
Web Search

Paolo Ferragina and Rossano Venturini

Abstract The chapter starts by introducing the structure and the properties of the
Internet and the Web graphs; then it digs into the two most important paradigms
that humans follow to search for information in the Web: namely, browsing and
keyword searching. For the latter, we describe the main software components of a
modern search engine providing running examples that simplify the understanding.
Finally, we comment on some recent and powerful tools and functionalities that
should empower the ability of users to match in the Web their information needs.

1 The Prologo

Just ten years ago, major search engines were indexing about one billion Web pages;
this number is today blown up to few trillions as reported in Google’s blog by Alpert
et al. [1]. Such a grow is proportional to three order of magnitudes, thus leading
everyone to talk about an exponential growth of the Web! But this number denotes
only the amount of pages indexed by search engines and thus available to users via
their Web searches; the real number of Web pages is much larger, and in some sense
unbounded, as many researchers observed in the past. This is due to the existence of
pages which are dynamic, and thus generated on-the-fly when users request them, or
pages which are hidden in private archives, and thus can be accessed only through
proper credentials (the so called deep Web). At the extreme, we could argue that
the number of (dynamic) pages in the Web is infinite, just take sites generating
calendars.

Faced with this massive amount of information, which includes not only texts but
nowadays any kind of file (audio, video, images, etc.), Web users tend to loose their
way when browsing the Web, falling into what psychologists name “getting lost in
hyperspace”. In order to circumvent this critical issue, computer scientists designed

Dipartimento di Informatica, Largo B. Pontecorvo 3, 56123 Pisa, Italy e-mail: {ferragina,
rossano}@di.unipi.it

1

2 Paolo Ferragina and Rossano Venturini

in the recent past some sophisticated software systems, called search engines, that
allow users to specify some keywords and then retrieve in few milliseconds the col-
lection of pages containing them. The impressive feature of these systems is that the
retrieved pages could be located in Web servers spread all around the world, possibly
unreachable even by expert users that have clear in mind their information needs. In
this chapter we will review the historical evolution and the main algorithmic features
of search engines. We will describe some of the algorithms they hinge on, with the
goal of providing the basic principles and the difficulties that algorithm designers
and software engineers found in their development. This will offer a picture of the
complexity of those systems that someone considers as the most complex tools the
human being have ever built. A commented literature will conclude the chapter thus
providing pointers to several fundamental and accessible publications that can help
the readers to clarify their curiosity and understanding of search engines and, more
specifically, the wide and challenging research field known as Information Retrieval.

The following sections will dig in all those issues, starting with an analysis of
two networks that are distinct, live in symbiosis, and are the ground where search
engines work: the Internet and the Web.

2 Internet and Web Graphs

As we have already seen in Chapter ??, a graph is a mathematical object formed by a
set of nodes and a set of edges which represent relationships between pairs of nodes.
Founded in the eighteenth century, Graph Theory has gained great importance in
the last century as a means to represent entities in relation to each other. Nowadays,
Graph Theory has further increased its importance being essential for the study of
the Internet and its applications (such as the Web).

A network of computers (hereinafter simply referred as network) is a set of de-
vices that send messages through electronic connections by means of cables, fiber
optics, radio or infrared links. In our abstraction of a network, connections are rep-
resented with the edges of a graph whose nodes represent the devices. The Internet
is actually a network of networks: institutions may own many computers which are
connected to each other, but each institution enters the Internet as a single unit.
These units are called autonomous systems (shortly AS) and constitute the nodes of
the Internet graph. Each of these autonomous systems could be either a user own-
ing a single computer, or a set of computers connected together within the same
building, or even very complex networks whose computers may be geographically
far from each other. The Internet Service Providers (ISPs) are examples of the latter
typology of autonomous systems. ISPs are companies which regulate the traffic of
messages on the Internet by selling their services to other users.

Figure 1 shows a possible fragment of the Internet graph: nodes are drawn as
circles connected by edges which are represented by continuous lines. Notice that
edges can be traversed in both directions. A direct message from G to B, e.g., an e-
mail, could follow the path G−E−F−D−B. User G is the sender which pays the

Web Search 3

A B

C

D

F

E

H

G

3

2

1

5

4

9

8

7

6

Fig. 1 The structure of the Internet and the Web graphs. Circles represent the autonomous systems
and edges marked with solid lines represent the connections between them. Rectangles represent
Web pages and edges marked with dashed arrows represent the links between them.

service to her service provider E, which regulates its costs with subsequent nodes.
However, the real scenario is much more complicated. The Internet is huge: even
if we do not know how many computers are connected (question indeed misplaced
because the network topology is constantly changing), one can estimate that this
number exceeds one billion considering all the computers within the ASs. The path
followed by a message is not determined beforehand and may even change during
the transmission. This is a consequence of the enormous size and anarchist structure
of the Internet, which grows and evolves without any centralized control, and the
inevitable continuous changes in the connections deriving from technical or mainte-
nance issues. This behavior has characterized the network since its birth in the late
sixties and distinguishes the Internet from both telephone and electrical networks.

Traditional telephone networks work by using a methodology called circuit
switching: two people talking on the phone are using the “channel” that has been
reserved for their communication. The two network nodes establish a dedicated
communication channel through the network before they start communicating. This
channel works as if the nodes were physically connected with an electrical circuit.
However, if something goes wrong, the communication is interrupted. The initial
idea for the Internet was to resort to a mechanism called message switching: the
routing of messages in the network is established node by node depending on the
location of the recipient and the current level of traffic. At each step, the current
node is responsible for choosing the next node in the path. As a side effect of this
mechanism, a message sent to a close user may be sent through a path longer than
necessary. This method was soon replaced by a close relative method called packet

4 Paolo Ferragina and Rossano Venturini

switching which is currently still in use. A (binary) message is divided into packets
of a fixed length, this length is reported at the beginning of each packet together with
the address of its destination. Sometimes happens that packets of the same message
are routed thought different paths and reach the destination in a order that differs
from the original one. The recipient is then responsible for reordering the packets
to (re-)obtain the original message. This mechanism guarantees that a message is
always accepted by the network, even if it may take time before all of its packets
reach their final destination and the message can be reconstructed. In a telephone
network, instead, a phone number can be “busy” even if the recipient’s phone is
free, due to the saturation of the chain of connections which link the two locations
involved in the call because of other calls.1

Now let us see what we mean by Web (or www, that is the acronym for the World
Wide Web). Born in 1989 at CERN in Geneva and based on the known concept of
hypertext, the Web is a set of documents called pages that refer to each other to refine
or improve the same subject, or to draw a new subject in some relation to the first
one. The luck of the Web is inextricably linked to the Internet. Pages of the Web are
stored in the memories of computers on the Internet network, so that users can freely
consult this collection of pages by moving from one page to another one via (hyper-
)links, quickly and without leaving their PCs regardless the location of the requested
pages. Seen in this way the Web is represented as a graph whose nodes are pages
and whose edges are the (hyper-)links between pairs of pages. Edges in this graph
are directed, meaning that each edge can be traversed only in one predetermined
direction. Figure 1 shows a portion of the Web graph in which the orientation of an
edge is specified by means of an arrow.

We should immediately establish some properties of this graph being very im-
portant for search engines which collect, inspect and make Web pages available to
users. First, the graph is literally huge and its topology varies continuously due to
the continuous creation or deletion of pages. Regarding the size of the graph, some-
times we read unfounded and fanciful stories: reasonably sure is that search engines
provide access to roughly tens of billions of pages. Nonetheless, the number of ex-
isting pages is larger, though many of them may be not directly available as we
commented at the beginning of this chapter.2 Another important observation is that,
although the Web pages are stored in computers of the Internet, these two graphs
do not have any other relationship between each other. Referring to the example of
Figure 1, page 1 has a link to page 2 but there is no direct link between the two nodes
A and B of the Internet (i.e., the computers containing these pages). On the other
hand, the two nodes C and F are connected but there are no links between the pages

1 This phenomenon happened frequently years ago. Nowadays, it is rare for the improvement of
transmission techniques. However, it can still happen if we call distant foreign countries or if we
try to make national calls in particular periods of the year (e.g., New Year’s Eve).
2 We usually refer with indexable Web to the set of pages that could be reached by search engines.
An other part of the Web, called deep Web, includes a larger amount of information contained
in pages not indexed by search engines, or organized into local databases, or obtainable using
special software. Nowadays an important area of research studies the possibility of extending the
functionalities of search engines to the information stored in the deep Web. In this direction can be
classified the initiative open data, see e.g. linkeddata.org.

Web Search 5

contained therein. Another difference between these two graphs is that the edges
of the Web are directed while those of the Internet are not. Moreover, the graph
of the Internet is strongly connected, i.e., there always exists a path that connects
any two nodes, unless a temporary interruption of some connection does occur. This
however does not happen in the Web graph where there are nodes that cannot be
reached by others; this may happen for several reasons: a node cannot be reached
by any other node since it has only outgoing links (nodes 3 and 7 in the figure), a
node cannot reach other nodes since it has only incoming links (node 4), or a node
is completely disconnected since it has no links at all (node 9). In the box below we
present a deeper algorithmic elaboration about these important characteristics.

