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Envelope-function based transport simulation of a

graphene ribbon with an antidot lattice
Paolo Marconcini, Member, IEEE, and Massimo Macucci

Abstract—We have performed numerical simulations to study
the effect of a regular lattice of antidots on the conductance,
and in particular on the gap, of an armchair graphene ribbon.
We have used an envelope function approach, with a nonzero
mass term mimicking the presence of the antidots. With a very
efficient simulation procedure, consisting in a reciprocal space
solution of the envelope function equation in the transverse
direction followed by a recursive scattering matrix calculation
in the transport direction, we have been able to analyze the
impact of the different geometrical parameters characterizing the
structure. We have observed that the conductance of the device
rapidly reaches an asymptotic value when the length of the region
containing the antidot lattice is increased. The dependence of the
energy gap on the geometrical features of the antidot lattice is
quite similar to that observed in unconfined graphene, excluding
the cases of very small or distant antidots, when the energy gap
of the pristine graphene ribbons is recovered. The tilt angle of
the lattice with respect to the transport direction has a negligible
influence on the gap, which is also quite robust with respect to
the introduction of disorder in the antidot lattice.

Index Terms—graphene ribbons, antidot lattices, energy gap,
transport calculation, Dirac equation

I. INTRODUCTION

Graphene, a two-dimensional honeycomb lattice of carbon

atoms isolated by Geim and Novoselov in 2004 [1], represents

one of the most studied materials of the last few years. It has

been found that its low-energy transport behavior is governed

by the same relations (the Dirac-Weyl equation [2], [3]) which

define the relativistic behavior of massless spin-1/2 fermions

and therefore exhibits quite exotic effects characteristic of rel-

ativistic quantum physics [4]. Moreover, it presents excellent

material properties [5], [6], such as high mobility, mechanical

strength, transparency, thermal conductivity, which are finding

application in several industrial fields. Transistors based on

graphene have been proposed, in order to exploit its high

mobility and single-atom thickness to achieve high switching

speed and excellent electrostatic control of the channel. While

this material is very promising (and in some cases applications

have already been found) for the implementation of sensors

or radiofrequency transistors, up to now the use of graphene

in digital electronics has been hindered by the fact that

unconfined monolayer graphene is a zero gap material and

this prevents the fabrication of devices with the large Ion/Ioff
ratio (i.e. the ratio of the current in the on state to that in

the off state) required by digital applications (at least of the
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order of 104) [7]. Different methods have been proposed to

generate a gap in graphene, among which lateral confinement,

the introduction of an antidot lattice, doping, functionalization,

the application of an orthogonal electric field over a bilayer

graphene sheet.

In particular, if a graphene sheet is laterally confined (in

this way obtaining a ribbon), a gap appears, with a value that

on the average is inversely proportional to the width of the

ribbon, but strongly depends (with a modulo 3 dependence) on

the exact number of dimer lines inside the ribbon. Therefore,

exact control of the gap would require atomistic precision in

the lateral definition of the ribbon, which is unrealistic with

current lithographic techniques.

Gap formation as a consequence of the introduction of an

antidot lattice appears to be less sensitive to the achievable

precision and several techniques have been exploited: e-

beam lithography [8], diblock copolymer lithography [9], [10],

nanosphere lithography [11], [12] and nanoimprint lithogra-

phy [13], obtaining lattice periods of the order of tens or

hundreds of nanometers.

Most of above mentioned experiments have been performed

on graphene ribbons, rather than on extended graphene sheets,

which is consistent with realistic device concepts. One can

envisage channels obtained with lithographic processes, in

analogy with what is currently done in silicon, which are

then properly gated to obtain field effect transistors. In order

to avoid extreme lithographic challenges and to mitigate the

effect of edge roughness, the minimum conceivable ribbon

width will be of a few tens of nanometers. If significant

current carrying capabilities are needed, the ribbon width will

be increased, probably up to a few hundred nanometers. These

approaches do not guarantee atomic scale precision and, in

particular, the exact nature of the edges, but encouraging

results in terms of bandgap opening have been achieved, in

particular in Refs. [12], [13]. It is in principle possible to

achieve better control, in particular of the nature of the edges,

using nanosculpting of graphene with a high-energy electron

beam in a transmission electron microscope and successive

annealing [14], although such an approach does not seem

applicable for large-scale fabrication, at least in the near future.

Several theoretical studies have so far focused on the effect

of antidot lattices on unconfined graphene [15]–[20].

Considering that most of the available experimental trans-

port data on antidot lattices are for ribbons, we have decided

to develop a numerical approach for the specific case of

ribbons with a width between a few tens of nanometers and

a few microns. For this size range atomistic methods become

computationally very expensive, and therefore we have used

an envelope function approach. In particular, we study the
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effect of an antidot lattice on a graphene armchair ribbon.

In Section II we describe the numerical technique that we

have developed, based on the solution of the envelope function

equation (Dirac equation) in the reciprocal space and on the

recursive scattering matrix approach for the determination of

the transmission matrix of the device. Then, in Section III, we

report the results that we have obtained with the application of

this method to the study of the dependence of the conductance

and of the energy gap on different geometrical parameters of

the structure.

