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Abstract In this paper we address few variants of the well-known prefix-
search problem in a dictionary of strings, and provide solutions for the
cache-oblivious model which improve the best known results.

1 Introduction

The Prefix Search problem is probably the most well-known problem in data-
structural design for strings. It asks for preprocessing a set S of K strings, having
total lengthN , in such a way that, given a query-pattern P , it can return efficiently
in time and space (the range of) all strings in S having P as a prefix. This easy-
to-formalize problem is the backbone of many other algorithmic applications,
and recently it received a revamped interest because of its Web-search (e.g.,
auto-completion search) and Internet-based (e.g., IP-lookup) applications.

In order to prove our surprising statement, and thus contextualize the contri-
bution of this paper, we need to survey the main achievements in this topic and
highlight their missing algorithmic points. The first solution to the prefix-search
problem dates back to Fredkin [13], who introduced in 1960 the notion of (Com-
pacted) trie to solve it. The trie structure became very famous in the ’80s-’90s
due to its suffix-based version, known as the Suffix Tree, which dominated first
the String-matching scene [1], and then Bio-Informatics [15]. Starting from the
Oxford English Dictionary initiative [12], and the subsequent advent of the Web,
the design of tries managing large sets of strings became mandatory. It turned
immediately clear that laying out a trie in a disk memory with page size B words,
requiring optimal space and path traversals in O(|P |/B) I/Os was not an easy
task. And indeed Demaine et al. [6] showed that any layout of an arbitrary tree
(and thus a trie) in external memory needs a poor number of I/Os to traverse a
downward path spelling the pattern P .

The turning point in disk-efficient prefix-searching was the design of the String
B-tree data structure [9], which was able to achieve O(logBK + Scan(P )) I/Os,

where Scan(P ) = O(1 + |P |
B·logN ) indicates the number of I/Os needed to examine

the input pattern, given that each disk page consists of B memory-words each
of Θ(logN) bits, and |P | denotes the length of the binary representation of the
pattern P . String B-trees provided I/O-efficient analogues of tries and suffix
trees, with the specialty of introducing some redundancy in the representation
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of the classic trie, which allowed the author to surpass the lower bounds in [6].
The I/O-bound is optimal whenever the alphabet size is large and the data
structure is required to support the search for the lexicographic position of P
among the strings S too. The space usage is O(K logN + N) bits, which is
uncompressed, given that strings and pointers are stored explicitly. The string
B-tree is based upon a careful orchestration of a B-tree layout of string pointers,
plus the use of a Patricia Trie [19] in each B-tree node which organizes its
strings in optimal space and supports prefix searches in O(1) string accesses.
Additionally, the string B-tree is dynamic in that it allows the insertion/deletion
of individual strings from S. As for B-trees, the data structure needs to know
B in advance so depending from this parameter crucially for its design. Brodal
and Fagerberg [4] made one step further by removing the dependance on B,
and thus designing a static cache-oblivious trie-like data structure [14]. Unlike
string B-trees, this structure is independent of B and does store, basically, a trie
over the indexed strings plus few paths which are replicated multiple times. This
redundancy is the essential feature that gets around the lower bound in [6], and
it comes essentially at no additional asymptotic space-cost. Overall this solution
solves the prefix-search in O(logBK + Scan(P )) I/Os by using O(K logN +N)
bits of space, simultaneously over all values of B and thus cache-obliviously,
as currently said in the literature. In order to reduce the space-occupancy,
Bender et al. [3] designed the (randomized) cache-oblivious string B-tree (shortly,
COSB). It achieves the improved space of (1 + ε)FC(S) +O(K logN) bits, where
FC(S) is the space required by the Front-coded storage of the strings in S (see
Section 2), and ε is a user-defined parameter that controls the trade-off between
space occupancy and I/O-complexity of the query/update operations. COSB
supports searches in O(logBK + (1 + 1

ε )(Scan(P ) + Scan(succ(P )))) I/Os, where
succ(P ) is the successor of P in the ordered S.1 The solution is randomized so
I/O-bounds holds with high probability. Furthermore, observe that the term
O((1 + 1