Fig. 2 Adjacency matrices I and W for the Internet and the Web graphs of Figure 1, and the square
matrix W 2.

Adjacency matrix and paths of a graph.
A graph G with n nodes can be represented in a computer through an ad-

jacency matrix M having n rows and n columns. Rows and columns are in
correspondence with nodes of G. The cell of M at row i and column j, de-
noted with M[i, j], corresponds to the pair of nodes i and j. We set M[i, j]
equal to 1 whenever G has an edge from node i to node j, M[i, j] is 0 oth-
erwise. The Internet graph and the Web graph of Figure 1 have, respectively,
the adjacency matrices I of size 8×8 and W of size 9×9. These matrices are
shown in Figure 2.

Notice that any undirected graph induces an adjacency matrix which is
symmetric with respect to its main diagonal, because if the edge (i, j) ex-
ists then it does exist also the edge (j, i), so M[i, j] = M[j, i] = 1. We ob-
serve that the Internet graph is undirected and, thus, matrix I is symmetric.
For an example, edge A−C can be traversed in both directions and, thus,
I[A,C] = I[C,A] = 1. In directed graphs, as the Web graph, the matrix may be
asymmetric and so there exist entries such that M[i, j] 6= M[j, i]. In our exam-
ple we have W [1,2] = 1 and W [2,1] = 1 because there are two distinct edges

6 Paolo Ferragina and Rossano Venturini

going in both directions. However, we also have cases in which only one edge
between two nodes is present (e.g., we have W [1,6] = 1 and W [6,1] = 0).

In Mathematics the square of an n× n matrix M is an n× n matrix M2

whose cells M2[i, j] are computed in a way different from the standard product
of numbers. Each cell M2[i, j] is, indeed, obtained by multiplying the ith row
and the jth column of M according to the following formula:

M2[i, j] = M[i,1]×M[1, j]+M[i,2]×M[2, j]+ . . .+M[i,n]×M[n, j]. (1)

This formula has a deep meaning that we will illustrate through our exam-
ple matrix W of Figure 2. Take W 2[6,4], it is equal to 1 because the sixth row
and the fourth column of W are, respectively, equal to [0 0 0 0 1 0 0 0 0] and
[0 0 1 0 1 0 0 0 0]. So that the formula above returns the value 1 since there is
a pair of multiplied entries (W [6,5] in row 6 and W [5,4] in column 4) that are
equal to 1.

W 2[6,4] =W [6,1]×W [1,4]+W [6,2]×W [2,4]+ . . .+W [6,9]×W [9,4]
= 0×0+0×0+0×1+0×0+1×1+0×0+0×0+0×0+0×0
= 1

Interestingly, there is a deeper reason behind the value 1 obtained by mul-
tiplying W [6,5] and W [5,4]. Since these two cells indicate that in the Web
graph there is one edge from node 6 to node 5 and one edge from node 5 to
node 4, we conclude that there exists a path that goes from node 6 to node 4
traversing exactly two edges. Therefore, each cell W 2[i, j] indicates the num-
ber of distinct paths from node i to node j that traverse exactly two edges.
We can understand better this statement by further examining other entries of
the matrix W 2. We have W [1,2] = 1 but W 2[1,2] = 0 because there is an edge
from node 1 to node 2 but there does not exist any path of length two con-
necting these two nodes (see Figure 1). Furthermore, we have W 2[2,6] = 2
because the second row of W is [1 0 0 0 0 1 0 1 0] and its sixth column is
[1 1 0 0 0 0 0 1 0]:

W 2[2,6] =W [2,1]×W [1,6]+W [2,2]×W [2,6]+ . . .+W [2,9]×W [9,6]
= 1×1+0×1+0×0+0×0+0×0+1×0+0×0+1×1+0×0
= 2

Here we find two pairs of 1s: W [2,1] =W [1,6] = 1 and W [2,8] =W [8,6] =
1 meaning that the Web graph has two paths of length two connecting node 2
to node 6 (i.e., 2−1−6 and 2−8−6).

Following the same rule we can proceed in the calculation of successive
powers W 3, W 4, . . . of the matrix W . The entries of these matrices indicate the

Web Search 7

number of paths of length 3, 4, . . . between pairs of nodes, and thus the number
of links that we must follow in order to move from one Web page to another.
For example, the elements of W 3 are obtained by resorting the equation 1, as
the product of a row of W 2 and a column of W (or vice versa). We have thus:

W 3[7,6] = 1×1+0×1+0×0+1×0+0×0+0×0+0×0+1×1+0×0= 2

which corresponds to the two paths of length three from node 7 to node 6
(i.e., 7−5−1−6 and 7−5−8−6).

Classical algorithms compute a power of a matrix by taking two powers
with smaller exponents and by applying the equation (1) to one row and one
column of each of them. Since the number of these pairs in n2, and since the
calculation of equation (1) requires a time that is proportional to n (in fact the
expression contains n multiplications and n−1 additions), the total computa-
tion time required by one matrix multiplication is proportional to (i.e., is order
of) n3. Of course, the actual time required by an algorithm depends also on the
computer and the programming language in use. However, a cubic behavior
like this is undesirable: it means, for example, that if the number of nodes
of the graph doubles from n to 2n, the time grows from n3 to (2n)3 = 8n3,
i.e., it becomes eight times larger.3 As we shall see in a following section,
computing powers of matrices is one of the main ingredients to establish an
order of importance (ranking) among the pages of the Web. However, con-
sidering that the Web graph has billions of nodes, it is unfeasible to perform
this computation on a single computer. The solution usually adopted consists
of dividing the work among many computers by resorting techniques of dis-
tributed computation which are, however, too much complex to be discussed
here.

3 Browsers and a Difficult Problem

A Web site is a group of related Web pages whose content may include text,
video, music, audio, images, and so on. A Web page is a document, typically
written in plain text, that, by using a special language, specifies the components
of that page (e.g., text and multimedia contents) and the way in which they have
to be combined, displayed and manipulated on a computer screen. A Web site is
hosted on at least one Web server and can be reached by specifying the address
of one of its pages. Each page has, indeed, its own numeric address which is,
for convenience, associated to a textual name easier to remember (called URL).
For example, www.unipi.it/index.htm is the name of the main web page
of the University of Pisa, while its numeric address of the hosting Web server
is 131.114.77.238. A Web site is characterized by its domain name, e.g.,

8 Paolo Ferragina and Rossano Venturini

unipi.it, and by its main page which is the starting point to visit the other sec-
ondary pages of the site. The urls of these pages are refinements of the domain
name through a hierarchical structure expressed by means of a path. For example,
www.unipi.it/research/dottorati is the address of the page that con-
tains the list of PhD courses of the University of Pisa.

A browser is a software that allows Web users to visualize a page on the screen of
a computer by specifying its URL-address. After the first Web browser developed
at CERN for the original Web, many commercial products have been developed
and are nowadays known, such as Netscape Navigator, Internet Explorer, Firefox,
Chrome, and many others. In order to speed up the access to Web pages by browsers
and other software/applications, network engineers have designed special nodes that
collect large groups of page copies. These nodes are called caches, while caching
refers to the activity of storing pages in them. Figure 3 shows a typical organization
of connections and caches in the Internet graph.

A

B

C

D

F

E

G

9

2

3

6
8

4

7

1

10

H5

11

Fig. 3 Several levels of caching for Web pages are shown. Circles labeled with A,B, . . . ,H are
computers with a browser which store in their memory the most recently accessed Web pages.
Regions enclosed with dotted lines are autonomous systems while rectangles represent their cor-
responding proxies. Double rectangles, instead, represent routers which are devices that route the
messages flowing through the network. Finally, diamonds represent large CDN sub-networks.

A key role in the network is played by proxies, which are computers serving as
a local cache within an AS. So they keep a copy of the most frequently requested
Web pages by users of the AS. These pages are typically news sites, popular social
networks, search engines, and so on. The cached pages are either from outside the
AS, or from inside the AS. In the example of Figure 3, users A and B reside inside
the same AS, so if they have recently requested the same page, then this page is

Web Search 9

probably stored in proxy 1 of their AS. In addition, proxies cache web pages which
are stored in the AS and are requested frequently from computers outside that AS.
In this way, these frequent requests are served immediately without the need of
traversing the whole AS. In the example of Figure 3, if pages stored in the computers
A and B are requested frequently from other users of the network, copies of them
may be kept in proxy 1 which is responsible for answering requests coming from
outside. Caching can be structured in a hierarchical way, by introducing the so-
called Content Delivery Networks (CDN), which are sub-networks of computers
that provide caching at geographic level. It goes without saying that the same web
page can be replicated in many proxies and CDNs, provided that this improves its
delivery to the requesting browsers and Web applications.

An interesting problem is that of distributing Web pages in the caches of the net-
work with the aim of minimizing the overall amount of time required to access the
Web pages which are more likely requested by users in a certain period of time. As
we will see, from an algorithmic point of view, this problem is practically insolvable
because all known solutions have exponential time complexity. In fact this problem
belongs to a class of hard problems for which we can compute efficiently only ap-
proximated solutions.4 We will support this claim by introducing the well-known
Knapsack Problem, discussed in Section ??. What will be nice of this discussion is
that, although these two problems appear very different, they turn out to be highly
related in terms of the time required to compute their solution.

