
On the Weak Prefix-Search Problem ?

Paolo Ferragina

Dipartimento di Informatica, University of Pisa, Italy

Abstract

The weak-prefix search problem consists of searching for the strings in a dictionary
S that are prefixed by a pattern P [1, p]; if no such string does occur, any answer can
be returned. Strings in S have average length `, are n in number, and are given in
advance to be preprocessed, whereas the pattern P is provided on-line. In this paper
we solve this problem in the external-memory and in the cache-oblivious models by
using the optimal O(n log `) bits of space and requiring O(p/B + logB n) I/Os. The
searching algorithm is of Monte-Carlo type, so its answer is correct with high prob-
ability. We also discuss some variants of the problem concerning with a distribution
over the queried patterns, a deterministic solution, and foresee applications in the
design of energy-efficient data structures.

Key words: Prefix Search, Compressed Indexes for String Dictionaries, Weighted
Data Structures, Energy-Efficient Data Structures

1 Introduction

Searching for a pattern P [1, p] as a prefix of a set S of n strings of average
length ` is a classic string-matching problem. All known solutions require
O(n`) bits of space in the worst case, because they store the strings of S
explicitly. Recently Bellazougui et al. [2] introduced the weak variant of the
problem that allows for a one-side answer, namely the answer is requested to
be correct only in the case that P prefixes some of the strings in S; otherwise,
it leaves to the algorithm the possibility to return an un-meaningful solution
to the problem. Formally,

? This work has been partially supported by a Yahoo! Research grant, PRIN
MadWeb 2008 and FIRB Linguistica 2006. The author address is Diparti-
mento di Informatica, Largo B. Pontecorvo 3, 56127 Pisa, Italy. Email address:
ferragina@di.unipi.it.

Preprint submitted to Elsevier 1 August 2011

Problem 1 (Bellazougui et al., 2010) Let S = {s1, s2, . . . , sn} be a
prefix-free set of binary strings of average length `, sorted alphabetically. The
weak prefix-search problem asks, given a binary query-string P [1, p], for the
range of strings of S prefixed by P . The range is represented as a pair of
string-ids, because S is sorted. In the case that P does not prefix any string of
S, the returned range can be any pair.

The weak-feature allowed the authors of [2] to reduce the space occupancy from
O(n`) to O(n log `) bits, and indeed they proved that this is a space lower-
bound. Their solution takes O(p/w + log2 p) memory transfers for searching
in the RAM model with a memory word of w bits. The key issue here is not
to store the string set S but design an index that uses O(log `) bits per string.
This improvement is significant for very-large string sets, and we refer the
reader to [2] for a discussion on the possible applications.

But if the set S is large, either for the number of strings or for their total
length, it is more appropriate to evaluate the algorithmic solutions in the
External-Memory model in which B is the disk-page size and M is the size
of the available internal memory [15], and both parameters are known to
the algorithm. In this context the Bellazougui’s result can be rephrased as
O(p/B + log2 p) I/Os, by setting w = B, still within the optimal O(n log `)
bits of space occupancy. Noteworthy the authors of [2] showed that this I/O-
bound holds also in the more powerful Cache-Oblivious model where the two
model’s parameters M and B are unknown to the running algorithm (see e.g.
[11]).

On the other hand, the best known result for the classic prefix-search problem
(see e.g. [4,9,10]) uses O(n`) bits of space and O(p/B + logB n) I/Os. This is
always worse in terms of space occupancy than what is obtained for the weak
prefix-search, but it is faster whenever logB n < log2 p. This latter inequal-
ity is realistic in practice even for moderate pattern’s lengths, given that it
corresponds to n < plog2 B ≈ p15.

