
Bicriteria data compression: efficient and usable?

Andrea Farruggia, Paolo Ferragina, and Rossano Venturini

Dipartimento di Informatica, University of Pisa, Pisa, Italy
{farruggi,ferragina,rossano}@di.unipi.it

Abstract Lempel-Ziv’s LZ77 algorithm is the de facto choice for com-
pressing massive datasets (see e.g., Snappy in BigTable, Lz4 in Cassandra)
because its algorithmic structure is flexible enough to guarantee very
fast decompression speed at reasonable compressed-space occupancy.
Recent theoretical results have shown how to design a bit-optimal LZ77-
compressor which minimizes the compress size and how to deploy it in
order to design a bicriteria data compressor, namely an LZ77-compressor
which trades compressed-space occupancy versus its decompression time
in a smoothed and principled way. Preliminary experiments were promis-
ing but raised many algorithmic and engineering questions which have to
be addressed in order to turn these algorithmic results into an effective
and practical tool. In this paper we address these issues by first designing
a novel bit-optimal LZ77-compressor which is simple, cache-aware and
asymptotically optimal. We benchmark our approach by investigating
several algorithmic and implementation issues over many dataset types
and sizes, and against an ample class of classic (LZ-based, PPM-based
and BWT-based) as well as engineered compressors (Snappy, Lz4, and
Lzma2). We conclude noticing how our novel bicriteria LZ77-compressor
improves the state-of-the-art of fast (de)compressors Snappy and Lz4.

1 Introduction

The design of high-performing distributed storage systems — such as BigTable by
Google [6], Cassandra by Facebook [3], Hadoop by Apache — requires the design
of lossless data compressors which achieve effective compression ratio and very
efficient decompression speed. The scientific literature abounds of solutions for
this problem, named “compress once, decompress many times”, but compressors
running behind those large-scale storage systems are highly engineered solutions
which only merely resemble the scientific results from which they are derived. The
reason relies in the fact that theoretically efficient compressors are designed and
analyzed in the RAM model, while their performance in practice is significantly
conditioned by the numerous cache/IO misses induced by their decompression
algorithms. This poor behavior is most prominent in the BWT-based compressors,
such as Bzip2 and its derivatives [1, 5], and it is not negligible in the LZ-based
approaches (dating back to [19,20]).

? The Research was partially supported by the MIUR PRIN grant ARS-Technomedia

This motivated the software engineers to devise variants of Lempel-Ziv’s
original proposal (e.g., Snappy by Google, Lz4) which inject several software
tricks having beneficial effects on memory-access locality at the cost of, however,
increasing the compressed size. These compressors expanded further the known
jungle of space/time trade-offs,1 thus posing the software engineers in front
of a choice: either achieve effective compression-ratios, possibly sacrificing the
decompression speed (as it occurs in the theory-based results [8, 10,11]); or try
to trade compressed space by decompression time by adopting a plethora of
programming tricks, which nonetheless waive any mathematical guarantees on
their final performance (as it occurs in Snappy and Lz4).

Recently, it has been shown [7] that it is possible to design a bicriteria LZ77-
compressor which allows to trade in a smoothed and principled way both the space
occupancy (in bits) of the compressed file and the time cost of its decompression,
by taking into account the underlying memory hierarchy. The key result was
to design an algorithm that determines efficiently an LZ77-parsing of the input
file S which minimizes the compressed-space occupancy (in bits), provided that
its decompression time is bounded by a value T (in seconds) fixed in advance.
Symmetrically, it is possible to exchange the role of the two computational
resources. This problem has been solved by rephrasing the bicriteria LZ77-parsing
problem into the well-known Weight-constrained shortest path problem (WCSPP)
over a weighted DAG, where the goal is to search for a path whose decompression-
time is at most T and whose compressed-space is minimized. This allowed to
design an algorithm which solves the problem in O(n log2 n) time and O(n)
working space, thus improving significantly all previously known results for the
general version of WCSPP, which require Ω(n2) time.