Object 1 2 3 4 5 6 7
Weight 15 45 11 21 8 33 16
Value 13 25 14 15 6 20 13

1 0 1 1 0 0 1

Fig. 4 An example of the Knapsack Problem: we have to choose a subset of objects which max-
imizes their total value and satisfies a constraint on their total weight, which should be at most
C = 70. The last row represents the optimal subset {1,3,4,7}, which is encoded by indicating with
a 1 an object included in the subset and with a 0 an object not included into it. The total weight is
15+11+21+16 = 63 < 70 while the total value is 13+14+15+13 = 55, and this is optimal in
that no other subset of weight smaller than 70 has larger value.

Let us consider Figure 4 in which we have 7 objects, numbered from 1 through 7,
and a knapsack of maximum capacity C = 70. For each object we report its weight
and its value (e.g., object 1 has weight 15 and value 13, object 2 has weight 45 and
value 25, and so on). In the last row of the table we represent a subset of objects
by using a bit that indicates whether the corresponding object has been selected
(value 1) or not (value 0). We recall that the Knapsack Problem asks to identify
the subset of objects which maximizes the total value provided that its total weight

4 We recall that this class of problems has been extensively discussed in Chapter ??, they are called
NP-hard problems.

10 Paolo Ferragina and Rossano Venturini

is at most C. As already observed in Chapter ??, this problem does not admit any
solution which is more efficient than the one that considers all possible subsets of
objects and discards the ones having total weight larger than C. Since the number of
possible subsets of n objects is 2n (including the empty one), this solution requires
exponential time and results to be unfeasible even for a small number of objects.5

In the box below we will show the existing relation between the Knapsack Prob-
lem and the problem of distributing Web pages in a cache (Cache Problem). We
observe that a more general formulation of the latter problem is more complicated
than the one presented here. For example, in real applications it is typical to consider
also the probability of accessing a certain page, the frequency of requests arriving
from each AS, the time variation of these quantities, and so on. However, it suffices
to show that the simplified problem is still hard in order to prove the hardness of
any more general formulation. In our case, it can be proved that the Cache Problem
is at least as hard as the Knapsack Problem. This proof is called reduction and,
specifically, consists of showing that whenever there exists an algorithm that solves
the Cache Problem in less than exponential time, the same algorithm can be applied
with simple changes to the Knapsack Problem and solve it in less than exponen-
tial time too. Since this event is considered to be reasonably impossible, one can
reasonably assume that such a “surprising algorithm” for the Cache Problem does
not exist; so this problem can be addressed only by means of exponential solutions
or, efficiently, by returning approximate solutions. Space limitations and the scope
of this chapter do not allow us to detail the reduction that links the Cache Problem
to the Knapsack Problem, rather we content ourselves by showing a simpler result,
namely, that an approximate solution for the Cache Problem can be derived from an
approximate solution to the Knapsack Problem.

The Cache Problem. Let us assume that the network has k ASs, denoted with
AS1,AS2, . . . ,ASk, n pages, denoted with p1, p2, . . . , pn, and just one cache that
stores copies of Web pages for a total size of at most B bytes. Furthermore we
assume that each page is stored in its AS, that all pages are requested with the
same probability, and that all ASs access the same number of pages. As in the
Knapsack Problem, we define an array W of page weights so that W [j] is the
size in bytes of the file representing page p j. It is a little bit harder to define an
array of “values” for the Cache Problem that mimics the array of values in the
Knapsack Problem. For this aim we use A j to indicate the AS owner of page
p j; we use d(i, j) to denote the distance, expressed in number of hops, that
separate the generic ASi from A j; and we use c(i, j) to indicate the cost that
ASi has to pay, in terms of number of hops, to obtain the page p j. This cost
may depend on the choice between placing or not placing the page p j in the
single cache we assumed to exist in the network. Indeed, if p j is in the cache
and the distance between ASi and the cache is smaller than d(i, j), we have
c(i, j) < d(i, j). In any other case, the value of c(i, j) is equal to d(i, j). We

5 For example, for n = 20 objects we have 220 > 1 millions of subsets.

Web Search 11

can then introduce the value u(i, j) = d(i, j)−c(i, j) which expresses the gain
for ASi of having the page p j copied in cache. At this point we are ready to
define the value V [j] of p j as the total gain of placing p j in the cache, summing
over all ASs: V [j] = ∑i=1...k u(i, j). Finally, the “reduction” to the Knapsack
Problem can be concluded by taking an auxiliary array A to indicate the subset
of pages to be cached.

At this point, we could solve the “synthetic” Knapsack Problem either ex-
actly in exponential time (by enumerating all subsets), or approximately in
polynomial time. In this second case, we could choose the objects (pages)
in order of decreasing ratio value (gain) versus weight (byte size) until the
capacity C of the knapsack (cache) is saturated. The behavior of this simple
algorithm is shown in Figure 5. However there do exist solutions to the Cache
Problem that do not pass through this “algorithmic reduction”: the simplest
one consists of caching the most popular Web pages. Clearly, there do ex-
ist also more sophisticate approximation algorithms that exploit knowledge
about the topology of the network and the frequency of distribution of the
page-requests. For example, the cache in a CDN Ci may give a larger priority
to a page pi having a high value of the product π j× d(i, j), where π j is the
frequency of request for page p j.

Object 3 1 7 5 4 6 2
Weight 11 15 16 8 21 33 45
Value 14 13 13 6 15 20 25
Value/Weight 1.27 0.87 0.81 0.75 0.71 0.61 0.55

Fig. 5 The objects of Figure 4 are sorted by decreasing values of the ratio V [i]/W [i]. The heuris-
tically chosen subset of objects is {3,1,7,5}, its total weight is 50 and its total value is 46. Recall
that the optimal subset has weight 63 and value 55, as shown in Figure 4.

4 Search Engines

Browsers are fundamental tools for navigating the Web, but their effective use im-
poses that users know clearly which are their information needs and where the web
pages matching them are located in the Web. However it is common that a user has
only a partial knowledge of her information need, and wants to find pages through
their content without necessarily knowing their URL-address. Search engines are
designed to address this goal resulting to be, nowadays, indispensable for finding
information in the huge graph of available Web pages. Bing, Google and Yahoo!

12 Paolo Ferragina and Rossano Venturini

are the three most famous search engines available to the Web users to match their
information needs. They are based on similar algorithmic principles which are nev-
ertheless implemented differently enough to show, in response to same user query,
a different set of result pages. Here we will neither provide a comparison of dif-
ferent search engines, nor we will discuss how to implement effective user queries;
rather we will limit ourselves to the more instructive description of the algorithmic
structure of any modern search engine detailing some of its components.

One of the key features of the search task is that it must be executed fast and
over a huge set of indexed pages. To this aim, each search engine resorts to a large
number of computers grouped in different data-centers distributed all around the
world. Although many companies are reluctant to reveal precise information about
their data-centers, it is estimated that each search engine deploys hundreds of thou-
sands of computers organized into subnetworks, each of which provides different
functions. We can distinguish these functions into two main categories (detailed in
the following pages): those intended for building a huge index of the Web pages,
and those intended for resolving in the best and the fastest possible way the queries
submitted by the users.

In the first category, we can identify several important algorithmic steps: the
crawling of the Web, the analysis of the Web graph and the parsing of the crawled
pages, and finally the construction of an index containing all relevant information
to match efficiently the user queries. All these tasks are repeated at regular time
intervals in order to keep the index (and therefore the results provided to the user
queries) updated with respect to the continuous variations of the Web.

In the second category, we can also identify several important algorithmic steps
which are executed at each user query and mainly consist of consulting the current
index in order to discover the relevant pages for that query, ranking these pages in
order of relevance, and possibly apply some classification or clustering tools that
aim at offering different (and eventually more meaningful) views on the returned
results. All these steps have as ultimate goal the one of satisfying in the best and the
fastest way the information need hidden within the user queries.

A user query is typically formed by a sequence of keywords. The process that
leads the user to choose a specific set of keywords is critical since it significantly
influences the quality of the results reported by the search engine. It is clear that an
information need may be correctly settled by different groups of results. However,
the actual relevance of these groups depends on the user submitting the query and
her current information need, which may change, even drastically, from a user to
another, and it can indeed change even for the same user depending on its specific
interests at the time the query is issued. For example, the query Lufthansa for a user
may have navigational goal because she wants to find the homepage of the airline, a
transactional goal because she might wish to buy a ticket, or an informational goal
because she is interested in gathering some information regarding the company. And
of course, the same user could issue queries at different time having different goals.

If the user is not completely satisfied by the results returned by the search engine,
she could refine her query by adding keywords or she could specify more clearly her
intention by reformulating the query itself. However, this rarely happens: statistics

Web Search 13

show that more than 80% of the queries are formed by only two keywords and their
average number is around 2.5. Add to this that most of the users look at only the
first page of results. The reason in this behavior has to be found not only in the user
laziness of composing selective queries and browsing the returned results, but also
in the intrinsic difficulty for the users to model their information needs by means of
appropriate keywords.