Starting from these observations, we have studied and designed a (random-
ized) solution for the weak-prefix search problem which matches the best of
the two solutions above by obtaining O(p/B + logB n) I/Os within O(n log `)
bits of space occupancy. The searching algorithm is of Monte-Carlo type, so
its answer is correct with high probability. Our solution has the nice feature
of being algorithmically simpler than the one proposed in [2], and thus worth
to be implemented. The paper actually details two different approaches that
achieve the claimed bounds based on a 2-level indexing scheme (Section 3)
and a suitable re-design and I/O-efficient mapping of the Patricia Trie data
structure and the blind search procedure of [9] (Section 4). One of these ap-
proaches works on the external-memory model and boils down onto the careful
orchestration of the disk-mapping of a trie devised in [13] with the I/O-optimal

2

access to unary paths in trees (Section 4.1). The other approach works in the
cache-oblivious model and applies the centroid decomposition of a binary tree
[3] to our 2-level indexing data structure (Section 4.2). As further contribu-
tions, we will also address a variation of the problem in which a probability
distribution over the queried patterns is known (Section 5), and finally we will
comment onto the design of a deterministic solution as well as other scenarios
which would be worth to deal with in the near future (Section 6).

We conclude this section by noticing that our results are stated in terms
of binary strings, for simplicity of exposition, but they generalize easily to
strings drawn from an arbitrary alphabet Σ. This is obvious for a constant-
sized alphabet, whereas the case of a larger alphabet can be managed by
re-mapping its symbols occurring in S’s strings to the range [0, n` − 1], the
second extreme denoting the total length of the strings in S.

2 Background

A compacted trie TS built on the set S of binary strings is a tree in which
the root may be unary, but all other internal nodes are binary and thus have
exactly two children. TS consists of n leaves (one per string in S) and no more
than n internal nodes, hence O(n) nodes in total. Each edge e = (u, v) is
labeled with a substring s(e) of the strings in S, each leaf l is labeled with
an integer in the range [1, n] denoting the rank of its associated string in S,
and each internal node u is labeled with an integer denoting the length of
the string spelled out by the root-to-u path in TS . Without abusing of the
notation, we will use s(u) to denote that string, and observe that in the case
u is a leaf it is s(u) ∈ S.

A Patricia trie PTS is derived from the compacted trie TS by substituting each
substring labeling a tree edge with its first bit, commonly called branching bit.
Figure 1 shows an example. In the following we will use PTS in combination
with a special prefix-search procedure introduced in [9] and called blind search.
The key idea is to search for the lexicographic position of P in S by percolating
a root-to-leaf path in PTS , matching only the available branching bits. Two
cases may occur: (i) either P is exhausted and a node u is reached; or (ii) we
end up into a leaf l. 1 In the first case, the authors of [9] suggest to take any
leaf l descending from u, and they prove that s(l) is one of the strings in S
sharing the longest common prefix (lcp) with P [9, Lemma 1, pag 253]. This
lcp-value together with another percolation of PTS was used in [9] to find P ’s

1 The algorithm of [9] is formulated on a general alphabet Σ and considers also the
case in which P mismatches all branching characters out of a node u. In our setting
this cannot occur because strings and nodes are binary.

3

Fig. 1. An example of compacted trie and its Patricia’s variant built over a set S of
12 binary strings. Bits between brackets are the part of an edge-label that has been
dropped when turning the compacted trie into the corresponding Patricia trie. In
this example, this dropping occurs just twice.

position in S. The nice fact was that just one string of S was compared.

This single string-comparison is not possible in our weak-prefix search problem
because S is not available. Nevertheless that result can be rephrased for our
problem as follows: either the string s(l) has prefix P or P does not prefix
any string in S. As an example take P = 0010, the blind search over the
Patricia Trie in Figure 1 reaches the node v which is not the correct locus for
the string P because there is a mismatch at the third bit that was not catched
by the blind search since that bit was missing in the corresponding edge label.
Anyway, this is not a problem because P is not a prefix of any string in S,
and so the answer to the weak-prefix search can be arbitrary. On the other
hand if P = 0000 then the blind search stops again at the node v, and this is
now correct since P prefixes all 9 strings descending from v.