Very preliminary experiments [7] have shown the potential of the bicriteria
LZ77-compressor (shortly, Bc-Zip) whose decompression speed is close to those
one of Snappy and Lz4 (i.e., the fastest ones) and compression ratio is close to
those of BWT-based and LZMA compressors (i.e., the most succinct ones). In this
paper we address the following issues, which prevent the bicriteria strategy to be
successful in practical settings:

– Bc-Zip deploys as a subroutine the bit-optimal LZ77-compressor devised
in [11], which finds a LZ77-parsing that minimizes the compressed output
(cfr. [12,16]). Unfortunately the compressor implemented in [11], and used
in [7], was slow and not optimal in asymptotic sense, though it was superior
to the heuristics introduced in [2, 13,17].

– the decompression efficiency of Bc-Zip relies heavily on the estimation of LZ77
decompression time. This was addressed in [11] by proposing an interpolation
approach which required a “training” dataset and deployed many parameters,
losing accuracy and generalization.

The main contributions of this paper are the following:
– we propose a novel bit-optimal LZ77-compressor which is simpler, cache-aware

and asymptotically optimal, thus resulting faster in practice (see Section 3).
1 See e.g., http://mattmahoney.net/dc/text.html.

This represents an important step in closing the compression time gap with
the widely known compressors Gzip, Bzip2 and Lzma2 .

– we introduce a new model for estimating the decompression time. This model
is based on few measurable parameters that depend only on the underlying ma-
chine and, thus, result independent of the file to be compressed/decompressed.
Given this model we design a calibration tool which automatically derives
the model, achieving an average error of ≈ 5.6%; this is quite satisfactory
according to [14]. Due to space limitations, its technical discussion is deferred
to the journal version of this paper.

– we finally evaluate the novel bit-optimal LZ77-compressor and Bc-Zip by
investigating many algorithmic and implementation issues (see Section 4):
integer encoders, block lengths, dataset types, ample set of classic (LZ-based,
PPM-based and BWT-based) as well as engineered compressors (Snappy,
Lz4, Lzma2 and Ppmd). We perform many experiments aimed at measuring
the impact of those features, so leading to the design of a compressor that
surpasses the decompression performance of well engineered and widely used
compressor Lz4 on three out of four datasets.

The ultimate result achieved by this paper is a deep and variegate under-
standing of the novel bicriteria compression technology both in terms of efficacy
and efficiency issues under various experimental scenarios. We will make available
to the scientific community this large implementation effort by providing the
datasets, the whole experimental setting and the C++ code of Bc-Zip.

2 Background

The bit-optimal LZ77-parsing problem asks for a LZ77 parsing of a text S[1, n−1]
whose compressed representation requires minimum space (in bits).

A LZ77-parsing of a text S is a decomposition of S in m substrings (phrases)
of the form p = S[s, s+`−1] such that either p = S[s] is a single character (hence
` = 1), or it is ` > 1 and thus S[s, s+`−1] = S[s−d, s−d+`−1] is a text substring
of length ` copied from d positions before in S. Clearly, many candidate copies
might occur in S, each having a different length and distance, so the possible
LZ77-parsings of S may be numerous. Each of these LZ77-parsings induces a
compressed version of S which is obtained by, first, substituting each phrase p
with the pair 〈0,S[s]〉, if p is a single character, and with 〈d, `〉, otherwise; and
then encoding each of those pairs with a pair of variable-length binary codewords
which are computed by means of two (possibly different) integer encoders encd

and enc`. For the sake of clarity, we drop the subscripts whenever the argument,
either distance or length, allows us to disambiguate the encoder in use.

An important assumption of the bit-optimal approach, as of [9, 11], is that
the integer encoders satisfy the so-called non-decreasing cost property, which is
satisfied by most encoders adopted in modern compressors. An integer encoder
enc satisfies the non-decreasing cost property if |enc(n)| ≤ |enc(n′)| for all n ≤ n′.
Moreover, these encoders must be stateless, that is, they must always encode the
same integer with the same bit-sequence.

More formally, given a text S and a pair of encoders enc` and encd, the bit-
optimal LZ77-parsing problem asks thus for a LZ77 parsing of S which minimizes
the compressed size when using enc` and encd as integer encoders. Authors
of [9,11] modeled the bit-optimal LZ77-parsing problem as a single-source shortest
path problem over a graph G, consisting of n = |S| + 1 nodes (one per S’s
character, plus a sink node) labeled with the integers {1, . . . , n}. In particular,
there is (i) a node i associated to each character S[i]; (ii) an edge (i, i+ 1) for
every i < n, and (iii) an edge (i, j + 1) iff the substring S[i, j] occurs earlier in
the text. It follows that each edge (i, j) is in bijective correspondence with a
candidate phrase of the LZ77-parsing of S.