Despite all these problems, modern search engines perform their tasks very effi-
ciently and provide very relevant results. Moreover, they are improving day by day
thanks to the intensive academic and industrial research in the field. In the following
we will describe the salient operations performed by search engines noticing that,
not surprisingly, many algorithms usually employed are not publicly known.

4.1 Crawling

In the slang of Internet, the term crawling refers to the (un-)focused retrieval of a
collection of Web pages with the purpose of making them available for subsequent
analysis, cataloguing and indexing of a search engine. A crawler, also named spider
or robot, is an algorithm that automatically discovers and collects pages according
to a properly-designed traversal of the Web graph. The reader should not confuse
browsers with crawlers: the former retrieve and visualize specific pages indicated
by a user via their URL-address, the latter retrieve and collect pages which are
automatically identified via proper web-graph visits. The following box details the
algorithmic structure of a crawler.

Crawling algorithm. A crawler makes use of two data structures called queue
and dictionary, whose functionalities are close to the ones these terms assume
in the context of transports (a queue of cars) and linguistics (a dictionary of
terms), respectively. A queue Q is a list of elements awaiting for being served.
The element that is placed at the head of Q is the next that will be served and,
when this will happen, the element will be removed. In this way, the second
element will become the new head of the queue. This operation is denoted by
Q→ e and indicates that the element e is released outside. A new element is
always inserted at the end of Q and it will be served after all elements currently
in Q. This operation is denoted by e→ Q.

A dictionary D is a set of elements (not necessarily words in some natural
language) awaiting for being examined. In this case, however, there is more
flexibility than in the queue regarding the operations that can be supported.
What concerns us here is, indeed, that there is an efficient way to determine
whether a particular element e is already in the dictionary D and possibly re-
move it (denoted by D→ e). The dictionary is built by means of insertions
of new elements (denoted by e→ D). Notice that, since we wish to perform
fast searches in the dictionary D, we have to carefully insert and organize the

14 Paolo Ferragina and Rossano Venturini

elements into it. A key property to guarantee the efficiency of these operations
is that there must exist an ordering among the elements of D. This order can
always be artificially induced whenever it does not naturally exist, just con-
sider the binary representation of the dictionary elements in the memory of
the computer and sort them using the alphabetical order, which assumes that
the binary symbol 0 is smaller than binary symbol 1. An example of sorted
binary sequence is 010, 0110, 10, 1011, 110.

Now we will introduce a (necessarily simplified) crawling algorithm whose
fundamental steps are reported in Figure 6. We first notice that the owner of
a site could forbid the crawling of some Web pages, by adding a special file
called robots.txt which specifies which pages can be downloaded and
which cannot.

The crawling algorithm deploys a queue Q containing addresses of Web
pages to be processed, two dictionaries Durls and Dpages, containing, respec-
tively, the addresses of the Web pages already processed, and an archive of
information extracted from those pages. Initially, both Durls and Dpages are
empty, while Q contains a set of addresses that are the starting seeds of the
crawling process. Not surprisingly, the choice of these initial seed pages is
fundamental to reach quickly the most relevant part of the Web. As seeds
are usually chosen Web portals (e.g., DMOZ, Yahoo!), educational sites (e.g.,
Wikipedia and universities), news and social-network sites, since they contain
pages that point to important and popular resources of the Web.

The algorithm of Figure 6 is not trivial. When a new link U ′ is found in a
crawled page, its address is inserted in Q ready to be processed in the future.
This is done only if the link U ′ is not already present in Durls which means that
its text T (U ′) has not been downloaded yet. Notice that the same link U ′ may
be contained in several pages which are discovered by the crawling algorithm
before that U ′’s content is downloaded. Thus, this check ensures that U ′ will
be downloaded and inserted in Dpages only once.

Obviously, state-of-the-art crawling algorithms are more complex that the
one presented here, and have to include sophisticated functionalities and op-
timizations. One of the most important issues regards the fact that the Web
changes at a so high rate that, as estimated, we have a 30% of renewal every
year. So the crawlers must be usually trained to follow the more rapid varia-
tions (think e.g. to the news sites), and designed to be as fast as possible in
making “one scan of the Web” in order to keep the index of the search engine
as fresh as possible. Moreover, the crawler should reduce the interactions with
the crawled sites as mush as possible, in order to do not congest them with
continuous requests, and it should make use of advanced algorithmic tech-
niques in distributed computing and fault tolerance, in order to ensure that it
will never stop its operations. Therefore, the design and development of an
efficient and effective crawler is much more complicated than what a reader

Web Search 15

could deduct from the algorithm reported in Figure 6. The reader interested in
those algorithmic details may look at the literature reported in Section 6.

We conclude this section by observing that the design of a crawler has to be
optimized with respect to three parameters: the maximum number N of Web
pages that can be managed before its algorithms and data structures are “over-
whelmed” by the size of Durl; the speed S with which the crawler is able to
process pages from the Web (nowadays crawlers reach peaks of thousands of
pages per second); and, finally, the amount of computational resources (CPU,
memory and disk space) used to complete its task. Clearly, the larger are N
and S, the higher is the cost of maintaining the queue Q and the dictionaries
Durl and Dpages. On the other hand, the more efficient is the management of
Q, Durl and Dpages, the lower is the amount of computational resources used
and the consumption of energy. The latter is nowadays an extremely impor-
tant issue given the high number of computers used to implement the modern
search engines.

Crawling Algorithm

• Input: {u1, . . . ,uk} an initial set of addresses of Web pages;
• Output: Durls and Dpages.

1. Insert u1, . . . ,uk into the queue Q;
2. Repeat until Q is non empty
3. Extract Q→ u the next page-address u from Q;
4. If u 6∈ Durls, then
5. Request the file robots.txt from the site of u;
6. If this file allows to access page u, then
7. Request the text T (u) of the page u
8. Insert u→ Durls

9. Insert T (u)→ Dpages

10. Parse T (u), and for any link u′ in T (u)
11. if u′ 6∈ Dpages, add u′→ Q

Fig. 6 A simple crawler using the urls {u1, . . . ,uk} as initial seed set.

4.2 The Web graph in more detail

At this point it is natural to ask how large the Web graph is and what is the struc-
ture of its interconnections, being the effectiveness of the crawling process highly
dependant on these characteristics.

16 Paolo Ferragina and Rossano Venturini

We have already noticed that the Web is huge and rapidly changing. There is,
therefore, no hope that a crawler can collect in Dpages all the existing Web pages;
so it has necessarily resign to obtain only a subset of the Web which must, hope-
fully, be as broader and more relevant as possible. In order to optimize the quality
of the collected pages, the crawler has to perform a visit of the graph which is
inevitably more focused and complex than the one used in Figure 6. For this pur-
pose, the crawler uses a more sophisticated data structure, called priority queue (see
Chapter ??), that replaces the simple queue Q and extracts its elements depending
on a priority assigned to each of them. In our case the elements are Web pages
and the priorities are values related to the relevance of those pages. The higher is
the priority, the sooner the crawler will process the page and download its neigh-
bors. The objective is that of assigning low priority to pages with a lower rele-
vance or that have been already seen, or to pages that are part of a site which is too
large to be collected in its entirety. To model this last case, we take into account
the depth of a page in its site as a measure of its importance. The depth is mea-
sured as the number of forward slashes in its URL-address (for example, the page
http://www.unipi.it/ricerca/index.htm is less deep than the page
http://www.unipi.it/ricerca/dottorati/index.htm, and thus as-
sumed to be more important in that site and hence crawled first). Recent studies have
shown that the depth and the number and quality of the links incoming and outgoing
from a page are effective indicators for the assignment of these priorities.

The structure of the graph significantly influences the behavior of the crawler.
We consider two extreme examples that make this fact more evident. If the graph
was made up of many disconnected components, the seed set of the crawler should
contain at least one address for each of them; if the graph was instead made up of one
(long) chain of pages, the seed set should contain the heading pages of this chain in
order to guarantee that the graph visit traverses most of the Web. In November 1999
a study, now classic, analyzed the structure of a subgraph of the Web of that time
formed by about two hundred million pages. It turned out that this portion of the
Web did not recall the two previous extreme examples, but it consisted of four main
components shown in Figure 7, all having about the same size: a strongly connected
component, denoted SCC and called core,6 a subgraph IN with paths that end up
in pages of SCC, a subgraph OUT with paths that start at SCC, and a number of
tendrils and tubes, namely pages linked in chains that do not pass through SCC
or are completely isolated. These findings were later confirmed by studies carried
out on larger and more recent samples of the Web: they actually showed not only
that the sampled graph has always the form indicated in Figure 7 and its components
have about the same sizes, but also that the graph structure has some fractal property
which leads any sufficiently large subgraph to have the same structure of its original
containing graph. These surprising results are nowadays justified by mathematical
studies on the laws that regulate the growth of the networks.