The advantage of using the combination between blind search and PTS , with
respect to the classical approach over compacted tries, is that the blind search
identifies one single node in PTS whose spelled string is one of the candidates
for being prefixed by P , and this node can be found by deploying only the
information available in PTS , thus without any access to the string set S. 2

2 The compacted trie needs to access S’s strings to resolve the edge labels during
a string search.

4

As a result we would be tempted to conclude that the weak prefix-search
problem admits the simple solution sketched above. But there are two subtle
shortcomings. The first one is that PTS takes Ω(n log n) bits of space, which
may be ω(n log `); the second one is that the packing of PTS into pages of
size B is a difficult problem in its generality, especially when dealing with the
cache-oblivious model [7]. We address the first issue in the next Section 3, and
we will solve the second issue by proposing two different solutions, detailed
in Section 4, which are tailored to deploy the specialities of the blind-search
procedure over Patricia tries.

3 A 2-level indexing scheme for RAM

Our first step is to propose a 2-level indexing scheme whose goal is to reduce
the space occupancy of the classic Patricia trie from O(n log n) to O(n log `)
bits. Of course it is ` = Ω(log2 n) because all n binary strings are distinct.

A proper sampling of S. Recall that the strings in S are lexicographically
sorted. For the sake of presentation we assume that s1 = 0+ and sn = 1+, so
that P is lexicographically included in S, and let n be a multiple of log n.

We partition S into g = n/ log n groups of (contiguous) strings defined as
follows: Si = {s1+i logn, s2+i logn, . . . , s(i+1) logn} for i = 0, 1, 2, . . . , g − 1. We
then construct a subset of S, call it S ′, that consists of 2g = Θ(n

logn
) strings

obtained by taking the smallest (first) and the largest (last) string in each of
these groups. In some sense this sampling process recalls the one adopted to
design the String B-tree [9], but it is restricted to just two levels, it assumes
that the block size is log n, and it requires to design a different prefix-search
because the strings of S are not available.

The data structures. For the sake of presentation, let us forget the I/O-
issues and concentrate on the design of a solution for the RAM model. We
denote by [sl, sr] the two strings in S which delimit the range of strings prefixed
by P and thus the integer-pair (l, r) is the solution to our weak-prefix search
problem. We recall that these two strings may be arbitrary in the case that P
does not prefix any string of S. Given our notation we construct two types of
Patricia Tries:

• PT ′ is the Patricia Trie built over the strings in S ′ with the speciality that
we store in each node u of PT ′ a fingerprint of O(log n) bits computed for
the string-prefix s(u) according to the Karp-Rabin’s scheme [6].
• For each edge e = (u, v) of PT ′ we build the Patricia trie PTe which indexes

a group of O(log n) strings defined as follows. Assume that each node v of

5

Fig. 2. The Patricia Trie built on the subset S ′, in which each group is formed by
3 strings. On the left it is shown PTe, where e is the edge incident into v, with its
leaves encoded relatively to the first two string-ids of groups S1 and S4, namely 1
and 10. The figure also indicates the leftmost sL(w) and the rightmost sR(w) strings
descending from node w.

PT ′ points to its leftmost/rightmost descending leaves, denoted by L(v) and
R(v) respectively. We call SL(v) and SR(v) the two groups of strings, from
the grouping above, that contain sL(v) and sR(v). Then the Patricia trie PTe
is built on the string set SL(v) ∪ SR(v). We have a total of O(n/ log n) such
Patricia tries.

An example of this two-level indexing data structure is given in Figure 2, where
it is illustrated the Patricia trie PT ′ and the Patricia trie PTe corresponding
to the edge incident into the node v and indexing the groups S1 and S4.

The following Lemma estimates the space occupancy of the proposed data
structure, showing that it matches the lower bound proved in [2]. Hence it is
space optimal.

Lemma 1 The data structures PT ′ and PTe, for all edges e in PT ′, occupy a
total of O(n log `) bits.

Proof: Since we have O(n/ log n) nodes in PT ′, and hence O(n/ log n) po-
tential string-prefixes to be compared against P , we design a KR-fingerprint
that takes O(log n) bits and ensures distinct substrings to collide with polyno-
mially small probability. The Patricia trie PT ′ consists of O(n/ log n) nodes,
each storing: one KR-fingerprint of O(log n) bits, one string length encodable

6

in O(log `) bits on average, and two child pointers of O(log n) bits each. Since
` = Ω(log2 n) (see above), the Patricia trie PT ′ takes O(n) bits overall.