ε )Scan(succ(P ))) may degenerate becoming Θ((1 + 1
ε )
√
N/B) I/Os for

some sets of strings. Subsequently, Ferragina et al. [10] proposed an improved
cache-oblivious solution for the static-version of the problem regarding the space
occupancy. They showed that there exists a static data structure which takes
(1+ ε)LT(S)+O(K) bits, where LT(S) is a lower-bound to the storage complexity
of S. Searches can be supported in O(log2K + Scan(P )) I/Os or in O(logBK +
(1 + 1

ε )(Scan(P ) + Scan(succ(P )))) I/Os. Even if this solution is deterministic,
its query complexity still has the costly dependency on Scan(succ(P )). For
completeness, we notice that the literature proposes many other compressed
solutions but their searching algorithms are not suitable for the Cache-oblivious
model (see e.g., [11,21,17]).

Recently, Belazzougui et al. [2] introduced the weak variant of the problem
that allows for a one-side answer, namely the answer is requested to be correct
only in the case that P prefixes some of the strings in S; otherwise, it leaves to

1 This index can be also dynamized to support insertion and deletion of a string P
in O(logBK + (log2 N) (1 + 1

ε
)Scan(P )) I/Os plus the cost of identifying P ’s rank

within S.
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the algorithm the possibility to return a un-meaningful solution to the query. The
weak-feature allowed the authors of [2] to reduce the space occupancy from O(N),
which occurs when strings are incompressible, to the surprisingly succinct bound
of O(K log N

K ) bits which was indeed proved to be a space lower-bound, regardless
of the query complexity. In the cache-oblivious model the query complexity of
their solution is O(log2 |P |+Scan(P )) I/Os. Their key contribution was to propose
a solution which do not store the string set S but uses only O(log N

K ) bits per
string. This improvement is significant for very-large string sets, and we refer
the reader to [2] for a discussion on its applications. Subsequently, Ferragina [8]
proposed a very simple (randomized) solution for the weak-prefix search problem
which matches the best known solutions for the prefix-search and the weak
prefix-search, by obtaining O(logB N + Scan(P )) I/Os within O(K log N

K ) bits of
space occupancy. The searching algorithm is randomized, and thus its answer is
correct with high probability.

In this paper we attack three problems of increasing sophistication by posing
ourselves the challenging question: how much redundancy we have to add to the
classic trie space occupancy in order to achieve O(logBK + Scan(P )) I/Os in
the supported search operations.2

Weak-prefix search. Returns the (lexicographic) range of strings prefixed by
P , or an arbitrary value whenever such strings do not exist.

Full-Prefix search. Returns the (lexicographic) range of strings prefixed by P ,
or ⊥ if such strings do not exist.

Longest-Prefix search. Returns the (lexicographic) range of strings sharing
the longest common prefix with P .

We get the above I/O-bound for Weak-Prefix Search Problem, for the other
problems we achieve O(logBK + (1 + 1

ε )Scan(P )) I/Os, for any constant ε > 0.
The space complexities are asymptotically optimal, in that they match the
space lower bound for tries up to constant factors. The query complexity is
optimal for the latter problem. This means that for Weak-Prefix Search Problem
we improve [8] via a deterministic solution (rather than randomized) with a
better space occupancy and a better I/O-complexity; for Longest-Prefix Search
Problem we improve both [3] and [10] via a space-I/O optimal deterministic
solution (rather than randomized, space sub-optimal, or I/O-inefficient solutions
in [3] and [10]). Technically speaking, our results are obtained by adopting few
technicalities plus a new storage scheme that extends the Locality Preserving
Front-Coding scheme, at the base of COSB, in such a way that prefixes of the
compressed strings can be decompressed in optimal I/Os, rather than just the
entire strings. This scheme is surprisingly simple and it can be looked as a
compressed version of the Blind-trie, backbone of the String B-tree [9].