This structure of the Web graph suggests to insert in the seed set of the crawler
pages chosen from IN or SCC. The problem is how to efficiently determine candi-

6 Recall that a graph is strongly connected if and only if there exists a path that connects any pair
of its nodes.

Web Search 17

Fig. 7 The characteristic “bow” shape of the Web graph (1999). The subgraphs SCC, IN, OUT,
tendrils and tubes, consists each of about one quarter of the nodes in the total graph.

dates from these two sets of nodes, before that a visit of the Web graph is performed.
If candidates are chosen randomly from the Web, then we would have a probability
1/2 that each selected page is either in IN or in SCC, given that each of these sets
is 1/4 of the total graph. Thus, it would be enough to choose a small number of
candidates to be reasonably sure to start the crawling from IN or SCC. Unfortu-
nately, this strategy is difficult to be implemented because it is neither available a
list of all the addresses of existing pages nor it is clear how to perform an uniform
sampling without this list. So the typical choice of existing crawlers is the simple
one sketched above, and consists of taking as seeds the portals and any other sites
that can lead to good pages of the Web and probably lie in IN or SCC.

4.3 Indexing and searching

The pages collected by the crawler are subsequently processed by an impressive
number of algorithms that extract from them a variegate set of information that are
stored in proper data structures, called indexes, allowing to efficiently answer the
user queries. Entire subnets of computers are dedicated to this significant task in
order to perform it in a reasonable amount of time.

Hereafter we will talk about documents, instead of pages, and with this term we
will refer to the content of a Web page p plus some other information collected dur-
ing the crawling process about p itself. An example of such additional information
is the, so-called, anchor text, which corresponds to a portion of text surrounding a
link to p in another page. Given that page p may have many incoming links, page p

18 Paolo Ferragina and Rossano Venturini

may have many anchor texts written by authors which are possibly different of the
author of p. An anchor text may be therefore a particularly reliable and important
piece of information because, presumably, it describes succinctly the content of p.
Not surprisingly, search engines give great importance to anchor texts and use them
to extend the content of Web pages, because they typically use a different set of
words to describe their content and thus allow to extend the results of a query.

For example, let us assume that a page p contains pictures of various species
of insects but does not contain the word “insect(s)” in its body, or even does not
contain any text at all consisting just of that picture. Nevertheless it is possible that a
passionate entomologist wrote its own Web page with a link to page p and annotated
this link with the phrase “beautiful images of insects”. This piece of text is an anchor
for p, so the words in “beautiful images of insects” are added to those found in p
and are considered highly characteristic for this page. Therefore a query ”insects”
would find p even if it does not contain that word.

Unfortunately, as often happens in the Web, a valuable use of an information
is followed by a malicious one of it. In 1999 the first result reported by Google
for the query “more evil than Satan” was the homepage of Microsoft. This phe-
nomenon was eventually the result of the creation of many pages containing links
to the homepage of Microsoft with anchor text “more evil than Satan”. This awk-
ward situation was resolved by Google in few days, but a similar accident happened
again in November 2003 with the query “miserable failure” and the page returned
by Google as first result was the homepage of the former U.S. President George W.
Bush. This type of attack is nowadays called Google bombing, and it was repeated
many other times in different languages other than English.

Once the search engine has crawled a huge set of documents, it analyzes them to
extract the terms contained therein and inserts these terms in a dictionary. Check-
ing the presence of query terms in this dictionary is the first step performed dur-
ing a query resolution. We observe that a query term may be not just a word, but
any sequence of alphanumeric characters and punctuations because it may repre-
sent telephone numbers (911 or 1-800-237-0027), abbreviations (e-ticket), models
of our favorite devices (N95, B52, Z4), codes of University courses (AA006), and so
on. We cannot enter into the details of efficient implementations of dictionary data
structures, but we observe here that is unfeasible to implement keyword searches
through a linear scan of the dictionary, because this would take too much time.7 It
is, thus, crucial to have appropriate algorithms and data structures to manage effi-
ciently, both in time and space, this numerous and long sequences of characters. One
approach could be the dichotomous search algorithm presented in Figure ??; more
efficient solutions are known, mainly based on tries and hash tables, so we refer the
reader to the literature mentioned at the end of this chapter.

7 Several experimental results have shown that the number n of distinct terms in a text T follows
a mathematical law that has the form n = k|T |α , with k equal to few tens, |T | being the number of
words of the text, and α approximately equal to 1/2. The actual size of the Web indexed by search
engines is tens of billions of pages, each with at least few thousands terms, from which we derive
n > 10×106 = 107. Thus, the dictionary can contain tens of millions of distinct terms, each having
an arbitrary length.

Web Search 19

The dictionary is just a part of the mass of information extracted by a search en-
gine from the crawled documents, during the so called indexing phase. The overall
result of this phase is the construction of a data structure, called inverted list, which
is the backbone of the algorithms answering the user queries. An inverted list is
formed by three main parts: the above dictionary of terms, one list of occurrences
per term (called posting list), plus some additional information indicating the im-
portance of each of these occurrences (to be deployed in the subsequent ranking
phase). The word “inverted” refers to the fact that term occurrences are not sorted
according to their position in the text, but according to the alphabetic ordering of
the terms to which they refer. So inverted lists remind the classic glossary present at
the end of books, here extended to represent occurrences of all terms present into a
collection of documents.

The posting lists are stored concatenated in a single big array kept on memory.
The urls of the indexed documents are placed in another table and are succinctly
identified by integers, called docIDs, which have been assigned during the crawl-
ing process. The dictionary of terms is also stored in a table which contains some
satellite information and the pointers to the posting lists. Of course, the storage of
all terms in the documents impacts on the total space required by the index. Time
ago, software engineers preferred to restrict the indexed terms to only the most sig-
nificant ones; nowadays, search engines index essentially all terms extracted from
the parsed documents because advances in data compression allowed to squeeze
terms and docIDs in reduced space and still guarantee fast query responses. Actu-
ally, search engines store also the positions of all term occurrences in each indexed
document because this information is used to support phrase searches and to esti-
mate the relevance of a document with respect to a query, based on the distance
between the query terms in that document. It is evident that such a refined set of in-
formation has huge size and thus necessitates sophisticated compression techniques.
The literature reports several studies about this issue, nonetheless the actual com-
pressors adopted by commercial search engines are mostly unknown.

Figure 8 illustrates the structure of an inverted list. Each term t (“football” in
the example) has associated a sub-array of P which stores, in order, the docID of a
document d containing term t (the first document in the example is 50), the number
of times that t occurs in d (1 in the example), the position in d of each of these term
occurrences (position 5 in the example). The posting list of t ends with a terminator
#. From the figure we notice that the term t = football is contained in document 50
at one single position, i.e., 5; in document 100 the term occurs in three positions (15,
17 and 25); in document 500 it occurs in two positions (15 and 20). It is convenient
to store the docIDs of each posting list in increasing order (50, 100, 500 in the
example), because this reduces the space occupancy and the time required to solve
future queries. In this case each docID can be stored as the difference with respect to
its preceding docID. The same method can be used to succinctly store the positions
of the occurrences of term t in document d. So, in the posting list of Figure 8, we
can represent the sequence of docIDs 50 100 500 as 50 50 400: the first 50 is exactly
represented, since it has no preceding docID, whereas we have 100− 50 = 50 and

20 Paolo Ferragina and Rossano Venturini

D (Dictionary) U (Urls)
Term Post docID Web Address

.
foot . . . 50 www.nfl.com
football 90 . . .
footing . . . 100 www.bbc.co.uk/football
footnote

. . . 500 www.afl.com.au
. . .

P (Posting Lists)
i 1 2 3 90 91 92 93 94
P 50 1 5 100 3 15 17 500 2 15 20 #

Fig. 8 Indexing by using inverted lists. From the dictionary D we know that the list of documents
containing the term “football” starts at position 90 in the array P of posting lists. The term “foot-
ball” is contained in the web pages whose docID is 50, 100, 500, and whose url-address is reported
in table U .

500− 100 = 400 for the next two docIDs. By inserting also the occurrences of the
term, encoded similarly, the compressed posting-list of the term “football” becomes:

50 1 5 50 3 15 2 8 400 2 15 5 #.

The original posting list is easily re-obtained from the compressed one by a sim-
ple sequence of additions. We are speaking about “compression” because the ob-
tained numbers are smaller than the original ones, so the use of appropriate integer
coders that produce shorter bit sequences for smaller integers, can squeeze the total
space usage.

As we anticipated above, the order of the docIDs in the posting lists is important
also to answer efficiently queries that consist of more than one keywords. Imagine
that a user has formulated a query with two keywords t1 and t2 (the extension to
more keywords is immediate). Solving this query consists of retrieving the posting
lists L1 and L2 of docIDs referring to t1 and t2, respectively. As an example take L1 =
10 15 25 35 50 . . .# and L2 = 15 16 31 35 70 . . .#, where we are assuming to have
already decompressed the lists. Now the problem is to identify the documents that
contain both t1 and t2 (namely, the elements in common to both the two posting lists).
The algorithm is deceptively simple and elegant, it consists of scanning L1 and L2
from left to right comparing at each step a pair of docIDs from the two lists. Say L1[i]
and L2[j] are the two docIDs currently compared, initially i = j = 1. If L1[i]< L2[j]
the iterator i is incremented, if L1[i]> L2[j] the iterator j is incremented, otherwise
L1[i] = L2[j] and thus a common docID is found and both iterators are incremented.
If we let n1 and n2 be the number of elements in the two lists, we can realize that this
algorithm requires time proportional to n1+n2. A each step, indeed, we execute one
comparison and advance at least one iterator. This cost is significantly smaller than
the one required to compare each element of L1 against all elements of L2 (which is

Web Search 21

n1×n2), as it would happen if the lists would be not sorted. Being the values of n1
and n2 in the order of some hundreds of thousands (or even more for the common
terms), the latter algorithm would be too slow to be adopted in the context of a
search engine answering millions of queries per day.