As far as the Patricia trie PTe is concerned, we notice that the strings in SL(v)
or SR(v) are contiguous in S, so we can encode their string-ids relatively to the
first string-id of each group, thus using O(log log n) bits for each of them. PTe
indexes O(log n) strings, so it occupies O((log n)× (log ` + log log n)) bits on
average. Since the number of edges in PT ′ is O(n/ log n), we have such number
of Patricia tries PTes, which therefore take O(n log `) bits overall. 2

To design our algorithm for supporting the weak prefix-search of P in S, and
prove its correctness, we need some few useful properties. The following one
can be easily derived from [9], its correctness has been sketched in Section 2.

Fact 1 (Ferragina-Grossi, 1999) Let PTX be the Patricia trie built on a
string set X . The execution of the blind search for a pattern P over PT X

stops at a node u such that either the string s(u) is prefixed by P , or P does
not prefix any string in X .

The impact of this Fact cannot be overestimated, in the sense that it can be
used to perform a weak-prefix search over the (contiguous) groups of strings
indexed by the PTes; but it cannot be used over the Patricia trie PT ′ to
determine the lexicographic position of P in S ′, as it was done originally in
[9]. This would be crucial to determine the subgroup of (contiguous) strings
where the prefix-search should continue. But the set S ′ is a sampling of S
and these strings are unavailable, so we cannot compute the lcp between P
and the string s(u) to drive the selection of the lexicographic position of P
in that set. Even the KR-fingerprints, which are available for each edge of
PT ′, cannot be deployed for this purpose: they allow to check the (mis-)match
of two substrings but not their lexicographic order. An example is given in
Figure 2 for the pattern P = 01001. The blind-search reaches the right child
of the node w, thus we would be driven to take S3 as the group of strings
potentially prefixed by P . This is clearly wrong because P = s11, so P lies in
S4 and does not prefix any string of S3.

We circumvent this drawback by devising a new structural property of Pa-
tricia Tries. This property is tricky because it concentrates only on the two
strings delimiting the result range, which can in turn be derived as a whole
by deploying the ordering of S’s strings. Of course the ordering allows also to
efficiently count the number of strings answering the prefix-search query by
just one arithmetic operation on the string-ids of those range extremes.

Fact 2 If P prefixes some strings in S, then it does exist an edge e = (u, v) in
PT ′ such that sl and sr can be identified by looking at the string set SL(v)∪SR(v).

Proof: For ease of exposition we denote by sL(i) and sR(i) the leftmost and

7

the rightmost strings sampled from the group Si. Given that P prefixes some
of the strings in S, we consider two cases: (a) P does not prefix anyone of the
strings in S ′, and (b) P prefixes at least one string of S ′. Case (a) implies that
the solution-range [sl, sr] is totally included in one group Si, so sL(i) < sl ≤
sr < sR(i). Case (b) implies that the solution-range [sl, sr] spans one or more
groups, say Sx,Sx+1, . . . ,Sy.

The Fact is trivially true in Case (a) because it is enough to take as edge e
the one incident into the leaf v = sL(i) (or equivalently, v = sR(i)) so that
SL(v) = SR(v). Recall that the first and the last strings of each group Si belong
to S ′, and thus they are indexed in PT ′.

The proof for the Case (b) is more elaborate. We assumed that sl ∈ Sx and
sr ∈ Sy, with x ≤ y, so we need to prove that there is an edge e = (u, v) in
PT ′ such that SL(v) = Sx and SR(v) = Sy. Given that P prefixes all strings in
[sl, sr], it prefixes all strings of Sx+1, . . . ,Sy−1. It also prefixes sR(x), which lies
on the right of sl (possibly it is sl = sR(x)), and it prefixes sL(y), which lies on
the left of sr (possibly it is sL(y) = sr).

We now concentrate on sl because the proof for sr is symmetric, and we prove
that sl ∈ SL(v) for some node v in PT ′. This implies that SL(v) = Sx, as
claimed above. The proof distinguishes two sub-cases: (b.1) sL(x) < sl and so
P does not prefix sL(x) which is on the left of sl, (b.2) sL(x) = sl and thus P
prefixes sL(x).