2 We remark that this query bound can be looked at as nearly optimal for the first
two problems because it has not been proved yet that the term logBK is necessary
within the space bounds obtained in this paper.
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S The set of strings
N Total length of the strings in S
K Number of strings in S
TS The compact trie built on S
t Number of nodes in TS , it is t ≤ 2K − 1
p(u) The parent of the node u in TS
string(u) The string spelled out by the path in TS reaching u from the root
label(u) The label of the edge (p(u), u)

Ŝ The set S augmented with all strings string(u)
Trie(S) The sum of edge-label lengths in TS
LT(S) Lower bound (in bits) to the storage complexity of the set of strings S

(it is LT(S) = Trie(S) + log
(
Trie(S)
t−1

)
)

Table 1: A summary of our notation and terminology.

2 Notation and background

In order to simplify the following presentation of our results, we assume to deal
with binary strings. In the case of a larger alphabet Σ, it is enough to transform
the strings over Σ into binary strings, and then apply our algorithmic solutions.
The I/O complexities do not change because they depend only on the number
of strings K in S and on the number of bits that fit in a disk block (hence
Θ(B logN) bits). As a further simplifying assumption we take S to be prefix free,
so that no string in the set is prefix of another string; condition that is satisfied
in practice because of the null-character terminating each string.

Table 1 summarizes all our notation and terminology. Below we will briefly
recall few algorithmic tools that we will deploy to design our solutions to the
prefix-search problem. We start with Front Coding, a compression scheme for
strings which represents S as the sequence FC(S) = 〈n1, L1, n2, L2, . . . , nK , LK〉,
where ni is the length of longest common prefix between Si−1 and Si, and Li
is the suffix of Si remaining after the removal of its first ni (shared) characters,
hence Li = |Si| − ni. The first string S1 is represented in its entirety, so that
L1 = S1 and n1 = 0. FC is a well established practical method for encoding a
string set [22], and we will use interchangeably FC to denote either the algorithmic
scheme or its output size in bits.

In order to estimate the space-cost of FC(S) in bits, the authors of [10]

introduced the so called trie measure of S, defined as: Trie(S) =
∑K
i=1 |Li|,

which accounts for the number of characters outputted by FC(S). And then,
they devised a lower-bound LT(S) to the storage complexity of S which adds
to the trie measure the cost, in bits, of storing the lengths |Li|s. We have

LT(S) = Trie(S) + log
(
Trie(S)
t−1

)
bits.

In the paper we will often obtain bounds in terms of log
(
Trie(S)
t−1

)
, so the

following fact is helpful:
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Fact 1 For any dictionary of strings S, we have log
(
Trie(S)
t−1

)
= O(K log N

K ).

Nevertheless there exist dictionaries for which K log N
K may be up to logK times

larger than log
(
Trie(S)
t−1

)
. Finally, it is O(log

(
Trie(S)
t−1

)
) = o(Trie(S)) +O(K).

Despite its simplicity FC(S) is a good compressor for S, and indeed [10]
showed that the representation obtained via Front-Coding takes the following
number of bits:

LT(S) ≤ FC(S) ≤ LT(S) +O(K log
N

K
). (1)

It is possible to show that there exist pathological cases in which Front Coding
requires space close to that upper bound. The main drawback of Front-coding is
that decoding a string Sj might require the decompression of the entire sequence
〈0, L1, . . . , nj , Lj〉. In order to overcome this drawback, Bender et al. [3] proposed
a variant of FC, called locality-preserving front coding (shortly, LPFC), that,
given a parameter ε, adaptively partitions S into blocks such that decoding any
string Sj takes O((1+ 1

ε )|Sj |/B) optimal time and I/Os, and requires (1+ε)FC(S)
bits of space. This adaptive scheme offers a clear space/time tradeoff in terms of
the user-defined parameter ε and it is agnostic in the parameter B.