This graph has a number of properties: (i) it is directed and acyclic, and
(ii) there is a bijection between LZ77-parsings of S and paths from 1 to n in G.
Since each edge is associated to a phrase, it can be weighted with the length, in
bits, of its codeword. In particular, edges (i, i+ 1) are assumed to have constant
weight, since they correspond to the single-character phrase 〈0,S[i]〉; while edges
(i, j + 1) are weighted with the value |enc(d)|+ |enc(`)| provided that 〈d, `〉 is the
associated codeword. Given that G is a DAG, computing a shortest path from 1
to n is simple and takes O(m) time and space. But there are strings for which
m = Θ(n2), so this algorithm is not practical even for files of a few tens of MiBs.

Starting from these premises, this problem was attacked in [9, 11] by intro-
ducing two main ideas: (i) prune G to a significantly smaller subgraph which
preserves the shortest path of G from nodes 1 to n; (ii) generate on-the-fly this
subgraph, thus minimizing the working space of the shortest-path computation.

The pruning strategy consists of retaining, for each node, only the maximal
edges, that is, edges of maximum length among those with equal cost (in bits,
according to enc). It has been shown [11] that the number of maximal edges
depends on the structure of encd and enc`, but it is O(n logn) for the vast
majority of encoders. The key algorithmic issue was then to show how to generate
the maximal edges outgoing from a given node i, incrementally along with the
shortest-path computation, taking O(1) amortized time per edge and only O(n)
auxiliary space. This task is called Forward Star Generation (shortly, FSG).

The algorithm originally described in [11] involves the construction of suffix
arrays and compact tries of several substrings of S (possibly transformed in proper
ways) so that, although optimal asymptotically, this algorithm is not practical.
In the next section we show a new algorithm which is optimal asymptotically
and much simpler than the algorithm proposed in [11], since it is based solely on
lists and their sequential scans.

3 Bit-optimal Compression: Faster and Practical

The Forward Star Generation task asks to compute all maximal edges spurring
from a node i only when needed, and discarded afterwards. An edge is maximal if
it is either d-maximal or `-maximal (or both). An edge spurring from vertex i and
represented by a LZ77 phrase 〈d, `〉 is d-maximal if it is the longest LZ77 phrase
taking at most |enc(d)| bits for representing its distance component; `-maximality

is defined similarly. Finding `-maximal edges is easy once d-maximal edges are
known, since the strategy consists on “splitting” d-maximal phrases according to
the cost classes of enc`, so here we concentrate on finding those d-maximal edges.

Let us now consider a cost class of encd, that is, the maximal sub-range [l, r]
of [1, n] such that each integer between l and r takes exactly c bits by using
encoder encd, for some c. There is one d-maximal edge for each cost class.

Let us take the d-maximal edge, say (i, i+ `), for the cost class [l, r]. We can
infer that the substring S[i, i+ `] is the longest substring starting at i and having
a copy at distance within [l, r] because the subsequent edge (i, i+ `+ 1) denotes
a longer substring whose copy-distance must therefore occur in a farther back
subrange (because of d-maximality).

Maximal edges leaving from i can be found by considering, for each cost class,
the suffix array of S restricted to positions i and [i− r, i− l], which we denote as
Rsa. In fact, the d-maximal edge can be found by looking for the lexicographic
predecessor and successor of S[i, n] in Rsa and taking the one with the longest
common prefix to S[i, n]. The selected suffix thus is the copy-reference of the
corresponding d-maximal edge. This strategy, however, is inefficient, because Rsa
cannot be computed in less than Ω(r− l) = Ω(n/ logn) time when the number of
d-maximal edges is O(logn). We overcome efficiency problems related to building
indexing data structures (like the Rsa) by computing en ensemble the d-maximal
edges of O(r − l) vertexes. To do that, we extend the simple strategy outlined
above by looking simultaneously for predecessors/successors of a set of suffixes.