Case (b.1) implies that lcp(sL(x), sl) < p. We know that P prefixes the right-
most string of Sx, hence sR(x), which occurs in the set S ′ as well as sL(x) does.
So the blind search over PT ′, which indexes the strings in S ′, will exhaust
P stopping at a node v such that |s(v)| ≥ p. It is not difficult to convince
yourself that sR(x) descends from v but its adjacent string on-the-left in S ′,
namely sL(x), does not. Therefore the leftmost string in S ′ descending from v
is sR(x). So we can conclude that SL(v) = Sx, and thus sl ∈ SL(v).

Case (b.2) follows a similar argument to prove that sl = sL(x) descends from
v but its adjacent string on-the-left in S ′, namely sR(x−1) (because of the
sampling), does not descend from v given that P does not prefix it. So the
leftmost string in S ′ descending from v is sL(x), and thus again SL(v) = Sx,
and hence sl ∈ SL(v). 2

In other words, Fact 2 relaxes the requirement that PT ′ can identify the
lexicographic position of P in S ′, and aims for an approximate solution of it:
it shows that the position of P in the original set S can be determined within a
distance O(log n). It is the second round of the weak-prefix search procedure,
executed on the Patricia trie PTe attached to the edge e, that will complete
correctly the prefix-search operation.

8

Before detailing the algorithm that implements the whole weak prefix-search,
we refer the reader to Figure 2 for an illustrative example of the statement of
Fact 2. For the Case (a) of the above proof, take the pattern P = 0100 which
prefixes the single string s11 internal into S4. The edge identified by Fact 2 is
the one incident in sL(4) = s10, so the candidate group of strings to be searched
for identifying sl and sr is S4. For the Case (b), take P = 00 which prefixes
[s1, s10]. In this case the edge e is the one connecting the root of PT ′ to v. It
identifies the groups S1 ∪ S4 and indeed s1 ∈ S1 and s10 ∈ S4. Both groups
are indexed by the Patricia Trie PTe shown in the figure.

The weak prefix-search in the RAM model. Now we are ready to show
how the Patricia Trie PT ′ can be used to efficiently identify the edge e char-
acterized by Fact 2, and how the search proceeds in PTe to detect sl and sr
among the strings of SL(v) ∪ SR(v).

Subtly enough, the identification of edge e specified in Fact 2 is not immediate
and cannot proceed by just applying verbatim the blind-search procedure of
Fact 1. As an example, assume that P does not prefix any string in S ′ but
it prefixes one string in some sub-group Si. Given that the Patricia trie PT ′
is built over S ′, the blind search could lead to a node which is completely
far away from the leaf sL(i) or sR(i) we are searching for. Figure 2 shows this
dangerous case for P = 0100. Here P prefixes s11 ∈ S4 but no string in S ′
is prefixed by P . The path followed by the blind search in PT ′ leads to the
node w and thus the application of Fact 2 to the edge e = (v, w) would lead
to search for sl and sr in S1 ∪ S3. This is incorrect. The problem here is that
the mismatch-bit between P and the first traversed edge resides at position
lcp(P, s(v)) = 1 which is internal into the edge label and thus has not been
compared by the blind search. The next compared bit, namely P [4], matches
the branching bit leading to w and thus drives the search far from the node
v, hence far from S4.

The problem here arises because PT ′ contains a “reduced” set of branching
nodes (wrt PT S), which are indeed the lowest-common-ancestors of the leaves
associated to the sampled strings of S ′. So the path leading to sL(i) is surely
followed by the blind-search procedure up to the first lcp(P, sL(i)) < p bits, but
then it may diverge from that path when matching the pattern’s bits following
lcp(P, sL(i)).

In order to circumvent this problem we have to empower the blind-search
procedure for detecting the edge of the mismatch bit. The pseudo-code in
Figure 3 details our approach that hinges on the deployment of the fingerprints
f(u) available at each node u of PT ′. These fingerprints maintain a succinct
encoding of the substring s(u), taking O(log n) bits each. We highlight that,
for efficiency reasons, f(u) does not represent the label of the edge leading to

9

(1) Compute the Karp-Rabin’s fingerprint of all prefixes of the pattern P , accord-
ing to the function f() used for the nodes in PT ′.