II. SIMULATION METHOD

For our calculations, we have chosen to adopt a continuum,

envelope-function model for graphene, abandoning an exact

atomistic description in favor of a much faster approach. To

this purpose, we have generalized the envelope function based

code that we have previously developed and applied to the

study of devices based on monolayer graphene [21]–[23]. In

transport simulations, the ribbon has been assumed as made up

of many cascaded thin slices, chosen in such a way that within

each slice both the geometry and the potential approximately

do not vary in the transport direction (i.e., along x) but only
in the transverse direction (i.e., along y), while the variations

in the transport direction take place only at the interfaces be-

tween adjacent slices. The two-dimensional envelope-function

equation has been separately solved in each slice, where it

turns into a simpler one-dimensional differential problem.

Then, the effect of the variation along the transport direction

has been accounted for by enforcing the correct boundary

conditions at the interfaces between adjacent slices and using

a recursive scattering-matrix approach for the evaluation of

the transmission matrix of the ribbon. An exact description of

the edges of the antidots would have required a subdivision

of the ribbon into a very large number of slices with a length

of the order of the interatomic distance, in such a way as to

take into account the atomistic changes of geometry of the

ribbon with proper boundary conditions (following Ref. [23]).

Since this would have severely decreased the code efficiency,

we have chosen to approximate the presence of antidots by

introducing into the envelope-function of graphene (i.e., the

Dirac equation [2], the same relation which describes spin-1/2
particles in relativistic quantum mechanics) a space-varying

termm(r)v2F (wherem(r) is a mass which depends on the po-

sition r, while vF is the Fermi velocity of graphene) [15], [24].

As we show in Fig. 1, this fictitious mass term (“fictitious”

because monolayer graphene is actually a zero-mass material)

is taken as nonzero (and with a value much greater than the

injection energy E of the carriers) only inside the antidots,

where (exactly as in relativistic quantum mechanics) it locally

introduces a large gap which, by keeping the carriers outside

these regions, emulates the absence of carbon atoms [25], [26].

This is one of the possible approaches to the enforcement

of energy independent hard-wall boundary conditions for the

Dirac equation [27]. It has been previously shown [18] that

this approximation can correctly reproduce the low-energy

transport characteristics if the antidots do not present large

zigzag edges (while it is not able to predict the presence of the

localized edge states that propagate along this kind of edges).

Adopting an envelope function approximation, the graphene

wave function can be expressed as [2]

ψ(r ) =
∑

RA

ψA(RA)ϕ(r−RA)+
∑

RB

i ψB(RB)ϕ(r−RB) ,

(1)

whereRA andRB represent the generic positions of the atoms

of the two sublattices A and B of graphene and ϕ(r) is the 2pz

orbital of the carbon atoms. The quantities ψA(r) and ψB(r),
which modulate the atomic orbitals on the two sublattices,

can be expressed in terms of the four envelope functions of

graphene Fα

β (corresponding to the sublattices β = A,B and

to the Dirac points α = K,K ′, with K = −Kŷ, K ′ =
Kŷ, K = 4π/(3a), and a ≈ 0.246 nm the graphene lattice

constant) as

ψβ(r) = eiK·rFK

β (r)− i eiK
′·rFK

′

β (r) . (2)

These envelope functions must satisfy the Dirac equation

[−iγ(∂xσx+∂yσy)+U(r)I+m(r)v2Fσz]F
K=EFK

[−iγ(∂xσx−∂yσy)+U(r)I+m(r)v2Fσz]F
K

′

=EFK
′ (3)

where Fα = [Fα

A (r), Fα

B (r)]T , γ = vF h̄ (h̄ is the reduced

Planck constant), ∂x = ∂/∂x, ∂y = ∂/∂y, σx, σy and σz are

the Pauli matrices, U(r) is the potential energy, and E is the

injection energy.

As shown in Refs. [2], [28], Dirichlet boundary conditions

have to be enforced on the wave function ψ(r ) at the

“effective edges” of the ribbon, i.e. on the two lines of empty

points of the graphene lattice (immediately under and over the

ribbon) which are nearest neighbors of the carbon atoms at

the actual edges of the ribbon but are not occupied by carbon

atoms (see Fig. 1). In particular, in our simulations we consider

armchair ribbons with effective edges at y = 0 and y = W̃
(the “effective width” of the ribbon). Since each of the two

effective edges of an armchair ribbon contains A and B atoms,

the Dirichlet boundary condition has to be enforced on ψA(r)
and ψB(r) on both edges. In terms of the envelope functions,

these boundary conditions can be expressed as

FK(x, y = 0) = iFK
′

(x, y = 0)

FK(x, y = W̃ ) = iei2KW̃FK
′

(x, y = W̃ ) .
(4)