4.4 Evaluating the relevance of a page

Since user queries consist of a few keywords, the number of pages containing these
keywords is usually huge. It is, thus, vital that a search engine sorts these pages
and reports the most “relevant” ones in the top positions to ease their browsing
by the user. However, an accurate characterization of what is the “relevance” of a
Web page has a high degree of arbitrariness. Nonetheless this is probably the most
important step in modern search engines, so that a bunch of sophisticated algorithms
have been proposed to efficiently quantify that relevance. This step goes under the
name of ranking, and its solution represents the main point of distinction between
the major known search engines. It is indeed not exaggerated to affirm that one of
the key ingredients that enabled Google to achieve its enormous popularity was its
algorithm for ranking the pages shown to the user, called PageRank (see below for
details).8

Nowadays the relevance of a page p is measured by combining several param-
eters: such as the type and distribution of the occurrences of the query-terms in p,
the position of p in the Web graph and its interconnections with other pages, the
frequency with which Web users visit p as a result of a user query, and many other
factors, not all revealed by search engines. In particular, it is known that Google
uses about one hundred parameters! We will present below the two most important
measures of relevance for Web pages known in the literature, prefacing them with
some considerations that will allow us to understand their inspiring motivations.

It is natural to think that the relevance of a term t for a document d depends on
the frequency T F [t,d] of occurrence of t in d (called Term Frequency), thus, on the
weight that the author of d has assigned to t by repeating this term several times
in the document. However, considering only the frequency may be misleading be-
cause, for example, the articles and the prepositions of a language are frequent in
texts without characterizing them in any way. Thus, it is necessary to introduce a
correction factor which takes into account also the discriminative power of a term
which is very low for secondary linguistic elements. However, the situation is more
complicated, since a term like “insect” may be discriminant or not depending on the
collection of documents in its wholeness: “insect” is unusual and probably relevant
for a collection of Computer Science texts, whereas it is obvious and therefore ir-
relevant for a collection of Entomology texts. It is therefore crucial to consider the
rarity of a term in the collection by measuring the ratio between the number ND of
documents in the collection and the number N[t] of documents containing the term t.

8 Google trusts so much in its ranking algorithm that it still shows in its homepage the button “I’m
feeling lucky” that immediately sends the user to first ranked page among the results of her query.

22 Paolo Ferragina and Rossano Venturini

The rarer is the term t, the larger is the ratio ND/N[t] and, thus, t is potentially more
discriminative for the documents in which it is contained. Usually this ratio is not
directly used to estimate the discrimination level of t, but it is mitigated by apply-
ing the logarithmic function. This defines the parameter IDF [t] = log2(ND/N[t])
which is named Inverse Document Frequency. In this way, the measure results in
being not too much sensitive to small variations in the value of N[t]. On the other
hand, it is not always true that a rare word is very relevant for the document d.
For example, the presence of the word may be caused by a typing error. Therefore,
term frequency and inverse document frequency are combined to form the so-called
T F − IDF measure of relevance of a term in a document. This combination was
proposed in the late sixties and is given by the formula: W [t,d] = T F [t,d]× IDF [t].
Notice that if t is, say, an article, it appears frequently in almost all the documents
in the collection. Thus, its ratio ND/N[t] is very close to the value 1 and its loga-
rithm is close to the value 0, thus forcing a small value of W [t,d]. Similarly, a term
typed incorrectly will have a small value for T F , thus forcing again a small value
of W [t,d]. In both cases then the term relevance will be correctly evaluated as not
significant. Numerous linguistic studies have corroborated the empirical validity of
the T F− IDF weight which is now at the basis of any information retrieval system.

The first generation search engines, such as Altavista, adopted the T F − IDF
weight as a primary parameter to establish the importance of a Web page and sorted
the query results accordingly. This approach was effective at the time in which the
Web content was mainly restricted to government agencies and universities with
authoritative pages. In the mid-nineties the Web was opened to the entire world
and started to become a huge “shopping bazaar”, with pages composed without any
control in their content. All this led some companies to build “rigged” pages, namely
pages that contained in addition to their commercial offerings also a set of properly
concealed keywords that frequently appeared in the users queries. The net aim was
to promote the relevance of these pages even in other contexts. Thus, it was evident
that the textual T F− IDF weight could not be used alone to assess the importance
of a page, but it was necessary to take into account other factors specific to the Web
graph.

Since the mid nineties several proposals spurred from both academia and indus-
try with the goal of exploiting the links between pages as a vote expressed by the
author of a page p to the pages linked by p. Among these proposals, two rank-
ing techniques gave rise to the so-called second generation search engines: the first
technique, called PageRank, was introduced by the founders of Google, Larry Page
and Sergey Brin, and the second technique, called HITS (Hyperlink Induced Topic
Search), was introduced by Jon Kleinberg when he was at IBM. In PageRank each
page is assigned with a relevance which is independent of its textual content, and
thus of the user query, but depends only on the Web-graph topology. In HITS each
page is assigned with two relevance scores which depend on the topology of a sub-
graph selected according to the user query. Although very different, PageRank and
HITS have two common features: they are defined recursively, so the relevance of a
page is computed from the relevance of the pages that are linked to it; they involve
computations on very large matrices derived from the structure of the Web graph,

Web Search 23

so they need sophisticated mathematical tools (the reader less familiar with linear
algebra can jump to Section 4.6).

4.5 Two ranking algorithms: PageRank and HITS

PageRank measures the relevance of a page p according to its “popularity” in the
Web graph, which in turn is computed as a function of the number and origin of
links that point to p. In mathematical terms, the popularity R(p) is computed as the
probability that a user will reach page p by randomly walking over the Web graph,
traversing at each step one of the links outgoing from the currently visited page,
each selected with equal probability. Let p1, . . . , pk be the pages having at least one
link to p, and let N(pi) be the number of pages linked by pi (i.e., the number of
outgoing links from pi in the Web graph). The basic formula for the calculation of
R(p) is the following:

R(p) = ∑
i=1...k

(R(pi)/N(pi)). (2)

Notice that only the pages having a link to p directly contribute to the value of
R(p), and moreover, this contribution is proportional to the relevance of these pages
scaled by their number of outgoing links. The ratio underlying this formula is that,
if a page pi with a certain relevance R(pi) points to p, it increases the popularity of
p, but this increment should be equally shared among all the pages pi points to.

It is evident that the formula is recursive, and its computation presents some
technical problems because it requires to specify the initial value of R(p), for all
pages p, and to indicate how to deal with pages that do not have either incoming
or outgoing edges. To address these two issues, we consider a slightly different
formula that introduces a correction factor taking into account the possibility that a
user leaves the link-traversal and jumps to a randomly chosen page in the Web graph.
This change allows the random walker to do not remain stacked into a page that has
no outgoing links, or to reach a page even if it has no incoming links. Therefore, the
formula becomes:

R(p) = d ∑
i=1...k

(R(pi)/N(pi))+(1−d)/n, (3)

where n is the number of pages collected by the crawler and indexed by the
search engine, and d is the probability of continuing in the link-traversals whereas
(1− d) is the complement probability of jumping to a randomly chosen page in
the crawled graph. In the extreme case that d = 0, all pages would obtain the same
relevance R(p) = 1/n, while in the case of d = 1 the relevance R(p) would entirely
depend on the structure of the Web graph and it would show the problems mentioned
above. Experiments have suggested to take d = 0.85 which actually attributes more
importance to the relevance that emerges from the structure of the Web.

24 Paolo Ferragina and Rossano Venturini

The real computation of R(p), over all pages p, is performed by resorting to
matrix operations. We have already seen that the Web graph may be represented by
a matrix W whose powers W k indicate the number of paths of length k between pair
of nodes in the graph (see box Adjacency matrix and paths of a graph). For this
reason, we introduce a matrix Z of size n× n, whose elements have value Z[i, j] =
d×W [i, j] + (1− d)/n. The value Z[i, j] represents the probability that a random
walker traverses the link from pi to p j, while the matrix-powers Zk represent the
probability that paths of length k are traversed by that random walker.

We can represent also the relevance of the pages in vector form: R[i] is the rele-
vance of page pi; and use the notation Rk[i] to denote the relevance of page pi after
k iterations of the algorithm. At this point we can compute the configurations for all
Rk as:

R1 = R0×S,R2 = R1×Z = R0×Z2, . . . ,Rk = R0×Zk. (4)

This formula is related to a deep mathematical theory known as Markov’s chains,
which is however too difficult to be discussed here: we just notice that this theory
guarantees that the limit value for Rk[i], when k→ ∞, equals to the probability that
a random walker traverses page pi, and it also guarantees that this limit value does
not depend on the initial conditions R0, which can then be assigned arbitrarily.