(2) Execute a blind search for P over the Patricia trie PT ′. Each time a node v
is reached, we check whether f(v) equals the fingerprint of the corresponding
pattern prefix f(P [1, |s(v)|]). If the two fingerprints match and |s(v)| < p, the
blind search proceeds branching out of v with the bit P [|s(v)|+ 1], otherwise
we stop at v and call e the edge of PT ′ entering into v.

(3) Repeat the blind-search procedure over PTe and call v′ the node where it stops.
Return sl = L(v′) and sr = R(v′).

Fig. 3. The weak-prefix search algorithm.

u, but it rather represents the entire string-prefix s(u), as spelled out by the
root-to-u path. This way, we need to compute and store only O(p) fingerprints
for P , which can be done in linear time according to the Karp-Rabin’s scheme.

It is evident in the pseudo-code of Figure 3 that fingerprints will be equal
for all the ancestors of the node u (and thus for all pattern prefixes of length
≤ |s(u)|), after that they’ll be different with high probability. The crucial twist
here is that we are not able to identify the position of the mismatching bit, we
are only able to identify the edge e = (u, v) containing that mismatching bit.
This is enough to conclude that P lies lexicographically either to the left of the
subtree descending from v (hence to the left of L(v)) or to its right (hence to
the right of R(v)). This is what has been stated in Fact 2 and implemented in
Step 2. Finally, the fact that PTe indexes the two contiguous ranges of strings
SL(v)∪SR(v), together with Fact 1 guarantee that Step 3 correctly identifies sl
and sr among the strings of SL(v)∪SR(v) as the leftmost/rightmost descendants
of node v′ in PTe.

Overall the search for P [1, p] percolates two downward paths of length at most
p each, one in PT ′ and the other in PTe. We have therefore proved the following

Theorem 2 The combination of PT ′ and the set of PTe solves the weak-prefix
search problem in O(p) time and O(n log `) bits of space. The search is correct
with high probability because of the use of the Karp-Rabin’s fingerprints.

A note is in order at this point. The search uses some local information stored
at each node and taking O(log n + log `) = O(w) bits. This node information
can thus be stuffed into one single machine word. This consideration is cru-
cial when partitioning the nodes of the Patricia tries among the disk pages
(next section), because it allows to conclude that the node information can be
safely packed with the node itself independently of the length of the string it
represents.

10

4 I/O-packing of the Patricia Tries

Packing trees of t nodes into pages of size B is difficult if there is no addi-
tional restriction either on the tree structure or on the type of tree traver-
sals. Surprisingly enough, even if we restrict the tree traversals to root-to-
leaf paths of length L, the type of I/O-bounds we are aiming for— namely
O(L/B + logB t)— cannot be guaranteed in general [7]. But when the path
lengths are short do exist efficient disk-mappings:

Fact 3 Each Patricia trie PTe can be mapped onto disk pages so that any
root-to-leaf path can be traversed in O(logB n) I/Os.

Proof: It is enough to observe that PTe consists of O(log n) nodes, so that
any root-to-leaf path has length L = O(log n). From the result in [7], there
exist a disk-mapping taking L

logB
= O(logB n) I/Os to traverse these paths.

2

Extending this I/O-bound to all other path lengths, and thus to all possible
pattern lengths, is not easy and needs to dig into the structural properties
of tries and prefix searches as we do next. Specifically, we will discuss two
approaches to the I/O-packing of Patricia tries on disk memories. The first
approach is based on the concept of skeleton trie introduced in [13] and leads to
a solution working in the external-memory model, where the parameters B,M
are known at time the data structure is built; the second approach is based
on the concept of centroid trie introduced in [3] and leads to a cache-oblivious
solution achieving the same I/O-bounds as above, but working in the case
that the parameters B,M are unknown at time the data structure is built.
Although the latter result subsumes the former in terms of performance, we
describe both of them because the technicalities are novel and thus interesting
in themselves. There is also a subtlety that led us to state both results: the
cache-oblivious solution is restricted to work only in the (significant) case that
p ≤M ; the external-memory solution works everywhere. 3

4.1 On the skeleton tree

In [13] the authors observe that a tree can be decomposed into subtrees whose
total number of nodes may be larger than the disk-page size B, but whose
non-unary nodes are O(B) and thus can be packed into one disk page. This

3 This is due to the way fingerprints are checked. In the external-memory approach
they are computed and checked from the empty prefix to the entire P ; in the cache-
oblivious approach the checking depends on the way the traversal of the centroid
tree proceeds.