As previously mentioned, the ribbon is subdivided into cas-

caded slices in each of which both the potential energy and

the mass term approximately do not depend on x. As a

consequence of this invariance in the transport direction, in

each of these slices the wave function and thus the envelope

functions can be written as the product of a plane wave

propagating in the x direction and of a transverse function de-

pending only on y: Fα

β (r) = Φα

β (y)e
iκxx. Defining ϕK(y) =

[ΦK

A (y),ΦK

B (y)]T and ϕK
′

(y) = i [ΦK
′

A (y),ΦK
′

B (y)]T , the
differential problem (3) with the boundary conditions (4)

becomes:

(σz∂y + σxf(y)− iσyq(y))ϕ
K(y) = −κxϕK(y)

(−σz∂y + σxf(y)− iσyq(y))ϕ
K

′

(y) = −κxϕK
′

(y)

ϕK(0) = ϕK
′

(0)

ϕK(W̃ ) = ei2KW̃ϕK
′

(W̃ )

(5)
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where f(y) = (U(y) − E)/γ, q(y) = m(y)v2F /γ, and the

quantity K, which appears only in the term ei2KW̃ , can be

replaced by K̃ = K − n0π/W̃ with n0 = round (KW̃/π).
This system of four differential equations with four boundary

conditions on the domain [0, W̃ ] can be transformed into an

equivalent system of two differential equations with periodic

boundary conditions on the domain [0, 2W̃ ], defining the two-

component function [21], [29]:

ϕ(y) =

{

e−iK̃yϕK(y) y ∈ [0, W̃ ]

eiK̃(2W̃−y)ϕK
′

(2W̃ − y) y ∈ [W̃ , 2W̃ ] .
(6)

In terms of this new function, the boundary conditions in

y = 0 of the original system (5) become periodic boundary

conditions on the new domain [0, 2W̃ ], while the boundary

conditions in y = W̃ of Eq. (5) represent only continuity

conditions in y = W̃ . Therefore, the system (5) becomes
(

(∂y + iK̃)σz + f̃(y)σx − i q̃(y)σy

)

ϕ(y) = −κxϕ(y)
ϕ(2W̃ ) = ϕ(0)

(7)

with f̃(y) = f(W̃ − |W̃ − y|) and q̃(y) = q(W̃ − |W̃ − y|).
This differential system with periodic boundary conditions

can be efficiently solved in the reciprocal space (avoiding

the fermion doubling problem which appears when a standard

discretization technique in the direct space is applied to the

solution of the Dirac equation [21]). Indeed, substituting the

Fourier expansions of the known functions f̃(y) and q̃(y)

f̃(y) =

∞
∑

m=−∞

fme
imπy/W̃ , q̃(y) =

∞
∑

p=−∞

qpe
ipπy/W̃ (8)

and of the unknown function ϕ(y)

ϕ(y) =

∞
∑

ℓ=−∞

aℓe
iℓπy/W̃ (9)

into the differential equations and projecting the resulting

relations onto the set of basis functions einπy/W̃ , a set of

equations of the form:

+∞
∑

ℓ=−∞

[

σz

(

i
nπ

W̃
+ iK̃

)

δℓ,n + σxfn−ℓ − iσyqn−ℓ

]

aℓ=−κxaℓ

(10)

is obtained, which represents an eigenproblem in the longitu-

dinal wave vectors κx and in the Fourier coefficients aℓ of the

functions ϕ(y). After limiting its size with a proper cut-off of

the Fourier components, this eigenproblem can be numerically

solved, obtaining the envelope functions in each slice of the

device. In particular, generalizing the result already observed

in the absence of the mass term [21], it is possible to prove that

if the longitudinal κx is an eigenvalue of the system, also −κx,
κ∗x and −κ∗x are possible eigenvalues (Z2×Z2 symmetry). As

an example, in Fig. 2 we show the values of κx that we have

obtained for E = 0.1 eV in a slice with 4878 dimer lines, when

the mass term m(y)v2F in the slice has the profile shown in

the inset and the potential U(y) is identically null (as in all

the simulations that we will show in the following).

For each solution of the linear system, i.e. for each mode

of the slice, the A and B components of the wavefunction can
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Fig. 1. Sketch of the ribbon with a square (rectangular in general) lattice of
circular antidots. Here we show the different geometrical parameters and the
assumptions and boundary conditions that we have used in the simulations.
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Fig. 2. Values of the longitudinal wave vector κx that are obtained for E =
0.1 eV in a slice with 4878 dimer lines where the mass term m(y)v2

F
has

the profile shown in the inset and the potential U(y) is identically null.

be expressed in this way (exploiting the relations (2), (6) and

(9)):

ψβ(x, y) = 2 i
∑

µ

{

[aβ ]µ sin[(µ− n0)πy/W̃ ]
}

eiκxx . (11)

Following this analytical procedure, we have computed the

transport modes in each of the slices into which the ribbon

has been divided. Then, we have obtained the scattering

matrices which couple the modes in adjacent slices using the

mode-matching technique described in Ref. [21]. For each

couple of slices, we have proceeded in the following way.