Obviously, the calculation indicated in (4) is not trivial due to the size of the in-
volved matrices, which are indeed huge since they consist nowadays of billion pages
and hence have a total size of at least 25×1020 elements! However, the computation
of Rk is simplified by the fact that we do not need to care about the exact values of
its elements, since it suffices to determine only their order: if R(p1) > R(p2), then
page p1 is more important than page p2. Therefore, we can stop the above computa-
tion whenever the values of Rk’s components are sufficiently stable and their order
can be determined with some certainty . Experimental tests showed that about one
hundred of iterations suffice.

We conclude the discussion on PageRank by recalling that it induces an ordering
among pages which is a function only of the graph structure and thus it is indepen-
dent on the user query and pages content. Therefore, PageRank can be calculated
at the indexing phase, and deployed at query time in order to sort the result pages
returned for a user query. Many details on the current version of PageRank are un-
known, but numerous anecdotes suggest that Google combines this method with
T F− IDF and a hundred other minor parameters extracted automatically or manu-
ally from the Web. 9

Let us study now the HITS algorithm, which is potentially more interesting than
PageRank because it is query dependent. For a given query q, it retrieves first the
set P of Web pages that contain all query terms, and then it adds those pages that
point to or are pointed by pages in P. The resulting collection is called base set and

9 In a recent interview, Udi Manber (VP Engineering at Google) has revealed that some of these
parameters depend on the language (ability to handle with synonyms, diacritics, typos, etc.), time
(some pages are interesting for a query only if they are fresh), templates (extracted from the “his-
tory” of the queries raised in the past by the same user or by her navigation of the Web).

Web Search 25

contains pages that are related to q either directly (because they contain the query
terms) or indirectly (because they are connected to a page in P). The situation is
shown in Figure 9a.

base

P

(a)

p

z1

z3

z2
y2

y1

y4

y3

(b)

Fig. 9 (a) The set P of pages that contain the terms of a query q, and its base set; (b) The pages zi
e yi that contribute to determine respectively the authority and the hubness score of a page p.

A (sub-)graph is then built by setting the pages in the base set as nodes and the
links between these pages as edges of the (sub-)graph. For each node, we calculate
two measures of relevance, called authority and hubness scores. The first score,
denoted with A(p), measures the authoritativeness of page p relatively to the query
q; the second score, denoted with H(p), measures how much the p’s content is a
good survey for the query q (i.e., a directory that points to many authoritative pages
on the subject). This way, a page p having a large value of A(p) is an authority for
q, while a large value of H(p) implies that p is a hub for q. Computing these two
measures follows their intuitive meanings: a page p is a good hub (and, thus, the
value H(p) is large) as p points to many authoritative pages; a page p is a good
authority (and, hence, the value of A(p) is large) as more good hubs point to p. We
can formalize the previous insights with the following two formulas:

A(p) = ∑i=1...k H(zi);
H(p) = ∑i=1...k A(yi),

(5)

where z1, . . . ,zk denote the pages that point to p and y1, . . . ,yh denote the pages
pointed by p (see Figure 9b). Similarly to what was done for the PageRank, we can
compute the two scores by resorting matrix computations. We then define the adja-
cency matrix B of the graph induced by the base set, and we compute the vectors A
and H with the formulas (5) via matrix-computations involving B. These computa-
tions are similar to the ones performed for PageRank with two essential differences.
The first concerns with the size of the matrices, which is now moderate since B
usually consists of only few thousands of nodes. The second is that the calculation
has to be executed on-the-fly at query time because B is not known in advance and

26 Paolo Ferragina and Rossano Venturini

thus the values of A and H cannot be precalculated. This represents a strong limita-
tion for the application of this method on the Web, and in fact HITS was originally
proposed for search engines operating on small collections of documents and for
a limited number of users (e.g., on a company intranet). Another limitation of this
approach resides in its small robustness to spam (see Section 4.6), this is the reason
why in the literature this issue got some attention with many interesting proposals.

4.6 On other search-engine functionalities

Among the other operations that a search engine is called to perform, the presenta-
tion to a user of the results of her query has great importance. Search engines show,
for each result page, a short textual fragment, known as snippet, which represents
the context surrounding the query terms in that page. Other search engines offer also
the possibility of viewing a copy of a result page as it was retrieved by the crawler.
This is particularly useful whenever the link returned for a result page is broken, due
to the fact that this page was removed from the Web since its crawling. The copy
of this page can thus be useful to retrieve the indexed page, even if it is no longer
present in the Web.

We emphasize that the results of search engines are sometimes corrupted with
sophisticated techniques, that fraudulently increase the relevance of certain pages to
let them appear among the first results for a user query. This is known as spamming
and consists of constructing proper subgraphs of the Web that artificially increase
the relevance of the fraudulent pages. Other forms of spamming are more subtle.
One technique, known as cloaking, is adopted by fraudulent servers to mask the real
content of their pages and thus make them the result of queries which are not related
with their content. The cloaking idea is making servers to return to the search engine
some good content taken, for example, from Wikipedia at each crawling request. If
the artifact is relevant for a user query, the search engine will then display a snippet
appropriate and interesting for the user and referring to a Wikipedia page. However,
the page that appears to the user after clicking on the link shown in the snippet is
totally different and possibly contains irrelevant (if not offensive) content.

Certainly, an exhaustive discussion on spamming methods cannot be addressed
in this short chapter. However, it is interesting to notice that spamming has a large
extension as it is estimated that more than 20% of Web pages consist of artifacts
that endanger the reputation and usefulness of search engines. In all their phases,
consequently, search engines adopt sophisticate anti-spam algorithms to avoid the
gathering, the indexing and the reporting of these artifacts. As for all the previous
problems, the solutions currently employed by commercial search engines are only
partially revealed, especially to make the job of spammers more difficult.

We finally remark that the goal of search engines is moving toward the identi-
fication of user intentions hidden behind the purely syntactic composition of their
query. This explains the proliferation of different methods that: cluster the query
results on the screen (started by the search engine Vivisimo.com), that integrate dif-

Web Search 27

ferent sources of information (news, Wikipedia, images, videos, blogs, shopping
products, and so on), and that possibly provide suggestions for the composition of
refined queries (Google Suggest and Yahoo! Search Suggest are the most notable
examples). In addition search engines have to tackle the fact that users are moving
from being active agents in the search process to becoming more and more passive
spectators: advertising, suggestions, weather forecasts, friends on-line, news, and so
on, are all information that we probably set as interesting in some personal record
or alerts, or that the search engines have in someway inferred as interesting for us
given our Web life. All of these information already appear, or will appear more and
more frequently in the near future on our screens as a result of a query, or on our
email readers, our personal pages on iGoogle or MyYahoo!, or even on applications
in our smartphones, although actually nobody has specifically asked us for.

Many other features of the search engines would deserve to be carefully studied
and discussed. An interested reader can find many inspiring references in the review
of the literature at the end of this chapter.

5 Towards Semantic Searches

Although Web search-engines are pretty young, researchers and software engineers
achieved during the last two decades significant improvements in their performance.
These achievements identified many other interesting avenues of further research
which should lead in the near future to implement more efficient and effective
information-retrieval tools. In fact, although the algorithms underlying the modern
search engines are much sophisticated, their use is pretty much restricted to retrieve
documents by keywords. But, clearly, users aim for much more!

Keyword-based searches impose users to abstract their needs via a (usually short)
sequence of terms, this process is difficult and thus error prone for most of the Web
users, who are unskilled. It would be surely more powerful to let users specify their
needs via natural-language queries: such as “Will it rain in Rome within the next
three hours?”, and get more precise answers than just an ordered list of pages about
Rome, or a Web page about the weather in Rome: such as “yes, it will rain on the
coast”. Interestingly enough this is not just a matter of ranking, we are actually ask-
ing the search engine to understand the semantics underlying the user query and the
content of the indexed pages. Some interesting research is actually going on, trying
to address these issues by adding meta-data to the pages in order to describe bet-
ter their content (known as Semantic Web, and Resource Description Framework),
or by adding some structure to pages in order to simplify the automatic extraction
of useful information from them (known as Open Data), or by developing power-
ful Natural Language Processing techniques that better interpret short phrases up to
long documents. This last research line has led to some interesting results that we
will sketch briefly in this final part of the chapter.

The typical IR-approach to indexing, clustering, classification, mining and re-
trieval of Web pages is the one based on the so called bag-of-words paradigm. It

28 Paolo Ferragina and Rossano Venturini

eventually transforms a document into an array of terms, possibly weighted with TF-
IDF scores (see above), and then represents that array via a highly-dimensional point
in a Euclidean space. This representation is purely syntactical and un-structured, in
the sense that different terms lead to different and independent dimensions. Co-
occurrence detection and other processing steps have been thus proposed to identify
the existence of synonymy relations, but yet everyone is aware of the limitations of
this approach especially in the expanding context of short (and thus poorly com-
posed) documents, such as the snippets of search-engine results, the tweets of a
Twitter channel, the items of a news feed, the posts of a blog, etc.