A different linearization, called rear-coding (RC), is a simple variation of FC
which implicitly encodes the length ni by specifying the length of the suffix of
Si−1 to be removed from it in order to get the longest common prefix between
Si−1 and Si. This change is crucial to avoid repetitive encodings of the same
longest common prefixes, the space inefficiency in FC. And indeed RC is able to
come very close to LT, because we can encode the lengths of the suffixes to be
dropped via a binary array of length Trie(S) with K − 1 bits set to 1, as indeed
those suffixes partition TS into K disjoint paths from the leaves to the root. So
RC can be encoded in

RC(S) ≤ Trie(S) + 2 log

(
Trie(S)

K − 1

)
+O(log Trie(S)) = (1 + o(1))LT(S) bits, (2)

where the latter equality follows from the third statement in Fact 1. Comparing
eqn. (2) and (1), the difference between RC and FC is in the encoding of the ni,
so Trie(S) ≤ N (in practice Trie(S)� N).

In the design of our algorithms and data structures we will need two other
key tools which are nowadays the backbone of every compressed index: namely,
Rank/Select data structures for binary strings. Their complexities are recalled in
the following theorems.

Theorem 1 ([7]). A binary vector B[1..m] with n bits set to 1 can be encoded
within log

(
m
n

)
+O(n) bits so that we can solve in O(1) time the query Select1(B, i),

with 1 ≤ i ≤ n, which returns the position in B of the ith occurrence of 1.

Theorem 2 ([20]). A binary vector B[1..m] with n bits set to 1 can be encoded
within m+o(m) bits so that we can solve in O(1) time the queries Rank1(B, i), with
1 ≤ i ≤ m, which returns the number of 1s in the prefix B[1..i], and Select1(B, i),
with 1 ≤ i ≤ n, which returns the position in B of the ith occurrence of 1.
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3 A key tool: Cache-Oblivious Prefix Retrieval

The novelty of our paper consists of a surprisingly simple representation of S
which is compressed and still supports the cache-oblivious retrieval of any prefix
of any string in this set in optimal I/Os and space (up to constant factors).
The striking news is that, despite its simplicity, this result will constitute the
backbone of our improved algorithmic solutions.

In this section we instantiate our solution on tries even if it is sufficiently
general to represent any (labeled) tree in compact form still guaranteeing optimal
traversal in the cache-oblivious model of any root-to-a-node path. We assume that
the trie nodes are numbered accordingly to the time of their DFS visit. Any node
u in TS is associated with label(u) which is (the variable length) string on the edge
(p(u), u), where p(u) is the parent of u in TS . Observe that any node u identifies
uniquely the string string(u) that prefixes all strings of S descending from u.
Obviously, string(u) can be obtained by juxtaposing the labels of the nodes on
the path from the root to u. Our goal is to design a storage scheme whose space
occupancy is (1 + ε)LT(S) + O(K) bits and supports in optimal time/IO the
operation Retrieval(u, `) which asks for the prefix of the string string(u) having
length ` ∈ (|string(p(u))|, |string(u)|]. Note that the returned prefix ends up in
the edge (p(u), u). In other words, we want to be able to access the labels of the
nodes in any root-to-a-node path and any of their prefixes. Formally, we aim to
prove the following theorem.

Theorem 3. Given a set S of K binary strings having total length N , there
exists a storage scheme for S that occupies (1 + ε)LT(S) +O(K) bits, where ε > 0
is any fixed constant, and solves the query Retrieval(u, `) in O(1 + (1 + 1

ε ) `
B logN )

optimal I/Os.

Before presenting a proof, let us discuss efficiency of two close relatives of
our solution: Giraffe tree decomposition [4] and Locality-preserving front Coding
(LPFC) [3]. The former solution has the same time complexity of our solution but
has a space occupancy of at least 3 · LT(S) +O(K) bits. The latter approach has
(almost) the same space occupancy of our solution but provides no guarantee on
the number of I/Os required to access prefixes of the strings in S.