Imagining to inject one mode at a time, when this mode

impinges against the interface between the two slices (which

represents the discontinuity) it gives rise to a number of

reflected modes and of transmitted modes. We have enforced

the continuity of ψA(r) and ψB(r) at the interface. The

wavefunction can be written, on one side of the interface,

as the sum of the injected mode and of the reflected modes

multiplied by the reflection coefficients, and, on the other

side, as the sum of the transmitted modes multiplied by the

transmission coefficients. Writing the continuity equations for

all the possible modes that can be injected into the pair of
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slices (i.e. for all the modes that we have computed in the two

slices) and projecting these relations onto a basis consisting of

sine functions sin((j −n0)πy/W̃ ), we have obtained a linear

system in the reflection and transmission coefficients, i.e. in

the elements of the scattering matrix. This calculation has been

performed directly in terms of the Fourier coefficients of the

function ϕ(y), without the necessity to anti-transform them.

Then, the series of scattering matrices connecting pairs of

slices of the ribbon has been recursively composed following

a standard procedure [30], obtaining the scattering matrix and,

in particular, the transmission matrix t of the ribbon. Finally,

from this quantity we have computed the conductance G using

the Landauer-Büttiker approach [31]:

G =
2 q2

h

∑

i

wi , (12)

where q is the elementary charge, h is Planck’s constant,

and the wi’s are the eigenvalues of the matrix t†t. From

the transmission matrix t, also the shot noise power spectral

density SI and the Fano factor η (i.e., the ratio between

SI and the full shot noise power spectral density expected

from Schottky’s theorem 2q|I|, where I is the average current

flowing through the ribbon when a voltage V is applied) have

been computed using these expressions [32]:

SI = 4
q3

h
|V |

∑

i

wi (1− wi) , η =

∑

i wi(1− wi)
∑

j wi
. (13)

In all the calculations, we had to consider quite a large number

of modes, in such a way as to properly simulate the behavior

of the wave function in the slices where the antidots subdivide

the ribbon into several totally decoupled transport channels.

III. NUMERICAL RESULTS

In our simulations we have considered armchair ribbons

with circular holes (with radius r), modeled with regions

where the term mv2F is nonzero and much greater than the

injection energy E (see Fig. 1). More in detail, in all the

simulations that we report here we have taken the term mv2F
equal to 1 eV (or 10 eV, in the cases in which we had to

consider a larger range of injection energies). The potential

energy U has been assumed as zero all over the ribbon. Most

simulations have been performed on a regular rectangular

lattice of antidots (even though, as we will detail in the

following, also different lattices have been examined). For

rectangular lattices, we have defined as dx and dy the distances

between the centers of nearest neighbor holes in the transport

and transverse direction, respectively. In the particular case of

square lattices, dx = dy = d, as shown in Fig. 1.

It has been shown in the literature that the introduction of

a regular array of antidots into unconfined graphene gives rise

to an energy gap. In our simulations, we have estimated the

energy gap Eg from the behavior of the conductance G as a

function of the energy E of the carriers, considering Eg as

the width of the energy interval, near E = 0, where G is less

than a given threshold, that we have taken as 0.02G0 (where

G0 = 2 q2/h is the conductance quantum).
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Fig. 3. Conductance G (normalized with respect to the conductance quantum
G0 = 2 q2/h) as a function of the energy E of the carriers in two 600 nm
wide and 800 nm long armchair ribbons with a regular square lattice of circular
antidots with r = 50 nm and d = 200 nm. The two ribbons differ for the
exact number of dimer lines: 4878 in (a) and 4877 in (b).

In order to investigate the effect of the antidot lattice on

a confined structure, we have first considered two 600 nm

wide and 800 nm long armchair ribbons with a regular

square lattice of circular antidots with r = 50 nm and

d = 200 nm (Fig. 1). The two ribbons differ for the exact

number of dimer lines across their width: 4878 in the first

case (corresponding to a semiconducting ribbon with energy

gap Eg = 2γπ/(3W̃ ) ≃ 2 meV) and 4877 in the second

case (corresponding to a metallic ribbon with null energy gap).

As we show in Fig. 3, in the presence of the antidot lattice

the conductance strongly decreases with respect to that in the

pristine structures and in particular both ribbons exhibit a gap

of about 10 meV. Therefore, the antidot lattice has the effect

of enlarging the energy gap in semiconducting ribbons, and to

make it appear in ribbons that would otherwise be metallic.

In Fig. 4, we represent the conductance as a function of the

energy of the carriers over a larger energy range for the ribbon

with 4878 dimer lines with a different square lattice of circular

antidots (shown in the inset), characterized by r = 15 nm and

d = 100 nm. With respect to the pristine graphene ribbon, we

observe a more irregular behavior, with a partial formation,

around the gap, of minibands, which are introduced by the

regular lattice of antidots.

We have performed a wide range analysis of the dependence

of the conductance behavior, and in particular of the energy

gap, on the different geometrical parameters which character-

ize the structure.
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Fig. 4. Behavior of the conductance G as a function of the energy E
in the 600 nm wide and 800 nm long armchair ribbon (with 4878 dimer
lines) sketched in the inset, with a regular square lattice of circular antidots
characterized by r = 15 nm and d = 100 nm.

