18, 19], see also [10, Propo-
sition 1]. �

A colored framed knotted trivalent graph G determines a skein G ∈ K(M)
and as such it is equivalent to 〈G〉 · ∅ for a unique coefficient 〈G〉 ∈ Q(A).
This coefficient is by definition the Kauffman bracket 〈G〉 of G.
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Remark 5.5. There is an obvious canonical linear map K(M)→ K(M#N)
defined by considering a skein in M inside M#N . The linear map K(Mg)→
K(Mg+1) sends ∅ to ∅ and hence preserves the bracket 〈G〉 of a G ⊂Mg.

This shows in particular that if G is contained in a ball, the bracket 〈G〉
is the same that we would obtain by considering G inside S3.

5.5. Shadow formula. The shadow formula works also in this context.

Theorem 5.6 (Shadow formula). Let G ⊂ Mg be a colored framed knotted
trivalent graph and X ⊂ H4

g any shadow for G. We have

〈G〉 =
∑
σ

〈Xσ〉

where the sum is taken on all colorings σ of X that extend that of G.

A crucial observation [4, Lemma 3.6] is that the number of colorings σ
extending that of G is finite, because X collapses to a graph Y : hence the
sum makes sense (see Proposition 6.1). We prove Theorem 5.6 in Section 6.

Remark 5.7. Costantino [4] uses the shadow formula to define 〈G〉 and then
employs Turaev’s theory of shadows and Reshetikhin-Turaev invariants to
prove that the result does not depend on the shadow chosen. Costantino’s
definition agrees with ours up to a slightly different normalization: he wants
to extend the Jones polynomial, while we prefer to extend the Kauffman
bracket.

5.6. Main theorem. We can finally prove Theorem 1.13:

Theorem 5.8. Let G be a colored framed knotted trivalent graph in S3 or
#g(S

2 × S1) and L ⊂ G be its odd sublink. If L bounds a ribbon surface S
then

ordi〈G〉 > χ(S)− r

2

where r is the number of red vertices in G.

Proof. We know that L has a shadow X containing S by Theorem 5.3. The
proof of Theorem 2.8 extends as is from D4 to H4

g and furnishes a shadow
X of G containing S. The shadow formula says that

〈G〉 =
∑
σ

〈Xσ〉.

The surface S is the unique subsurface in X with boundary equal to L: if
there were another one S′, then S + S′ would be a non-trivial element in
H2(X;Z2) = {e}. Therefore for every coloring σ of X extending that of
G, the odd surface Sσ coincides with S. Now Theorem 4.4 applies for each
state 〈Xσ〉 and we are done. �
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-1 -1 -1

g

Figure 14. A shadow for the knot K drawn in Fig. 2. The
g discs have gleam −1 and the large region has gleam g.

5.7. Examples. We show a couple of examples. The first one is pretty
simple: let S be a compact orientable surface with boundary. The four-
manifold S × D2 is diffeomorphic to H4

g and its boundary is #g(S
2 × S1)

with g = 1 − χ(S). The surface S is a shadow for the link L = ∂S. It
consists of one region S with gleam zero.

If we color the components of L with different colors, no coloring of S
can extend them: so there are no states, and 〈L〉 = 0. In this case Theorem
5.8 gives no information. If we color each component of L with the same n,
there is a single coloring σ for S extending it and we get

〈L〉 = 〈Sσ〉 =
χ(S)

n =
(
(−1)n[n+ 1]

)χ(S)
.

When n is odd, this function has a pole in q = i of order −χ(S). Therefore
S is the ribbon surface with smallest −χ(S) for L, and the lower bound
given by Theorem 5.8 is sharp on these links. This proves Example 1.11.

Remark 5.9. It is in fact obvious that there cannot be any subsurface S′ ⊂
S ×D2 with ∂S′ = ∂S and χ(S′) > χ(S), because there is no map S′ → S
that sends ∂S′ homeomorphically to ∂S. (If we cap the surfaces we get a
degree-one map from a lower-genus closed surface to a higher-genus one.)

As another example we compute the Kauffman bracket of the framed
knot K ⊂Mg drawn in Fig. 2, considered with its blackboard framing. We
construct a shadow following the algorithm of Proposition 5.2. To compute
the gleam of the regions, we add some ±1

2 around each crossing as follows:

1
2

1
2

1
2

1
2

-

-

and then we add all the contributions contained in each region, see [7, 24].
As a result we get the shadow X shown in Fig. 14. The shadow X has a

large region R with χ = −2g + 1 and gleam g, and g discs D1, . . . , Dg with
gleam −1.