Our goal is to accurately lay out the labels of nodes of TS so that any string(u)
can be retrieved in optimal O((1 + 1

ε )Scan(string(u))) I/Os. This suffices for
obtaining the bound claimed in Theorem 3 because, once we have reconstructed
string(p(u)), Retrieval(u, `) is completed by accessing the prefix of label(u) of
length j = `− |string(p(u))| which is written consecutively in memory. One key
feature of our solution is a proper replication of some labels in the lay out, whose
space is bounded by ε · LT(S) bits.

The basis of our scheme is the amortization argument in LPFC [3] which
represents S by means of a variant of the classic front-coding in which some
strings are stored explicitly rather than front-coded. More precisely, LPFC writes
the string S1 explicitly, whereas all subsequent strings are encoded in accordance
with the following argument. Suppose that the scheme already compressed i− 1
strings and has to compress string Si. It scans back c|Si| characters in the current
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representation to check if it is possible to decode Si, where c = 2 + 2/ε. If
this is the case, Si is compressed by writing its suffix Li, otherwise Si is fully
written. A sophisticated amortization argument in [3] proves that LPFC requires
(1+ε)LT+O(K log(N/K)) bits. This bound can be improved to (1+ε)LT+O(K)
bits by replacing front-coding with rear-coding (see eqn. 2). By construction,
this scheme guarantees an optimal decompression time/IO of any string Si ∈ S,
namely O((1 + 1

ε )Scan(Si)) I/Os. But unfortunately, this property does not
suffice to guarantee an optimal decompression for prefixes of the strings: the
decompression of a prefix of a string Si may cost up to Θ((1 + 1

ε )Scan(Si)) I/Os.
In order to circumvent this limitation, we modify LPFC as follows. We define

the superset Ŝ of S which contains, for each node u in TS (possibly a leaf), the
string string(u). This string is a prefix of string(v), for any descendant v of u in
TS , so it is lexicographically smaller than string(v). The lexicographically ordered
Ŝ can thus be obtained by visiting the nodes of TS according to a DFS visit. In
our solution we require that all the strings emitted by LPFC(Ŝ) are self-delimited.
Thus, we prefix each of them with its length coded with Elias’ Gamma coding.
Now, let R be the compressed output obtained by computing LPFC(Ŝ) with
rear-coding. We augment R with two additional data structures:

– The binary array E[1..|R|] which sets to 1 the positions in R where the
encoding of some string(u) starts. E contains t− 1 bits set to 1. Array E is
enriched with the data structure in Theorem 1 so that Select1 queries can be
computed in constant time.

– The binary array V [1..t] that has an entry for each node in TS according
to their (DFS-)order. The entry V [u] is sets to 1 whenever string(u) has
been copied in R, 0 otherwise. We augment V with the data structure of
Theorem 2 to support Rank and Select queries.

In order to answer Retrieval(u, `) we first implement the retrieval of string(u).
The query Select1(E, u) gives in constant time the position in R where the
encoding of string(u) starts. Now, if this string has been fully copied in R then
we are done; otherwise we have to reconstruct it. This has some subtle issues that
have to be addressed efficiently, for example, we do not even know the length
of string(u) since the array E encodes the individual edge-labels and not their
lengths from the root of TS . We reconstruct string(u) forward by starting from
the first copied string (say, string(v)) that precedes string(u) in R. The node index
v is obtained by computing Select1(V,Rank1(V, u)) which identifies the position
of the first 1 in V that precedes the entry corresponding to u (i.e., the closer
copied strings preceding u in the DFS-visit of TS).

Assume that the copy of string(v) starts at position pv, which is computed
by selecting the v-th 1 in the E. By the DFS-order in processing TS and by the
fact that string(u) is not copied, it follows that string(u) can be reconstructed
by copying characters in R starting from position pv up to the occurrence of
string(u). We recall that rear-coding augments each emitted string with a value:
let w and w′ two nodes consecutive in the DFS-visit of TS , rear-coding writes
the value |string(w)| − lcp(string(w), string(w′)) (namely, the length of the suffix
of string(w) that we have to remove from w in order to obtain the length of
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its longest common prefix with string(w′)). This information is exploited in
reconstructing string(u). We start by copying string(v) in a buffer by scanning
R forward from position pv. At the end, the buffer will contain string(u). For
every value m written by rear-coding, we overwrite the last m characters of the
buffer with the characters in R of the suffix of the current string (delimited by
E’s bits set to 1). By LPFC-properties, we are guaranteed that this scan takes
O((1 + 1