More precisely, let us denote B = [i, i+ r − l] as the range of positions for
which we would like to determine the d-maximal edges, and W = [i− r, i+ r− 2l]
the set of potential back-references. Notice that |W | = 2(r − l), so |B ∪ W |
is at most 3(r − l) (less if they overlap). Let us then denote Rsa as the suffix
array restricted to positions in B ∪W . The main idea is to find all successors
of suffixes starting in B with a left-to-right scan of Rsa, and all predecessors
with a right-to-left scan. During the scan, we keep a queue Q of positions in B
for which we did not have found yet their matching predecessor/successor. The
queue is kept sorted in ascending order. So, let us assume the element of Rsa
currently examined is in W but not in B. This means that it may be a successor
for some of the positions in Q, and so we have to determine those positions and
remove them from the queue. We underline that not every position in Q may
apply, because the distance between the current element in W and the element
in the queue may be greater than r. However, since positions in Q are sorted
by increasing position, those can be found in optimal O(1) time per match by
examining the queue starting from the first element, and stopping whenever the
current element in the queue has distance greater than r.

Let us now consider the case when the currently examined element in Rsa is
a position j in B. This implies that we have to insert j in Q while maintaining it
sorted. This operation cannot be performed in constant time, since the element
may be inserted in the middle of Q. However, since distance between positions
in B cannot be greater than r, positions in Q greater than j can be matched
with j itself and removed from Q, so j can be appended at the bottom of the

queue in constant time. It is clear that the time complexity is proportional to
the number of examined/discarded elements in/from Q, which is |B|, plus the
cost of scanning Rsa, which is at most |W |+ |B|. This implies that each maximal
edge is found in amortized O(1) time.

An important part is the efficient and on-the-fly generation of the Rsa of
suffixes starting in W ∪B. Due to space limitations, we only sketch two optimal
solutions, which will be illustrated in the journal version of this paper. The first
one, general but less practical, is based on the Sorted Range Reporting data
structure [4]. The other solution makes some (generally satisfied) assumptions
about the integer encoders in use, and it is yet optimal but more practical because
it is based only on lists scanning. The last one is at the core of our implementation
of the Bc-Zip compressor tested in Section 4.

4 Experiments

In this section we show the effectiveness of this novel “optimization approach”
over LZ77-based compression in a throughout and conclusive way. Due to space
limitations, here we will only highlight the most important results, omitting many
figures and technical details. A more thorough illustration will be available in
the journal version of this paper.

In the first part of this section we will evaluate the advantage of the bit-optimal
parsing against Greedy, the most popular LZ77 parsing strategy, and many high-
performance compressors. We will show that the bit-optimal parsing has a clear
advantage over heuristically highly engineered compressors, thus justifying the
interest in the technology. We will also show that the novel Fast-FSG algorithm
exposed in Section 3 helps to bring down considerably the compression time,
thus making bit-optimal parsing a solid and practical technology.

In the second part we will compare bicriteria data compression against the
most common approach of trading decompression time for compression ratio. In
fact, many practical LZ77 implementations (e.g., Gzip, Snappy, Lz4 etc.) employ
the bucketing strategy (that is, splitting the file in blocks (buckets) of equal
size which are individually compressed and then concatenated to produce the
compressed output) or a moving window to (hopefully) lower decompression
time by limiting the maximum distance at which a phrase may be copied, thus
forcing spatial locality. Interestingly enough, we will show that this approach is
not the best one to speed up the file decompression because basically it takes
into account neither integer decoding time nor the length of the copied string,
which may be relevant in some cases and could amortize the cost of long but
far copies. We will validate this argument by also introducing a decompression
time model which properly infers the decompression time of a LZ77-parsing from
a small set of features (such as number of copies, distances distribution, etc).
This model will be used in order to efficiently determine proper edge-costs in the
graph over which the WCSPP is solved.

We will finally show the vast time/space trade-off achievable with the bicriteria
strategy, which improves simultaneously both the most succinct (like Bzip2) and
the fastest (like Lz4) compressors.

Experimental settings: We implemented the compressor in C++11, and we
compiled it with Intel C++ Compiler 14 with flags -O3 -DNDEBUG -march=native.
According to the applicative scenario we have in mind, we used two machines to
carry out the experiments. The first machine, used in compression, is equipped
with AMD Opteron 6276 processors, with 128GiB of memory; the second machine,
used in decompression, is equipped with an Intel Core i5-2500, with 8GiB of
DDR3 1333MHz memory. Both machines run Ubuntu 12.04.