We give K the color 1. Every edge is circular and incident to Di, R,R.
If Di is colored by c, then (c, 1, 1) must be an admissible triple: this holds
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only for c = 0, 2. Therefore each Di can be colored by wither 0 or 2. Thus
a coloring σ for X is determined by a vector σ = (σ1, . . . , σg) ∈ {0, 2}g.

The circular edges e have χ(e) = 0 and hence do not contribute to the
formula for 〈Xσ〉. Hence the only contributions come from the regions of X.
Recall that a region f with gleam g and color c contributes with a factor

χ(f)

c qf =
(
(−1)c[c+ 1]

)χ(f)
(
√
−1)2gcq−

gc
2
(c+2).

The large region R contributes with

χ(R)

1 qR = (−[2])−2g+1(−1)gq−
3g
2 = (−1)1−g

q−
3g
2

(q + q−1)2g−1
.

A disc Di contributes according to its color 0 or 2 respectively as

0qDi = 1,

2qDi = [3]q4 = q2 + q4 + q6.

Set |σ| =
∑

i
σi
2 . We get:

〈K〉 =
∑
σ

〈Xσ〉

=
∑
σ

(−1)1−g
q−

3g
2

(q + q−1)2g−1
· (q2 + q4 + q6)|σ|

= (−1)1−g
q−

3g
2

(q + q−1)2g−1

∑
σ

(q2 + q4 + q6)|σ|

= (−1)1−gq−
3g
2

(1 + q2 + q4 + q6)g

(q + q−1)2g−1

= (−1)1−gq
3g
2

[4]g

[2]2g−1
.

Therefore:

ordi〈K〉 = g · ordi[4]− (2g − 1) · ordi[2] = g − (2g − 1) = 1− g.

This proves Example 1.9.

6. The state-sum formula

We prove here the shadow state-sum formula for 〈G〉, namely Theorems
3.3 and 5.6. Recall that Mg = #g(S

2×S1) when g > 1, and we extend this
notation by setting M0 = S3. We also set H4

0 = D4, so that Mg = ∂H4
g for

all g > 0.
The shadow state-sum formula was first proved by Turaev [24] in S3 and

hence extended by Costantino [4] in Mg. We include here for completeness
a proof that uses skein theory and avoids Reshetikhin-Turaev invariants.
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Figure 15. The fusion rule. Recall that all framings are
orientable, i.e. they form an orientable surface that thickens
the knotted trivalent graph. We suppose here that the two
bands in the left are oriented coherently, so that the right
knotted trivalent graph is also orientable.

Figure 16. Sphere intersection.

6.1. Fusions and sphere intersections. We recall a couple of skein equal-
ities. The first is the well-known fusion rule shown in Fig. 15, which takes
place inside a ball, see [15, Fig. 14.15]

A second kind of move is shown in Fig. 16-(left) and takes place in the
neighborhood of a two-dimensional sphere S, drawn as a 0-framed circle in
the picture. If G intersects S transversely in exactly one point, then Fig. 16-
(left) applies. The move says that if the edge of G crossing S has a positive
coloring i > 1, then G = 0 as skeins. See [1, Lemma 1] for a proof. Note that
after applying the move we can surger along the sphere without affecting
〈G〉, see Remark 5.5.

By combining the two moves we also get a third one that applies when G
intersects S transversely into two points, see Fig. 16-(right).

6.2. Simple polyhedra that collapse onto graphs. It might be non-
obvious in general to determine whether a polyhedron collapses onto a graph.
Luckily, on simple polyhedra there is a nice criterion.
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Figure 17. A simple polyhedron X that collapses onto a
graph reduces to a finite union of atomic polyhedra after
finitely many moves of this type. The bold exterior lines are
portions of ∂X.

Proposition 6.1 (Costantino). Let X be a connected simple polyhedron.
The following facts are equivalent:

(1) X collapses onto a graph,
(2) X does not contain a simple polyhedron without boundary,
(3) every coloring of ∂X extends to finitely many colorings on X.