ε )Scan(string(u)) I/Os.
Let us now come back to the solution of Retrieval(u, `). First of all we re-

construct string(p(u)), then determine the edge-label (p(u), u) in E given the
DFS-numbering of u and a select operation over E. We thus take from this string
its prefix of length `− |string(p(u))|, the latter is known because we have indeed
reconstructed that string.

To conclude the proof of Theorem 3 we are left with bounding the space
occupancy of our storage scheme. We know that R requires no more than (1 +
ε)LT(Ŝ) +O(K) bits, since we are using rear-coding. The key observation is then
the trie measure of Ŝ coincides with the one of S (i.e., Trie(Ŝ) = Trie(S)), so that
|R| = (1 + ε)LT(Ŝ) +O(K) = (1 + ε)LT(S) +O(K). The space occupancy of E is

log
( |R|
t−1
)

bits (Theorem 1), therefore |E| ≤ t log(|R|/t)+O(t) = o(Trie(S))+O(K)
bits. It is easy to see that the cost of self-delimiting the strings emitted by LPFC
with Elias’ Gamma coding is within the same space bound. The vector V requires
just O(K) bits, by Theorem 2.

The query Retrieval(u, `) suffices for the aims of this paper. However, it is
more natural an operation that, given a string index i and a length `, returns the
prefix of Si[1..`]. This can be supported by using a variant of the ideas presented

later for the Weak-prefix Search problem, which adds O(log
(
Trie(S)
t−1

)
+ K) =

o(Trie(S)) + O(K) bits to space complexity (hidden by the other terms) and
a term O(logBK) I/Os to query time. Alternatively, it is possible to keep an
I/O-optimal query time by adding O(K log N

K ) bits of space.

4 Searching strings: three problems

In this section we address the three problems introduced in the Introduction,
they allow us to frame the wide spectrum of algorithmic difficulties and solutions
related with the search for a pattern within a string set.

Problem 1 (Weak-Prefix Search Problem) Let S = {S1, S2, . . . , SK} be a set of
K binary strings of total length N . We wish to preprocess S in such a way that,
given a pattern P , we can efficiently answer the query weakPrefix(P ) which asks
for the range of strings in S prefixed by P . An arbitrary answer could be returned
whenever P is not a prefix of any string in S. ut

The lower bound in [2] states that Ω(K log N
K ) bits are necessary regardless

the query time. We show the following theorem.

Theorem 4. Given a set of S of K binary strings of total length N , there exists
a deterministic data structure requiring 2 · log

(
Trie(S)
t−1

)
+O(K) bits of space that
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solves the Weak-Prefix Search Problem for any pattern P with O(logBK+Scan(P ))
I/Os.

The space occupancy is optimal up to constant factor since log
(
Trie(S)
t−1

)
is

always at most K log N
K (see Fact 1). Moreover, our refined estimate of the space

occupancy, by means of Trie(S), shows that it can go below the lower bound
in [2] even by a factor Θ(logK) depending on the characteristics of the indexed
dictionary (see Fact 1). The query time instead is almost optimal, because it is not
clear whether the term logBK is necessary within this space bound. Summarizing,
our data structure is smaller, deterministic and faster than previously known
solutions.