11

Fig. 4. The Skeleton Trie derived for the sampled Patricia Trie of Figure 2, assuming
a disk-page size of B = 3 nodes. Dotted circles denote the single components mapped
to one single page. To be noticed that the topmost subtree would be larger than B
if stored as is. Instead its skeleton tree consists of only two nodes (as shown in the
top-left part of the figure); the other nodes (here denoted as bullets) and their edges
are stored in auxiliary pages according to the scheme described in the text.

means that the remaining Ω(B) nodes form (unary) paths that need to be
managed properly, anyway differently from what has been proposed in that
paper where the indexed strings were available. For the sake of completeness
we recall the partitioning scheme of [13], and adapt its description from the
suffix tree (which was the tree to be partitioned in that paper) to our Patricia
Trie PT ′.

For a node v in PT ′, the number of leaves in the subtree under v is referred to
as size(v). If v is a leaf node then size(v) = 1. The rank of node v, denoted
rank(v), is i if and only if Ci ≤ size(v) < Ci+1, for some integer constant C
fixed in advance. We partition PT ′ into subtrees such that the nodes u and
v belong to the same partition if all nodes on the undirected path between u
and v have the same rank. The authors of [13] called this subtree the skeleton
tree, see Figure 4 for an example.

The rank of a component Q is the same as the rank of the nodes in Q, i.e.
rank(Q) = rank(v) for any v ∈ Q. In particular we say that node v ∈ Q is a
leaf of Q if and only if none of v’s children in PT ′ belongs to Q; a node u is
termed the root of Q if and only if u’s parent is not a node of Q. Let us denote
by TQ the subtree obtained by restricting the component Q to its leaves and

12

to its non-unary nodes.

Fact 4 (Ko-Aluru, 2006) The subtree TQ consists of at most C − 1 leaves
and at most 2C − 2 non-unary nodes.

Although the size of TQ is upper bounded by O(C), this bound does not hold
for the number of non-unary nodes lying in Q, which can be up to Ci+1−Ci =
Ω(C). By setting C = Θ(B), we can stuff TQ in one disk page, but we need
possibly many more pages to pack these unary nodes. Nevertheless they form
unary paths that can thus be lied down contiguously and linearly on disk, so
that their traversal takes an optimal number of I/Os. By orchestrating skeleton
trees, unary paths and the special properties of the blind-search procedure over
Patricia tries we will obtain the result stated in Theorem 3 below.

As proved in [13], any root-to-leaf path in PT ′ is decomposed in no more than
O(logB n) disk pages. In that paper authors explain how to prefix search for P
by using skeleton tries and the strings of S ′. In our context we do not have S ′.
So our algorithmic idea is to proceed in two phases, which alternate at each
component Q: first we prefix-search P in the skeleton trie TQ, matching its
branching bits and the KR-fingerprints attached to its nodes; this identifies an
edge where either a mismatch occurs or that leads to another component. Since
each edge represents a single unary-path, it is then accessed I/O-optimally,
and allows to move from Q to the next component in PT ′.

In detail, the first phase determines an edge (z, w) of TQ such that s(z) prefixes
P (and this has been checked by means of the KR-fingerprint f(z)) and either
w lies outside the current skeleton tree TQ, or w belongs to the tree but s(w)
and P mismatch somewhere after their (|s(z)|+ 1)-th bit. So the mismatch is
on the unary path from z to w; this path is lied down contiguously on disk
with all the information (namely branching bits and fingerprints) needed to
perform a prefix-search over it, as the one described in Step 2 of Figure 3.
This means that the traversal of this path takes O(1 + L/B) I/Os where L
is the number of scanned nodes. It is clear that bits matched in P are never
re-scanned, so the only I/O-waste consists of the additional O(1) I/Os paid
to retrieve from disk the skeleton trie TQ and the first page of the unary path
where the mismatch lies.