Proof. See [4, Lemma 3.6]. �

Corollary 6.2. Let X be a simple polyhedron that collapses to a graph.
Every connected simple subpolyhedron X ′ ⊂ X also collapses onto a graph.

Proof. The polyhedron X does not contain any simple sub-polyhedron with-
out boundary, hence X ′ also does not. �

Corollary 6.3. Each move in Fig. 17 transforms a simple polyhedron that
collapses to a graph into one or two simple polyhedra that collapse to a graph.

A simple polyhedron X is atomic if it is the cone over , , or , that
is X is as in Fig. 6-(3,2,1). We will use the following.

Proposition 6.4. Let X be a simple polyhedron that collapses onto a graph.
The polyhedron reduces to a finite union of atomic polyhedra after a finite
combination of moves as in Fig. 17.

Proof. We say that a region of X is exterior if it is incident to ∂X, and
interior otherwise. Suppose X contains some interior regions. There is an
edge e that is adjacent to one interior region and to two exterior regions: if
not, the interior regions would form a simple sub-polyhedron contradicting
Proposition 6.1. The move in Fig. 17-(bottom) applied to e transforms the
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interior region into an exterior one: after finitely many such moves we kill
all the interior regions.

Now we can use Fig. 17-(center) to cut every interior edge in two halves,
and then Fig. 17-(top) to cut every region into discs that are incident to ∂X
only in one arc or circle. We are left with atomic pieces. �

6.3. Moves on shadows. If we apply one of the moves of Fig. 17 to a
shadow X of some graph G ⊂M , we get a new simple polyhedron X ′ that
can be interpreted as a shadow of some graph G′ in some manifold M ′. We
show this fact for each move.

We start by examining Fig. 17-(top). The yellow strip thickens to a
D3 × [−1, 1], with boundary S2 × [−1, 1]. The two-sphere S = S2 × 0 inter-
sects G transversely into two points. Topologically, the move corresponds
to surgerying M along the two-sphere S2×0 and modifying G as in Fig. 16-
(right). We get a new graph G′ inside a new manifold M ′, with a new shadow
X ′. If S is separating, these objects actually split into two components.

The move in Fig. 17-(center) is analogous, the only difference being that
now S intersects G in three points. The move in Fig. 17-(bottom) is the
fusion shown in Fig. 15.

Remark 6.5. In the moves of Fig. 17, some region R ⊂ X is cut into two
regions R1, R2 ⊂ X ′. The gleams g1 and g2 of these new regions sum to give
the gleam g = g1 + g2 of R. The gleams of all the other regions of X do not
change.

6.4. The shadow formula. We are now ready to prove the shadow for-
mula. Recall that Mg = ∂H4

g and we use the convention M0 = S3 and

H4
0 = D4.

Theorem 6.6. Let G be a colored framed knotted trivalent graph in Mg and
X be a shadow for G, contained in H4

g . We have

〈G〉 =
∑
σ

〈Xσ〉

where σ varies among all colorings of X extending that of G.

Proof. We recall that

〈Xσ〉 =

∏
f

χ(f)

f qf
∏
v

χ(v)

v

∏
v∂

χ(v∂)

v∂∏
e

χ(e)

e

∏
e∂

χ(e∂)

e∂

.(8)

The formula holds when X is atomic with zero gleams: there is a single
coloring σ on X extending that of G, and we get 〈Xσ〉 = 〈G〉. To prove
that, note that the contribution of every non-closed e∂ or v∂ cancels with
the contribution of the incident f or e. Therefore:

• if G = we get obviously ,

• if G = everything cancels except
2

v∂
/ e = e,
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• if G = everything cancels except v.

Suppose now X is atomic with arbitrary gleams. We modify the gleams
using the following moves:

(1) add a gleam ±1 on a region: this corresponds to a full twist of the
corresponding framed edge of G;

(2) add a gleam ±1
2 to the three regions incident to an interior edge of

X: this corresponds to a half-twist to each of the three edges of G
incident to a vertex of G.

Using finitely many such moves we can reduce all gleams to zero. To show
that, color in green the regions having a half-integer (but non-integer) gleam.
Recall that the framing of G is orientable: this implies that every sub-circle
C ⊂ G intersects an even number of green faces, and it is easy to check that
with moves (2) we can transform all gleams into integers. Then we reduce
them to zero using (1).