We follow the solution in [8] by using a two-level indexing. We start by
partitioning S into s = K/ logN groups of (contiguous) strings defined as follows:
Si = {S1+i logN , S2+i logN , . . . , S(i+1) logN} for i = 0, 1, 2, . . . , s − 1. We then
construct a subset Stop of S consisting of 2s = Θ( n

logn ) representative strings
obtained by selecting the smallest and the largest string in each of these groups.
The index in the first level is responsible for searching the pattern P within the
set Stop, in order to identify an approximated range. This range is guaranteed
to contain the range of strings prefixed by P . A search on the second level
suffices to identify the correct range of strings prefixed by P . We have two
crucial differences w.r.t. the solution in [8]: 1) our index is deterministic; 2) our
space-optimal solution for the second level is the key for achieving Theorem 4.
First level. As in [8] we build the Patricia Trie PTtop over the strings in Stop with
the speciality that we store in each node u of PTtop a fingerprint of O(logN)
bits computed for string(u) according to Karp-Rabin fingerprinting [18]. The
crucial difference w.r.t. [8] is the use of a (deterministic) injective instance of
Karp-Rabin that maps any prefix of any string in S into a distinct value in a
interval of size O(N2).3 Given a string S[1..s], the Karp-Rabin fingerprinting
rk(S) is equal to

∑s
i=1 S[i] · ti (mod M), where M is a prime number and t is a

randomly chosen integer in [1,M − 1]. Given the set of strings S, we can obtain
an instance rk() of the Karp-Rabin fingerprinting that maps all the prefixes of
all the strings in S to the first [M ] integers without collisions, with M chosen
among the first O(N2) integers. It is known that a value of t that guarantees no
collisions can be found in expected O(1) attempts. In the cache-oblivious setting,
this implies that finding a suitable function requires O(Sort(N) +N/B) I/Os in
expectation, where Sort(N) is the number of I/Os required to sort N integers.

Given PTtop and the pattern P , our goal is that of finding the lowest edge
e = (v, w) such that string(v) is a prefix of P and string(w) is not. This edge can
be found with a standard blind search on PTtop and by also comparing fingerprints
of P with the ones stored in the traversed nodes (see [8] for more details). A
cache-oblivious efficient solution is obtained by laying out PTtop via the centroid
trie decomposition [3]. This layout guarantees that the above search requires
O(logBK + Scan(P )) I/Os. However, in [8] the edge e is correctly identified only

3 Notice that we require the function to be injective for prefixes of strings in S not
Stop.
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with high probability. The reason is that a prefix of P and a prefix of a string
in S may have the same fingerprint even if they are different. Our use of the
injective Karp-Rabin fingerprints avoids this situation guaranteeing that the
search is always correct4.
Second level. For each edge e = (u, v) of PTtop we define the set of strings Se
as follows. Assume that each node v of PTtop points to its leftmost/rightmost
descending leaves, denoted by L(v) and R(v) respectively. We call SL(v) and
SR(v) the two groups of strings, from the grouping above, that contain SL(v) and
SR(v). Then Se = SL(v) ∪SR(v). We have a total of O(K/ log n) sets, each having
O(logN) strings. The latter is the key feature that we exploit in order to index
these small sets efficiently by resorting to the following lemma. We remark that
Se will not be constructed and indexed explicitly, rather we will index the sets
SL(v) and SR(v) individually, and keep two pointers to each of them for every edge
e. This avoids duplication of information and some subtle issues in the storage
complexities. But poses the problem of how to weak-prefix search in Se which
is only virtually available. The idea is to search in SL(v) and SR(v) individually,
three cases may occur. Either we find that the range is totally within one of
the two sets, and in this case we return that range; or we find that the range
includes the rightmost string in SL(v) and the leftmost string in SR(v), and in
this case we merge them. The correctness comes from the properties of trie’s
structure and the first-level search, as one can prove by observing that the trie
built over SL(v)∪SR(v) is equivalent to the two tries built over the two individual
sets except for the rightmost path of SL(v) and the leftmost path of SR(v) which
are merged in the trie for Se. This merging is not a problem because if the range
is totally within SR(v), then the dominating node is within the trie for this set
and thus the search for P would find it by searching both SR(v) or Se. Similarly
this holds for a range totally within SL(v). The other case comes by exclusion, so
the following lemma allows to establish the claimed I/O and space bounds.

Lemma 1. Let Si be a set of Ki = O(logN) strings of total length at most N .