A good deal of recent work is attempting to go beyond this paradigm by enriching
the input document with additional structured annotations whose goal is to provide
a contextualization of the document in order to improve its subsequent “automatic
interpretation” by means of algorithms. This general idea has been declined in the
literature by identifying in the document short-and-meaningful sequences of terms
(aka entities) which are then connected to unambiguous topics drawn from a catalog.
The catalog can be formed by either a small set of specifically recognized types,
most often People and Locations (aka named entities), or it can consists of millions
of generic entities drawn from a large knowledge base, such as Wikipedia. This
latter catalog is ever-expanding and currently offers the best trade-off between a
catalog with a rigorous structure but with low coverage (like WordNet or CYC),
and a larger catalog with wide coverage but unstructured and noised content (like
the whole Web).

To understand how this annotation works, let us consider the following short
news: “Diego Maradona won against Mexico”. The goal of the annotation is to de-
tect “Diego Maradona” and “Mexico” as significant entities, and then to hyper-link
them with the Wikipedia pages which deal with the two topics: the ex Argentina’s
coach and the football team of Mexico. The annotator uses as entities the anchor
texts which occur in Wikipedia pages, and as topics for an entity the (possibly
many) pages pointed in Wikipedia by it— e.g. “Mexico” points to 154 different
pages in Wikipedia. The annotator then selects among the potentially many avail-
able mappings (entity-to-topic) the most pertinent one by finding a collective agree-
ment among all entities via proper scoring functions. There exist nowadays several
such tools10 that implement these algorithmic ideas and have been successfully used
to enhance the performance of classic IR-tools in classification and clustering appli-
cations. Current annotators use about 8 millions of entities and 3 millions of topics.

We believe that this novel annotating technology has implications which go far
beyond the enrichment of a document with explanatory links. Its most interesting
benefit is the structured knowledge attached to textual fragments that leverages not
only a bag of topics but also the powerful semantic network defined by the Wikipedia
links among them. This automatic tagging of texts mimics and automates what Web
users have done with the advent of Web 2.0 over various kinds of digital objects
such as pages, images, music, videos, thus creating a new parallel language, named
“folksonomy”. This practice has made famous several sites, such as: Flickr, Techno-

10 See e.g. TAGME (available at tagme.di.unipi.it), and WIKIPEDIA MINER (available at
http://wikipedia-miner.cms.waikato.ac.nz/).

Web Search 29

rati, Del.icio.us, Panoramio, CiteULike, Last.fm, etc. Topic annotators could bring
this tagging process to the scale of the Web, thus improving the classification, clus-
tering, mining and search of Web pages which then could be driven by topics rather
than keywords. The advantage would be the efficient and effective resolution of
ambiguity and polysemy issues which often occur when operating with the, purely
syntactic, bag-of-words paradigm.

Another approach to enhance the mining of Web pages and queries consists of
extracting information from query-logs, namely the massive source of queries ex-
ecuted by Web users and their selected results (hence, pages). Let us assume that
two queries q1 and q2 have been issued by some users and that they have then
clicked on the same result page p. This probably means that p’s content has to
do with those two queries, so that they can be deployed to extend p’s content
as much as we did with anchors texts of links pointing to p in the previous sec-
tions. Similarly, we can deduct that queries q1 and q2 are probably correlated and
thus one of them could be suggested to a user as a refinement of the other query.
As an example, Google returns for the two queries “iTunes” and “iPod” the page
http://www.apple.com/itunes/ as the first result. So we expect that
many users will click on that link, thus inferring a semantic relation between these
two queries.

There are also cases in which the same query q might lead users to click on many
different page results: this might be an indication that either those pages are similar
or that q is polysemous. This second case is particularly important to be detected by
search engines because they can then choose to adopt different visualization forms
for the query results in order to highlight the various facets of the issued query
and/or diversify the top answers with samples of pertinent topics. As an example,
let us consider the query “eclipse”: this could be issued by a user interested in as-
tronomical events, or in the software development framework, or in a plane model
(Eclipse 500), or in a Mitsubishi car. So the query-log will contain many pages
which are semantically connected to the query “eclipse”, all of them pertinent with
its various meanings.

It is therefore clear at this point that the analysis of all queries issued to a search
engine and of the clicks performed by their issuing users, can lead to construct a
huge graph, called query-log graph, which contains an impressive amount of se-
mantic information both about queries and pages. The mining of the structure and
content of this graph allows to extract impressive amounts of useful knowledge
about the “folksonomy” of web searches, about the community of the Web users
and their interests, about the relevant pages frequently visited by those users and
their semantic relations. Of course, few clicks and searches are error prone, but the
massive amounts of issued queries and user clicks made everyday by the Web com-
munity make the information extractable from this graph pretty much robust and
scalable to an impressive amount of topics and Web pages. It is evident that we are
not yet at the full understanding of the content of a page, neither we are always able
to disambiguate a query or fully understand the user intent behind it, but we are fast
approaching those issues!

30 Paolo Ferragina and Rossano Venturini

6 Bibliographic Notes

Web search is a complex argument which was worth of thousands of scientific pa-
pers in the last three decades. In this section we report the books and some scientific
articles that have signed the history of this fascinating and rapidly evolving field
of research. These references offer a good and accessible treatment of the various
topics dealt with by this chapter.

The book written by Witten et al. [14] contains a general study of the characteris-
tics of search engines and implications on their use. It is a very clear text and repre-
sents a great source of knowledge that does not enter into much algorithmic details.
Two recent books by Manning et al. [11], and by Baeza-Yates and Ribeiro-Neto
[3] describe the basics of Information Retrieval, whereas the book by Chakrabarti
[6] provides a complete introduction on the gathering and analysis of collections of
web pages. Finally, the book by Witten et al. [15] is a fundamental reference for
what concerns the organization and the processing of massive data collections (not
necessarily formed by web pages).

As far as papers are concerned, we mention the publications by Hawking [9] and
Lopez-Ortiz [10] which offer two ample and clearly written surveys on the algorith-
mic structure of search engines. On the other hand the paper by Zobel et al. [16]
concentrates on indexing data structures, describing in much detail Inverted Lists.
Two historical papers are the ones published by Broder et al. [5] on the analysis of
the Web graph, and by Brin and Page [4] on PageRank thus laying down the seeds
for Google’s epoch.

As far as Web tools are concerned, we point out the papers by Fetterly [8] who
deals with spamming and adversarial techniques to cheat crawlers, by Baeza-Yates
et al. [2] who describe the scenario of semantic search engines, and by Silvestri
[13] who surveys the use of query-logs in many IR applications. Finally we men-
tion the papers by Ferragina et al. [7, 12] which review the literature about “topic
annotators” and their use in search, classification and clustering of documents. We
conclude this chapter by pointing out to the readers the Google’s blog by Alpert et
al. [1] in which these engineers claimed that Google crawled and indexed in July
2008 about one trillion pages.

Acknowledgements We would like to thank Fabrizio Luccio who contributed to the writing of
the Italian version of this Chapter for Mondadori.

References

1. J. Alpert and N. Hajaj. We knew the web was big. Official Google Blog, July 2008.
2. R. Baeza-Yates, M. Ciaramita, P. Mika, and H. Zaragoza. Towards semantic search. In Procs

of the 13th International Conference on Applications of Natural Language to Information
Systems (NLDB), Lecture Notes in Computer Science 5039, pages 4–11, 2008.

3. R. Baeza-Yates and B. Ribeiro-Neto. Modern information retrieval: the concepts and tech-
nology behind search. Pearson Education Ltd., second edition, 2011.

Web Search 31

4. S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine. Computer
Networks, 30(1-7):107–117, 1998.

5. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and
J. Wiener. Graph structure in the Web. Computer Networks, 33(1-6):309–320, 2000.

6. S. Chakrabarti. Mining the Web: Discovering knowledge from hypertext data. Morgan Kauf-
mann, 2003.

7. P. Ferragina and U. Scaiella. Fast and accurate annotation of short texts with Wikipedia pages.
IEEE Software, 29(1):70–75, 2012.

8. D. Fetterly. Adversarial information retrieval: The manipulation of Web content. ACM Com-
puting Reviews, July 2007.

9. D. Hawking. Web search engines: Part 1. IEEE Computer, 39(6):86–88, 2006.
10. A. Lopez-Ortiz. Algorithmic foundations of the Internet. ACM SIGACT News, 36(2):1–21,

2005.
11. C. Manning, P. Raghavan, and H. Schutze. Introduction to information retrieval. Cambridge

University Press, 2008.
12. U. Scaiella, P. Ferragina, A. Marino, and M. Ciaramita. Topical clustering of search results.

In Procs of the 5th International Conference on Web Search and Data Mining (WSDM), pages
223–232, 2012.

13. F. Silvestri. Mining query logs: Turning search usage data into knowledge, volume 4 of
Foundations and Trends in Information Retrieval. NowPublisher, 2010.

14. I. Witten, M. Gori, and T. Numerico. Web dragons: Inside the myths of search engine technol-
ogy. Series in Multimedia Information and Systems. Morgan Kaufmann, 2006.

15. I. Witten, A. Moffat, and T. Bell. Managing gigabytes: Compressing and indexing documents
and images. Morgan Kaufmann, 1999.

16. J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing Surveys,
38(2):1–56, 2006.