Let G′ be obtained from G by (1) or (2). We recall from [15, Fig. 14.1
and 14.14] that:

〈G′〉 = (−1)cq∓
c
2
(c+2)〈G〉,

〈G′〉 = (−1)
a+b+c

2 q∓
a
4
(a+2)∓ b

4
(b+2)∓ c

4
(c+2)〈G〉

corresponding respectively to moves (1) and (2). In the formula (8) the
contribution of the phases

qf = (
√
−1)2gcq−

gc
2
(c+2)

changes exactly in the same way: this proves the theorem for any atomic
shadow X.

A more general X decomposes into atoms via finitely many moves as in
Fig. 17. Let n(X) be the number of moves necessary to atomize X: we
prove the theorem by induction on n(X).

Pick a move transforming X into a X ′ with n(X ′) < n(X). The polyhe-
dron X ′ is a shadow of some graph G′ in some manifold M ′. The objects
X ′ and M ′ may have two components, but the following arguments work
anyway. We suppose by induction that the theorem holds for X ′ and G′,
and we prove it for X and G.

Consider the move in Fig. 17-(top). The pair (M ′, G′) is obtained from
(M,G) via the move shown in Fig. 16-(right), with G′ inheriting the coloring
of G. Therefore

〈G〉 =
1

R

〈G′〉

where R is the yellow region that we have cut. There is an obvious corre-
spondence between colorings of X and X ′, and the formula (8) says that for
each coloring σ we have

〈Xσ〉 =
1

R

〈X ′σ〉.
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(We use here Remark 6.5 to show that the phases of Xσ and X ′σ are the
same.) The theorem holds for the pair (X ′, G′), and hence holds also for
(X,G).

The move in Fig. 17-(center) is treated analogously. Using a fusion and
Fig. 16 we find easily that

〈G〉 =
1

e

〈G′〉

where e is the edge cut in Fig. 17-(center). There is an obvious correspon-
dence between colorings of X and X ′, and for each such coloring σ we have

〈Xσ〉 =
1

e

〈X ′σ〉.

Finally, the move in Fig. 17-(bottom) is a fusion. The fusion formula says

〈G〉 =
∑
c

c

a,b,c

〈G′c〉

where the coloring G′c on G′ varies on the new edge c. Every coloring of X
induces one of X ′ and we get

〈Xσ〉 =
c

a,b,c

〈X ′σ〉.

This proves the theorem. �

7. Open questions

A list of stimulating open questions is contained in the last section of
Eisermann’s paper [9], which is overall very nice and enjoyable to read.
Here we add more questions to that list.

7.1. Ribbon genus of knots in S3. We have seen that the Kauffman
bracket 〈K〉 of a knot K ⊂ #g(S

2×S1) may produce non-trivial (sometimes
sharp) lower bounds for the ribbon genus of K, see Examples 1.9 and 1.11.

The situation in S3 is more disappointing because of the following:

Proposition 7.1. Let L ⊂ S3 be a colored framed link. If at least one
component of L has an odd coloring, the bracket 〈L〉 vanishes at q = i.

Proof. We prove it by induction on the maximum color c on L. If c = 1, this
is the standard case: we choose a diagram for L and use the first Kauffman
bracket relation to transform 〈L〉 into a linear combination of unlinks with
coefficients in Z[A±1]. The second bracket relation says that the bracket of
each unlink vanishes at q = i.

If some component K of L has a color c > 1, we modify K via the
well-known skein move shown in Fig. 18 that takes place in a solid torus
neighborhood of K and is an immediate consequence of Fig. 10. Each of the
new two addenda is a colored link with at least one odd-colored component.
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=  -c c -1 c -2

Figure 18. A skein move on a framed colored knot.

We perform this move on all components with maximum color c and we
conclude by induction. �

Therefore ordi〈K〉 > 1 for every odd-colored knot K ⊂ S3 and if we apply
Theorem 1.13 to 〈K〉 we get no relevant information. One could try however
to choose a colored knotted trivalent graph G ⊂ S3 containing the knot K
as its odd sublink. We do not know if some relevant information may be
obtained for K in that case:

Question 7.2. Is there a colored framed knotted trivalent graph G ⊂ S3

whose odd sub-link K ⊂ G is a knot, such that

ordi〈G〉+
r

2
6 0 ?