We have first considered a ribbon with an antidot lattice of

finite extension along the transport direction x, and we have

studied the dependence of its conductance on the length of the

antidot region. In particular, we have simulated an armchair

ribbon with 4878 dimer lines across its width and we have

progressively increased the number of columns of antidots.

We have taken circular antidots with radius r = 25 nm,

located on a square lattice with a period d = 100 nm (inset

of Fig. 5(a)). As we show in Fig. 5(a), where we report the

results obtained for an injection energy E = 0.1 eV, for this

particular geometry (with d = 4r) the conductance in the

presence of a single column of antidots is about one half of that

of the pristine ribbon, since in the presence of the perforations

only half of the ribbon width is available for charge transport.

Further increasing the number of antidot columns, and thus

the length of the antidot region, the conductance continues to

decrease. However, above a certain number of columns (about

5-6 in the case reported) an asymptotic value, characteristic

of the case in which the antidot lattice extends all over the

ribbon, is reached. In Fig. 5(b) we show that a similar behavior

is observed for the value Eg of the gap, estimated from the

behavior of G as a function of E: Eg increases with the

number of antidot columns, until it reaches an asymptotic

value characteristic of the periodically perforated ribbon.

Then we have computed the conductance of a 600 nm wide

armchair ribbon (containing 4878 dimer lines) with a square

lattice of circular antidots for different values of the antidot

radius r and of the distance d between the antidots, for an

injection energy E = 0.1 eV. In Fig. 6(a) we report the

behavior of the conductance for a lattice with d = 100 nm, as

a function of the radius of the antidots: as one could expect,

starting from the value of the pristine ribbon (when r = 0),
G progressively decreases and vanishes when the channels

between the antidots are so narrow that no mode is able

to propagate through them. In Fig. 6(b) we show the dual

dependence of G on the period d of the square lattice for a

fixed value of the antidot radius r = 15 nm: starting from zero

for a value of d for which the antidots coalesce, G increases

towards the value characteristic of the unperforated ribbon.

In Fig. 7 we show the behavior of the Fano factor η as

a function of the energy E of the carriers for the same

E
g
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Fig. 5. Normalized conductance (for E = 0.1 eV) of a 600 nm wide and
800 nm long armchair ribbon in the presence of a square lattice of circular
antidots with r = 25 nm and d = 100 nm (inset of panel (a)), as a function of
the number of antidot columns (and thus of the length of the antidot region).
In panel (b) we report the corresponding value of Eg , estimated from the
behavior of G as a function of E.
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Fig. 6. Normalized conductance of a 600 nm wide and 800 nm long armchair
ribbon with a square lattice of circular antidots, computed: a) as a function
of the antidot radius r for a fixed distance d = 100 nm between the antidots,
and b) as a function of d when r is kept constant at 15 nm. In both cases,
the energy E is 0.1 eV.

ribbon with 4878 dimer lines and a square antidot lattice with

d = 100 nm, for four values of the antidot radius: 5 nm, 15 nm,

25 nm and 35 nm. Increasing the energy E, the fluctuations

decrease (because they average over a greater number of

propagating modes) and the Fano factor settles around a value

that increases enlarging the antidot size. Actually, enlarging

the antidots the probability for the carriers to be transmitted

through the ribbon decreases and the correlations between the

carriers which determine the shot noise suppression decrease,

too.
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Fig. 7. Fano factor as a function of the energy E, computed for a 600 nm wide
and 800 nm long armchair ribbon with a square lattice of circular antidots
with d = 100 nm, for four values of the antidot radius r.
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Fig. 8. Behavior of the energy gap as a function of the antidot radius for two
armchair ribbons (containing 4878 and 4877 dimer lines, respectively) with a
square lattice of antidots with d = 100 nm. The dashed curves represent an
analytical fit with the relation (14).

We have then studied the dependence of the energy gap Eg

on the radius r of the antidots and on the distance d between

the antidots in the two 600 nm wide armchair ribbons that we

have previously taken into consideration, with 4878 and 4877

dimer lines (and thus characterized by a semiconducting and

metallic behavior in the absence of antidots), respectively.

We have first considered the effect of a square antidot lattice.

In Fig. 8 we report the behavior of the energy gap in the

ribbons with 4878 and 4877 dimer lines, respectively, as a

function of the antidot radius for a fixed distance between the

antidots d = 100 nm. Starting (for r = 0) from the value

characteristic of the pristine ribbon (i.e., from 2 meV for the

first ribbon and from 0 eV for the second one), for larger holes

the gap increases about linearly with the radius.

We have also performed other simulations keeping the

radius of the antidots constant at the value r = 15 nm and

varying the period d of the square lattice. As shown in Fig. 9

for the two ribbons, we have found that the energy gap strongly

decreases when the distance between the antidots increases,

until it saturates at the value characteristic of the pristine

ribbon (2 meV and 0 eV in the two cases).