Experiments were executed over 1GiB-long (230 bytes) datasets of differ-
ent types: (i) Census: U.S. demographic informations in tabular format (type:
database); (ii) Dna: collection of families of genomes (type: highly repetitive
biological data); (iii) Mingw: archive containing the whole mingw software distri-
bution (type: mix of source codes and binaries)2; (iv) Wikipedia: dump of English
Wikipedia (type: natural language). Each dataset have been obtained by taking
a random chunk of 1GiB from the complete files. The whole experimental setting
(datasets and C++ code) is available at http://acube.di.unipi.it/bc-zip/.

We experimented various integer encoders for the LZ77 phrases: Variable Byte
(VByte), 4-Nibble (Nibble), and Elias’ γ (Gamma) and δ (Delta) [15, 18]. We also
introduce two variants of those encoders, called VByte-Fast and T-Nibble, which
perform particularly well on LZ77 phrases.

In the design of our compressor we modified the LZ77 scheme to allow the
encoding of runs of literals in just one phrase. This twist has beneficial effects on
both decompression speed and compression ratio on incompressible files when
using the bit-optimal strategy, and introduces a very effective way of controlling
the space/time trade-off when using the Bicriteria strategy.

Speed improvements over the novel bit-optimal compressor: In Figure 1 we com-
pare the running time of the bit-optimal LZ77 algorithm when employing either
the original subroutine for generating maximal edges (shortly FSG), as proposed
in [11], or our novel Fast-FSG algorithm, described in Section 3. Figure 1 shows
the results only for dataset Wikipedia, as the figures do not change significantly
on the other datasets. We compared the compression ratios produced by two
integer encoders — namely, Gamma and VByte-Fast — which are the ones that
yield the lowest and highest performance gaps.

In the plots, Fast-FSG and FSG significantly diverge in running time, reflecting
the different time complexities (constant vs O(log b) per edge, where b is the size
of the bucket). In the Gamma case, the running time for the 1 MiB bucket-size
are nearly the same for FSG and Fast-FSG, while the gap is already ≈ 4x for a
1GiB bucket-size. In the VByte-Fast case, gap ranges from ≈ 1.3x to ≈ 2.5x.

The improvements introduced by Fast-FSG make the bit-optimal LZ77-comp-
ressor much closer to the widely used and top performing compressors in com-
2 Thanks to Matt Mahoney – http://mattmahoney.net/dc/mingw.html.

 50

 100

 150

 200

 250

 300

 350

 400

1 4 16 64 256 1024

T
im

e
 (

m
in

u
te

s)

Bucket size (MB)

(a) Gamma

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 4 16 64 256 1024

T
im

e
 (

m
in

u
te

s)

Bucket size (MB)

(b) VByte-Fast

FSG Fast-FSG

Figure 1. Comparison between the novel Fast-FSG and the previously known FSG in
parsing the dataset Wikipedia by using VByte-Fast and Gamma as integer encoders. The
construction time is reported by varying the bucket size.

pression time. In fact, our bit-optimal construction is on-par or faster than
Lzma2.

Bit-optimal performance: According to our experiments, integer encoders T-
Nibble and VByte-Fast are the most interesting in terms of compression ratio and
decompression speed (respectively, the most succinct and the fastest). For this
reason we restrict our attention to these two encoders in the next experiments.
In our tests, the bit-optimal strategy produces parsing which are more than
10% smaller on average than greedy (≈ 11.5% with VByte-Fast, ≈ 14.6% with
T-Nibble), in which the rightmost longest match is always selected, while being
≈ 15% faster at decompression. Working space was ≈ 59GiB of main memory.

Using bit-optimal in lieu of greedy means that we can use a faster encoder
without sacrificing compression ratios. Bit-optimal achieves this result by “adapt-
ing” parsing choices to the ideal symbol probability distribution of the underlying
integer encoders.