The Patricia trie of Si can be represented by requiring log
(
Trie(Si)
ti−1

)
+O(Ki) bits

of space so that the blind search of any pattern P with O((logKi)/B + Scan(P ))
I/Os, where ti is the number of nodes in the trie of the set Si.

To conclude the proof of Theorem 4, we distinguish two cases based on the
value of K. If K = O(logN), we do not use the first level since Lemma 1 with
Ki = K already matches the bounds in Theorem 4. Otherwise K = Ω(logN),
and so searching P requires O(logBK + Scan(P )) I/Os on the first level and
O((log logN)/B + Scan(P )) = O(logBK + Scan(P )) I/Os on the second level.
For the space occupancy, we observe that the first level requires O(K) bits,

and the second level requires
∑
i(log

(
Trie(Si)
ti−1

)
+Ki) bits (Lemma 1). Note that∑

i ti ≤ t = O(K) because each string of S belongs to at most one Si.

Problem 2 (Full-Prefix Search Problem) Let S = {S1, S2, . . . , SK} be a set of K
binary strings of total length N . We wish to preprocess S in such a way that,

4 Recall that in the Weak-Prefix Search Problem we are searching under the assumption
that P is a prefix of at least a string in S.
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given a pattern P , we can efficiently answer the query Prefix(P ) which asks for
the range of strings in S prefixed by P , the value ⊥ is returned whenever P is
not a prefix of any string in S. ut

This the classic prefix-search which requires to recognize whether P is or is
not the prefix of any string in S. By combining Theorems 3 and 4 we get:

Theorem 5. Given a set of S of binary strings of size K of total length N , there
exists a data structure requiring (1 + ε)LT(S) +O(K) bits of space that solves the
Full-Prefix Search Problem for any pattern P with O(logBK + (1 + 1

ε )Scan(P ))
I/Os, where ε > 0 is any constant.

We use the solution of Theorem 4 to identify the highest node u from which
descends the largest range of strings that are prefixed by P . Then, we use
Theorem 3 to check I/O-optimally whether Retrieval(u, |P |) equals P . The space
occupancy of this solution is optimal up to a constant factor; the query complexity
is almost optimal being unclear whether it is possible to remove the logBK term
and still maintain optimal space.

Problem 3 (Longest-Prefix Search Problem) Let S = {S1, S2, . . . , SK} be a set
of K binary strings of total length N . We wish to preprocess S in such a way
that, given a pattern P , we can efficiently answer the query LPrefix(P ) which
asks for the range of strings in S sharing the longest common prefix with P . ut

This problem waives the requirement that P is a prefix of some string in
S, and thus searches for the longest common prefix between P and S’s strings.
If P prefixes some strings in S, then this problem coincides with the classic
prefix-search. Possibly the identified lcp is the null string, and thus the returned
range of strings is the whole set S. We will prove the following result.

Theorem 6. Given a set of S of K binary strings of total length N , there exists
a data structure requiring (1 + ε)LT(S) + O(K) bits of space that solves the
Longest-Prefix Search Problem for any pattern P with O(logBK+(1+ 1

ε )Scan(P ))
I/Os, where ε > 0 is any constant.

First we build the data structures of Theorem 3 with a constant ε′ to be fixed
later, in order to efficiently access prefixes of strings in S but also as a basis
to partition the strings. It is convenient to observe this process on TS . Recall
that the data structure of Theorem 3 processes nodes of TS in DFS-order. For
each visited node u, it encodes string(u) either by copying string(u) or by writing
label(u). In the former case we will say that u is marked. Let Scopied be the set
formed by the string(u) of any marked node u. The goal of a query LPrefix(P )
is to identify the lowest node w in TS sharing the longest common prefix with
P . We identify the node w in two phases. In the first phase we solve the query
LPrefix(P ) on the set Scopied in order to identify the range of all the (consecutive)
marked nodes [vl, vr] sharing the longest common prefix with P . Armed with
this information, we start a second phase that scans appropriate portions of the
compressed representation R of Theorem 3 to identify our target node w. (For
space reasons we defer the description of our solution to the full paper.)
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