We have then considered the effect on the energy gap of

rectangular antidot lattices with a different distance between
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Fig. 9. Behavior of the energy gap as a function of the distance d between
the antidots for two armchair ribbons (containing 4878 and 4877 dimer lines,
respectively) with a square lattice of antidots with r = 15 nm. The dashed
curves represent an analytical fit with the relation (14).
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Fig. 10. Behavior of the energy gap as a function of the distance dx for two
armchair ribbons (containing 4878 and 4877 dimer lines, respectively) with
a rectangular lattice of antidots with r = 15 nm and dy = 100 nm. The
dashed curves represent an analytical fit with the relation (14).

the antidots along the transport and transverse directions, i.e.

with dx 6= dy . In Fig. 10 we report the results obtained in the

two slightly different ribbons keeping dy constant at 100 nm

and varying dx, while in Fig. 11 we show the results achieved

by keeping dx = 100 nm and varying dy . In both cases the

radius of the antidots is fixed at r = 15 nm. The behavior

we have observed is quite similar, with an energy gap that

decreases while increasing the distance, and saturating to the

value characteristic of the pristine ribbons.

According to Refs. [15], [18], the introduction of a regular

lattice of antidots in unconfined graphene gives rise to an

energy gap

Eg ≈ C
√

Nrem/Ntot = C ′
√

Santidot/Sunit cell . (14)

If we define A the generical unit cell of the antidot lattice,

Ntot is the total number of carbon atoms in the region A of

the pristine ribbon, while Nrem is the number of carbon atoms

that have been removed from this region in order to create

the antidot. The quantities Santidot and Sunit cell represent

the areas of the antidot and of the unit cell A, respectively.
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Fig. 11. Behavior of the energy gap as a function of the distance dy for two
armchair ribbons (containing 4878 and 4877 dimer lines, respectively) with
a rectangular lattice of antidots with r = 15 nm and dx = 100 nm. The
dashed curves represent an analytical fit with the relation (14).

Finally, C and C ′ = C/
√
c are proportionality constants of

the order of 28.3 eV [18] and 4.58 eV·nm, respectively (where

c = 4/(a2
√
3) ≈ 38.177 nm−2 is the concentration of carbon

atoms in graphene). In the case of a rectangular lattice of

circular antidots, Santidot = πr2, while Sunit cell = dxdy , and
thus the energy gap Eg should be proportional to r/(dxdy).

We have compared our results, achieved in the case of

armchair ribbons, with this relation, obtained for the case of

unconfined graphene. In Figs. 8-11 we have represented with

dashed lines the curves given by the relation (14) with the

values C = 26.145 eV and C ′ = 4.2314 eV·nm which best fit

our numerical data. We observe that in the considered ribbons

the dependence of the energy gap on the different geometrical

parameters is similar to what has been previously obtained

for unconfined graphene and approximately still follows the

relation (14). For example, starting from the values r = 15 nm,

dx = dy = 100 nm, we have verified that doubling at the

same time r and dx while keeping dy constant (or vice versa),

or increasing by a factor 4 the radius, while doubling both

dx and dy , does not significantly alter the band gap of the

ribbon, which remains of the order of 10 meV. The main

differences with respect to the relation (14) appear when the

distance between the antidots is comparable with the size of

the ribbon, since in those cases the ribbon contains only a

limited number of isolated antidots and thus (being the effect

on the gap of the antidot lattice inhibited by the limited size of

the ribbon) the gap is mainly determined by the confinement

of the ribbon. Analogously, when the antidots have a very

small radius and thus the effect of the antidot lattice on the

gap would be very limited also in unconfined graphene, the

energy gap is mainly determined by the lateral confinement

of the ribbon. In Fig. 12 we show the behavior of the energy

gap as a function of the antidot radius when a square antidot

lattice with period d = 100 nm is introduced in armchair

semiconducting ribbons with several widths: 200 nm, 300 nm,

and 600 nm. We observe again that for small values of the

antidot radius, the value of the energy gap is determined only

by the ribbon width, i.e. by the quantization of the transverse
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Fig. 12. Behavior of the energy gap as a function of the antidot radius for
three semiconducting armchair ribbons with width equal to 200 nm, 300 nm,
and 600 nm, in the presence of a square lattice of antidots with d = 100 nm.
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Fig. 13. Behavior of the energy gap as a function of the antidot radius for an
armchair ribbon with 4878 dimer lines in the presence of a hexagonal lattice
of antidots (sketched in the inset) with the edge of the unit cell kept constant
at the value L = 62.04 nm, compared with the behavior already observed in
the case of a square lattice with d = 100 nm.

wave vector deriving from the Dirichlet boundary conditions

at the effective edges of the ribbon.