Table 1 compares the bit-optimal strategy (called LzOpt) against the best
known compressors to date. With respect to the most space-efficient compressors
(Lzma2, Bzip2, Ppmd, and BigBzip), compression ratio is, overall, only slightly
worse: the gap with Lzma2, the most succinct compressor, ranges from 15%
(Census) to 25% (Dna), with Mingw representing a situation in which the combina-
tion of bit-optimal parsing plus literal encodings let LzOpt be the most succinct
compressor. Notice that Lzma2 reports better compression ratios than LzOpt due
to its choice of a different, statistical encoder, whereas LzOpt is restricted to the
use of stateless ones (see discussion on Section 2). On the other hand, LzOpt
decompression time is order of magnitudes better than these approaches.

Comparing with the fastest compressors (Snappy and Lz4), parsings obtained
with LzOpt are way more succinct: the relative gap of those compressors in com-
pressed space ranges from ≈ 60% (Census) to over 1, 300% (Dna). Decompression
speed is already very competitive, especially if the slightly less succinct VByte-Fast

Table 1. Comparison between bit-optimal compressor (LzOpt), bicriteria compressor
(Bc-Zip) and state-of-the-art data compressors. For each dataset we highlight the parsing
having the closest decompression time to Lz4.

Dataset Compressor Compressed size Decompression time
(MBytes) (msecs)

Census

LzOpt (T-Nibble) 38.08 776
LzOpt (VByte-Fast) 40.19 572

Bc-Zip (VByte-Fast, 556 ms) 40.38 549
Bc-Zip (VByte-Fast, 494 ms) 41.63 506
Bc-Zip (VByte-Fast, 454 ms) 44.42 462

Gzip 48.23 2, 472
Lzma2 33.03 2, 652
Snappy 123.68 634
Lz4 61.82 454
Bzip2 39.96 15, 054
BigBzip 33.28 71, 000
Ppmd 38.70 38, 000

Mingw

LzOpt (T-Nibble) 179.01 1, 586
LzOpt (VByte-Fast) 192.34 954

Bc-Zip (VByte-Fast, 920 ms) 193.77 845
Bc-Zip (VByte-Fast, 726 ms) 205.56 695
Bc-Zip (VByte-Fast, 461 ms) 293.62 472

Gzip 344.47 5, 534
Lzma2 187.68 8, 323
Snappy 461.00 891
Lz4 384.67 726
Bzip2 317.96 32, 469
BigBzip 222.22 152, 000
Ppmd 245.54 414, 000

Dataset Compressor Compressed size Decompression time
(MBytes) (msecs)

Dna

LzOpt (T-Nibble) 23.78 598
LzOpt (VByte-Fast) 25.14 482

Bc-Zip (VByte-Fast, 455 ms) 27.97 468
Bc-Zip (VByte-Fast, 418 ms) 47.59 432
Bc-Zip (VByte-Fast, 381 ms) 75.08 395

Gzip 245.25 5, 815
Lzma2 17.62 1, 681
Snappy 448.67 1, 301
Lz4 333.74 1, 007
Bzip2 45.79 34, 157
BigBzip 42.02 152, 000
Ppmd 196.36 129, 000

Wikipedia

LzOpt (T-Nibble) 175.86 3, 080
LzOpt (VByte-Fast) 191.19 1, 748

Bc-Zip (VByte-Fast, 1306 ms) 205.89 1460
Bc-Zip (VByte-Fast, 973 ms) 270.35 1106
Bc-Zip (VByte-Fast, 862 ms) 316.18 986

Gzip 269.36 6, 154
Lzma2 166.16 9, 871
Snappy 422.80 1, 093
Lz4 309.51 862
Bzip2 214.65 29, 037
BigBzip 150.88 151, 000
Ppmd 148.27 283, 000

encoder is taken into account. We will close the speed gap w.r.t. Snappy and Lz4
with the Bicriteria Data Compression scheme.

Effectiveness of the bucketing strategy: Overall, experiments confirm that com-
pression ratio does improve with a longer bucket size, but the exact improvement
does depend on the peculiarities of the data being compressed. This implies that
trading decompression time vs compression ratio via the choice of a proper bucket
size requires a deep understanding of the data being compressed. In Figure 2
we show the decompression time when varying the bucket size. We only plot
the results for Wikipedia and Dna because they suffice to capture the range of
behaviors shown by the bit-optimal LZ77-compressor over our four datasets. In
particular, we mention that the behavior on Census and Mingw is similar to that
on Wikipedia, with the former reaching with VByte-Fast a decompression speed
up to 2, 200 MiB/sec with 4-MiB buckets that decreases to 1, 800MiB/sec with
1-GiB buckets, while over Mingw the decompression speed is about 1, 100MiB/sec
for any bucket size. For both datasets, the speed is roughly halved when using T-
Nibble, the reason being the word-boundary alignment of VByte-Fast’s codewords
which removes the need of bit-shifting them when reading from memory.