One such example would imply that K is not ribbon.

Remark 7.3. As far as we know, it might be that ordi〈G〉 + r
2 > 0 for all

colored trivalent G ⊂ S3 having a non-empty odd sub-link. See for instance
[5] where it is shown that 〈G〉 is a polynomial up to a little renormalization.

More generally, we do not know if by passing from links to graphs we gain
more obstructions for the existence of ribbon surfaces, because we tested only
very few examples. Computing the Kauffman bracket of a colored knotted
trivalent graph G ⊂ S3 by hand can be tedious: it would be nice to have a
computer program where the user can draw a diagram of G and get ordi〈G〉
as a result. We have computed by hand a couple of examples (the Hopf
link and the trefoil knot with an additional arc) and found no improvement
there.

7.2. More manifolds. The notion of ribbon surface applies to any kind
of 3-manifold M , but the Jones polynomial does not. To define 〈K〉 as a
rational function we need the Kauffman space K(M) to be one-dimensional.

Question 7.4. For which closed 3-manifolds M the space K(M) is one-
dimensional?

When K(M) is not one-dimensional, quantum invariants survive only
at the roots of unity: these are the well-known Reshetikhin-Turaev-Witten
invariants. These invariants can also be calculated using shadows, so it
might be that some of the techniques used here extend to that context:
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Question 7.5. Can we relate the ribbon genus of a link to RTW invariants,
for instance by taking roots of unity q converging to q → i? Does the fact
that a knot is ribbon influence the asymptotic of the RTW invariants as
q → i?

7.3. Ribbon surfaces and shadows. We have discovered that being con-
tained in a shadow is a property that lies in the middle, between being
ribbon and being homotopically ribbon. It is then natural to ask Question
1.4, which splits into two questions. Let S be a properly embedded surface
in D4:

Question 7.6. If S is contained in a shadow, is it ribbon?

Question 7.7. If S is homotopically ribbon, is it contained in a shadow?

7.4. Slice-ribbon conjecture. The famous slice-ribbon conjecture states
that a knot in S3 is slice (i.e. it bounds a smooth disc in D4) if and only if it
is ribbon. It is worth mentioning that this conjecture extends naturally at
least in three ways: from knots to links, from discs to more general surfaces,
and also from S3 to more general 3-manifolds. Since we have not seen it in
the literature, we state this three-fold generalization as a question:

Question 7.8. LetM be any 3-manifold. Let L ⊂M be a link inM = M×0
that bounds a compact properly embedded surface S ⊂ M × [0, 1]. Does L
bound a ribbon surface S′ diffeomorphic to S?

We may define the slice genus gs(K) of a null-homologous knot K ⊂M as
the smallest genus of a properly embedded orientable surface S in M × [0, 1]
with ∂S = K, and the ribbon genus gr(K) as the smallest genus of a ribbon
surface S for K. When M = S3 these are the standard slice and ribbon
genera, since every surface in D4 can be pushed inside S3 × [0, 1].

Of course we have gr(K) > gs(K), and the previous question specializes
to the following.

Question 7.9. Does the equality gr(K) = gs(K) hold for every possible
null-homologous knot K ⊂M in every 3-manifold M?

The lower bounds for the ribbon genus proved in this paper might in
principle be used to find a counterexample in M = #g(S

2 × S1).

7.5. Other roots of unity. Let X be a simple spine of a 3-manifold M .
Roughly, a simple spine is just a shadow with all gleams zero: spines are
used for instance in Turaev-Viro invariants [26]. For instance, X might be
the dual of an ideal triangulation for M .

A coloring σ for X gives rise to a rational function 〈Xσ〉 that may have
poles in q = 0,∞, and at some roots of unity. The coloring σ defines a spinal
surface Fσ ⊂M , and we get

ord0〈Xσ〉 > −χ(Fσ)
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by a nice result of Frohman and Kania-Bartoszynska [11] that connects
quantum invariants near q = 0 to normal surfaces theory. This result was
used extensively for instance in [6]. Here we have proved that

ordi〈Xσ〉 > χ(Sσ)

where Sσ is the odd surface contained in X. Note that the two inequalities
concern different surfaces, and have opposite signs!

Question 7.10. Do we get any similar inequalities for ordq〈Xσ〉 when q is
a root of unity different from ±i?
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