In order to perform a further test of this dependence, we

have made some simulations also for a hexagonal lattice of

circular antidots (see the inset of Fig. 13). While for a square

lattice with period d the area of the unit cell is Sunit cell = d2,
for this hexagonal lattice, if we define as L the edge of the

hexagonal unit cell Sunit cell =
√
3L23/2. If the relation (14)

is valid, a similar value of Eg should be obtained in the

presence of a square lattice with period d and of an hexagonal

lattice with L = d
√

2/(3
√
3). In Fig. 13 we report, for the

armchair ribbon with 4878 dimer lines in the presence of a

hexagonal lattice, the behavior of the energy gap Eg as a

function of the antidot radius r, if the the edge of the unit cell
is kept constant at the value L = 62.04 nm (in such a way

that the unit cell has the same area as that of the square lattice

with d = 100 nm that we have previously considered). For

comparison, we report also the behavior of Eg as a function of

r that we have obtained with a square lattice with d = 100 nm

(and that we already shown in Fig. 8(a)). We see that the

behavior of Eg as a function of r is similar in the two cases.

In Fig. 14, instead, we report the results obtained for

the ribbon with 4878 dimer lines with the hexagonal lattice

keeping the antidot radius constant at r = 15 nm and varying

the edge L of the hexagonal unit cell. On the horizontal axis

we report, instead of L, the quantity L
√

(3
√
3)/2, which
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Fig. 14. Behavior of the energy gap as a function of d for an armchair ribbon
with 4878 dimer lines in the presence of a hexagonal lattice of circular antidots
with radius r = 15 nm, compared with the behavior already observed in the
case of a square lattice with r = 15 nm. The quantity d, which in the case
of the square lattice represents the lattice period, in the case of the hexagonal

lattice is defined as d = L
√

(3
√

3)/2 and represents the edge of a square

cell which has the same area as the hexagon cell with edge L that we are
considering.

corresponds to the period d of the square lattice with the same

unit cell area as the hexagonal lattice, in such a way as to make

the comparison with the data shown in Fig. 9(a) (replotted

here) easier. We see that also this time the behavior is quite

similar in the two cases and thus this dependence of Eg on

the different geometrical parameters of the antidot lattice is

quite general.

In conclusion, the dependence of the energy gap on the

geometrical parameters of the antidot lattice is similar to what

has been previously observed in unconfined graphene, except

for the cases of distances between the antidots comparable

with the ribbon size and of very small antidots: in both cases

the effect of the antidot lattice actually vanishes and the lateral

confinement of the ribbon tends to prevail.

As a consequence of the relation (14), i.e. of the fact

that Eg ≈ C(
√

Nrem/Ntot)(1/
√
Ntot), for each fraction

Nrem/Ntot of removed atoms the energy gap can be increased

reducing Ntot, i.e. the size of the unit cell of the antidot lattice.

This means that high values of Eg could be obtained if we

were able to fabricate a very dense periodic repetition of holes

in the ribbon (with the present fabrication techniques, distances

between the antidots of the order of tens of nanometers have

been achieved). For example, in Fig. 15 we report the behavior

of the conductance as a function of the energy that we have

obtained for a 100 nm wide (with 813 dimer lines) and 200 nm

long ribbon with and without a square lattice of circular

antidots with r = 1.5 nm and d = 7 nm. While the pristine

ribbon has a gap Eg = 2γπ/(3W̃ ) ≃ 12 meV, in the presence

of the antidot lattice we obtain a quite large energy gap:

Eg ≈ 0.36 eV. In the inset we show the dependence of the

energy gap on the antidot radius if the distance between the

antidots is kept constant at d = 7 nm.

The same conclusion is valid also for lattices with a different

geometry; for example introducing, into the 100 nm wide and

200 nm long ribbon, a hexagonal lattice of circular antidots

with L = 10a = 2.46 nm and r = 6.4a = 1.5744 nm, we

have obtained an energy gap Eg ≈ 1.15 eV (i.e. a value of the

order of the energy gap reported in the Table 1 of Ref. [15]

for the case of unconfined graphene).
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inset we report the dependence of the energy gap on r if d is kept constant
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Fig. 16. Conductance of the two armchair ribbons with 4878 and 4877 dimer
lines in the presence of a square antidot lattice with d = 200 nm and r =
50 nm, tilted by an angle α with respect to the transport direction x (see the
left inset), as a function of α. The solid and dashed curve correspond to the
ribbons with 4878 and 4877 dimer lines, respectively. In the right inset we
show the dependence on the antidot radius r of the energy gap Eg of the two
ribbons with a square antidot lattice with d = 200 nm.

We have then studied the dependence of the conductance

and of the energy gap of a graphene ribbon with a square

antidot lattice on the orientation α of the lattice with respect

to the transport direction x (see the left inset of Fig. 16). We

have simulated 600 nm wide and 800 nm long ribbons with a

square lattice of antidots with d = 200 nm and r = 50 nm for

different values of the tilt angle α. As we can see in the right

inset of Fig. 16 (where we show the dependence of the energy

gap on the antidot radius for the two armchair ribbons with

4878 and 4877 dimer lines with a square lattice of antidots

with d = 200 nm) for r = 50 nm the gap of these ribbons

is mainly determined by the effect of the antidot lattice. In

Fig. 16 we report the conductance that we have obtained for

E = 0.1 eV as a function of α, for the ribbons with 4878 and

4877 dimer lines. The two curves are nearly identical and in

both cases the dependence on the orientation is very small.