Figure 2 also shows that the dependency between the bucket size and the
decompression speed of the bit-optimal LZ77-output highly depends on the
characteristics of the data being compressed, but (possibly) in a counter-intuitive
way. In Wikipedia, it generally decreases with larger bucket sizes, with a peek
somewhere near 4MiB, instead of 1MiB; in Dna the decompression speed improves
with larger bucket sizes. In Dna, which is highly repetitive, there are far back-

 0

 500

 1000

 1500

 2000

 2500

 3000

1 4 16 64 256 1024

T
im

e
 (

m
se

cs
)

Bucket size (MB)

(a) Dna

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600
 2800

1 4 16 64 256 1024

T
im

e
 (

m
se

cs
)

Bucket size (MB)

(b) Wikipedia

T-Nibble VByte-Fast

T-Nibble (Predicted) VByte-Fast(Predicted)

Figure 2. Decompression time by varying the bucket size on Dna and Wikipedia. The
plot reports also the time predicted by our decompression-time model and a band
around the decompression time capturing a relative error of 10%.

references which copy long portions of a genome which compensate the cache
miss penalty induced by the copy (fewer phrases). On the other hand, Wikipedia
is less repetitive and so far back-references added by larger windows are not
much long, save little space, and thus they do not compensate the miss penalty
incurred by their decompression. It is evident now that if we want to trade in
a principled way decoding time versus compressed space, and thus ultimately
improve the design of the bicriteria compressor Bc-Zip, we need to precisely
explain and, thus, predict these phenomena. We designed a time model (full
description in the journal version) which is capable of predicting decompression
time with an average precision of ≈ 5.6%, which is a remarkable achievement
as accurately predicting running times (that is, achieving an average precision
of 10% or better) is notoriously an hard task [14]. In Figure 2 we plotted the
predicted decompression time alongside actual decompression times. This model
takes into account the cache miss latency to access distant substrings, the phrase
decoding and the copying time. Thanks to this time model, Bc-Zip is capable
of trading decompression time for compression ratio in a smooth and consistent
way, as shown in the next paragraph.

Bicriteria compressor: Our implementation of the Bc-Zip compressor largely
follows the scheme exposed in [7], using the Fast-FSG algorithm exposed in
Section 3 and some minor algorithmic twists to accelerate compression. In our
tests we compressed each dataset several times, for both VByte-Fast and T-Nibble,
with time bounds ranging from the decompression time of the time-optimal
parsing to the decompression time of the space-optimal one. In this way we can
determine the whole range of trade-offs offered by Bc-Zip. Moreover, in order
to directly compare Bc-Zip against the state-of-the-art compressors adopted in
storage systems (such as Hadoop and BigTable), we compressed each dataset
by setting its decompression-time bound (or compressed-space bound) as the

decompression time of the parsings generated by Lz4 (highlighted entries in
Table 1). The average time model accuracy is ≈ 4.5% (VByte-Fast ≈ 5.4%,
T-Nibble ≈ 3.7%).

 0

 500

 1000

 1500

 2000

 2500

 176 224 270 331 432 1024

T
im

e
 (

m
se

c)

Compressed size (MB)

Wikipedia

(a) Wikipedia

 200

 400

 600

 800

 1000

 1200

 1400

 179 227 294 385 874

T
im

e
 (

m
se

c)

Compressed size (MB)

Mingw

(b) Mingw

VByte-Fast T-Nibble Lz4

Figure 3. Space/time trade-off curve obtained with Bc-Zip, by varying the decompres-
sion time bound, and Lz4.