Analogous conclusions can be drawn for the energy gap:

in Fig. 17 we show the behavior of the energy gap Eg as a

function of the tilt angle α for the two ribbons. Also in this

case, the two lines are nearly superimposed and Eg does not

show a significant dependence on α.
This should be even more valid for a radius value such as
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Fig. 17. Behavior of the energy gap of the two armchair ribbons with 4878 and
4877 dimer lines in the presence of a square antidot lattice with d = 200 nm
and r = 50 nm, tilted by an angle α with respect to the transport direction
x, reported as a function of α.

r = 10 nm for which, as we see in the right inset of Fig. 16,

the energy gap depends mainly on the ribbon confinement,

rather than on the presence of the antidots. Indeed, repeating

the same simulations for d = 200 nm and r = 10 nm, in the

two ribbons with 4878 and 4877 dimer lines we have found

an energy gap of 2 meV and 0 eV, respectively (the values

characteristic of the pristine ribbons), independent of the tilt

angle. Also the value of the conductance does not exhibit any

substantial dependence on α.

We conclude that in the structures we are considering, which

do not include large zigzag edges at the borders of the ribbon

and of the antidots, the energy gap does not depend on the

orientation of the antidot lattice.

Finally, we have considered the effect on the gap of the

presence of disorder in the antidot lattice, which will inevitably

appear in the actual fabrication process. We have separately

considered the effect of irregularities in the positions and in

the size of the antidots.

We have performed our simulations on a 600 nm wide (with

4878 dimer lines) and 800 nm long ribbon, in the presence of

an ideally square lattice of circular antidots with d = 100 nm

and r = 15 nm. We have first introduced disorder in the

positions of the antidots, adding to the original coordinates

of the antidot centers random quantities uniformly distributed

in the range [−∆,∆] for several values of ∆, ranging from 0

to 20 nm, while keeping the radius of the antidots constant. In

Fig. 18 we report the values of the conductance obtained as a

function of the energy E of the carriers for three different

values of ∆. We have considered only a single disorder

realization for each value of ∆ (in the inset of Fig. 18 we

show the disorder realization considered for ∆ = 20 nm).

We have then performed a second set of simulations,

keeping the position of the antidots constant while varying

their radius: for each antidot we have summed to the original

value of the radius r = 15 nm a random quantity uniformly

distributed between −∆r and ∆r, with ∆r between 0 and

7 nm. In Fig. 19 we report the value of G as a function of

E for three different values of ∆r. Also in this case, only

one disorder realization has been simulated for each value of

∆r (in the inset of Fig. 19 we show the disorder realization

considered for ∆r = 7 nm).
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Fig. 18. Conductance of a 600 nm wide (with 4878 dimer lines) and 800 nm
long ribbon in the presence of a square lattice of circular antidots with d =
100 nm and r = 15 nm with a disorder in the position of the antidots. Three
different degrees of position disorder have been considered, with maximum
displacement ∆ (along x and y) from the ideal positions equal to 0 (no
disorder), 10 nm, and 20 nm. In the inset we show a disorder realization with
∆ = 20 nm.
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Fig. 19. Conductance of a 600 nm wide (with 4878 dimer lines) and 800 nm
long ribbon in the presence of a square lattice of circular antidots with
d = 100 nm and r = 15 nm with a disorder in the size of the antidots.
Three different degrees of size disorder have been considered, with maximum
deviation ∆r of the antidot radius from the value r = 15 nm equal to 0 (no
disorder), 5 nm, and 7 nm. In the inset we show a disorder realization with
∆r = 7 nm.

From these results, the gap estimated from G(E) seems

rather robust to the presence of disorder, both in the position

and in the size of the antidots. However, we must consider

that, as we have done throughout the paper, the gap has

been estimated from the behavior of the conductance as a

function of the energy E and thus in this case includes,

beyond the properly defined energy gap (the forbidden range

of energy between the valence and the conduction bands),

the suppression of conductance deriving from the breaking

of the lattice periodicity and from the resulting Anderson lo-

calization [33]. Interestingly, in previous studies of unconfined

graphene [34] it has been shown that these two forms of gap

have a similar dependence on the geometrical parameters of

the antidot lattice.

IV. CONCLUSION

Using an efficient simulation code based on the solution of

the Dirac equation in the reciprocal space and on a recursive

scattering matrix approach to transport calculation, we have

analyzed the dependence of the conductance and of the energy

gap of a graphene armchair ribbon with a regular lattice of
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perforations on the different geometrical parameters character-

izing the structure: the length of the antidot region, the radius

of the antidots and their reciprocal distance, the width of the

ribbon. We have found that introduction of an antidot lattice

into a graphene ribbon can effectively give rise to a rather

large energy gap, nearly insensitive to the tilt angle of the

lattice and robust with respect to disorder, if we are able to

fabricate a lattice with a sufficiently short repetition period. On

the other hand, the presence of the antidots strongly suppresses

the conductance of the ribbon and thus has a negative impact

on the current flowing through the device.
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