Table 1 and Figure 3 show the large range of trade-offs obtained by Bc-Zip.
For instance, in Mingw spans from ≈ 300 msec to ≈ 1, 400 msec time-wise,
and from ≈ 976MB to ≈ 179MB space-wise. Another interesting aspect is that
T-Nibble is competitive against VByte-Fast only when maximum compression
is required, otherwise the latter delivers more succinct parsings for the same
decompression time. This is due to T-Nibble’s relatively slow decoding, which
forces the compressor to trade LZ77 copies for literals in order to meet the
decompression time budget. This is in contrast with VByte-Fast’s fast decoder,
which does not impact much on decompression time and thus the compressor
only cares about the cache behavior by substituting cache miss-inducing copies
for a sequence of miss-free ones, a more succinct time-saving strategy.

Another interesting observation is that varying the decompression time im-
pacts little on compressed size when more succinct parsings are considered, while
it may impact considerably when less space-efficient parsings are taken into
account (with varying degree: more accentuate with Mingw, less with Wikipedia).
This provides a quantitative explanation of the natural question that motivated
the work in [7], namely “who cares whether the compressed file is slightly longer
if this allows to improve significantly the decompression speed?”. The present
paper shows that the space/time trade-offs do not change linearly but, instead,
a small change in one resource may induce a significant change in the other,
unpredictably.

Moreover, Bc-Zip is extremely competitive with Lz4, since it clearly dominates
it in three out of four datasets (Census, Dna, Mingw), while in Wikipedia it is very
close, being only ≈ 12% slower and ≈ 2% less succinct than Lz4. Overall, Bc-Zip

performs more consistently thanks to its well-principled design, and surpasses the
performance of well engineered, and widely used, compressor Lz4 on three out
four datasets. We therefore believe that this is a nice success case of a win-win
situation between algorithmic theory and engineering.

References

1. D. Adjeroh, T. Bell, and A. Mukherjee. The Burrows-Wheeler Transform: Data
Compression, Suffix Arrays, and Pattern Matching. Springer, 2008.

2. J. Békési, G. Galambos, U. Pferschy, and G. J. Woeginger. Greedy algorithms for
on-line data compression. J. Algorithms, 25(2):274–289, 1997.

3. D. Borthakur et alii. Apache Hadoop goes realtime at Facebook. In SIGMOD,
pages 1071–1080, 2011.

4. G. S. Brodal, R. Fagerberg, M. Greve, and A. López-Ortiz. Online sorted range
reporting. In ISAAC, pages 173–182, 2009.

5. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm.
Tech. Rep. Digital, 1994.

6. F. Chang et alii. Bigtable: A distributed storage system for structured data. ACM
Transactions on Computer Systems, 26(2), 2008.

7. A. Farruggia, P. Ferragina, A. Frangioni, and R. Venturini. Bicriteria data com-
pression. In SODA, pages 1582–1595, 2014.

8. P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual com-
pression in optimal linear time. Journal of the ACM, 52:688–713, 2005.

9. P. Ferragina, I. Nitto, and R. Venturini. On the bit-complexity of Lempel-Ziv
compression. In SODA, pages 768–777, 2009.

10. P. Ferragina, I. Nitto, and R. Venturini. On optimally partitioning a text to improve
its compression. Algorithmica, 61(1):51–74, 2011.

11. P. Ferragina, I. Nitto, and R. Venturini. On the bit-complexity of Lempel-Ziv
compression. SIAM Journal on Computing (SICOMP), 42(4):1521–1541, 2013.

12. J. Katajainen and T. Raita. An analysis of the longest match and the greedy
heuristics in text encoding. Journal of the ACM, 39(2):281–294, 1992.

13. S. T. Klein. Efficient optimal recompression. Computer Journal, 40(2/3):117–126,
1997.

14. L. Huang, J. Jia, B. Yu, B. Chun, P. Maniatis and M. Naik. Predicting execution
time of computer programs using sparse polynomial regression. In NIPS, pages
883–891, 2010.

15. D. Salomon. Data Compression: the Complete Reference, 4th Edition. Springer
Verlag, 2006.

16. E. J. Schuegraf and H. S. Heaps. A comparison of algorithms for data base
compression by use of fragments as language elements. Information Storage and
Retrieval, 10(9-10):309–319, 1974.

17. M. E. G. Smith and J. A. Storer. Parallel algorithms for data compression. Journal
of the ACM, 32(2):344–373, 1985.

18. I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Morgan Kaufmann Publishers, 1999.

19. J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Transaction on Information Theory, 23:337–343, 1977.

20. J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory, 24(5):530–536, 1978.