At most O(logB n) components are traversed in a prefix search [13], so the
following result holds. 4

Theorem 3 The weak-prefix search problem can be solved in the external-
memory model by using O(n log `) bits of space and O(p/B + logB n) I/Os.
The correctness holds with high probability.

4 Recall Fact 3 which addressed the disk-mapping of small Patricia tries PTe.

13

4.2 On the centroid tree

We resort a known decomposition of trees proposed in [3] for the static cache-
oblivious String B-tree. We apply it to our Patricia Trie PT ′, and then modify
accordingly the blind-search procedure of Figure 3.

Let us recall how to re-shape PT ′ via the centroid decomposition. The key
idea is that there is a centroid node z in PT ′ that has at least t/3 and at most
2t/3 descendants, where t = |PT ′| = O(n/ log n). The centroid tree of PT ′ is
obtained by making z the root and attaching as z’s children the recursively
defined centroid trees of z’s up and down tries. At every level of the recursion
we eliminate a constant fraction of nodes from consideration, so the centroid
tree has depth O(log n). Thus, as observed for the small tries PTe (see Fact 3),
there exists a cache-oblivious packing for which any root-to-leaf path traverses
O(logB n) disk pages (hence I/Os). The packing is executed not only on the
tree-structure of the centroid tree, but also on the fingerprinting information
that is associated to the nodes of PT ′.

Figure 5 shows an example of centroid tree computed for the Patricia Trie of
Figure 1, indexing the whole set of strings S. Each internal node z is associated
with its string s(z), which is shown explicitly only for the sake of presentation
but that is stored on disk in terms of its KR-fingerprint f(z) using one single
machine word. Each internal node has a solid edge linking it to the root of its
down trie (the leaves of which have s(z) as a prefix), and a dotted edge linking
it to the root of its up trie (the leaves of which do not have s(z) as a prefix).
Moreover it maintains a pointer to its leftmost and its rightmost descending
leaves within the entire PT ′ (not shown in the picture). In Figure 5 we use
circles to denote internal nodes of PT ′ and squares to denote leaves of PT ′.
Notice that leaves of PT ′ can become internal nodes of the centroid tree, and
vice versa.

Prefix-searching over the centroid tree. We are left with showing how
Step 2 of Figure 3 is implemented (recall that Step 3 acts on PTe which takes
O(logB n) I/Os to be percolated, according to Fact 3). Let z be the node of the
centroid tree currently visited, initially z is the root. We determine whether
s(z) is a prefix of P by comparing the corresponding fingerprints. If it does,
then we follow the solid edge, otherwise we follow the dotted edge. The ratio
is that, in the case of a match, the prefix search must proceed in the subtrie
of PT ′ that descends from z (previously called down-trie) and containing all
strings of S ′ that have s(z) as a prefix; otherwise, the prefix search does not
pass through z but lies into its up-trie. It should be evident that we are
doing a sort of binary search over the entire structure of PT ′ which eventually
identifies the deepest node u whose fingerprint f(u) equals the fingerprint of
the corresponding pattern prefix f(P [1, |s(u)|]). Now if |s(u)| < p, we take v

14

Fig. 5. The centroid tree of the entire Patricia Trie PTS of Fig.1.

as the child of u in PT ′ whose branching bit equals P [|s(u)| + 1]; otherwise
it is |s(u)| = p and thus we can set v = u. This node v is exactly the one
identified in Step 2 of the pseudo-code of Figure 3.

As an illustrative example, take P = 0100 and start matching the centroid-
tree’s nodes in Figure 5 from the root. We percolate the leftmost downward
path up to node u, since its ancestors have longer labeling substrings which
therefore do not prefix-match P . This means that we will follow the dotted
edges until we reach node u whose string s(u) is empty and thus prefix-matches
P . At this point we follow the solid child w of u that does not prefix-match
P . Its dotted child is a leaf which does not prefix-match P too. Given that
u is the deepest node in PT ′ whose label prefix-matches P , we jump 5 on u’s
“copy” in PT ′ and take as child v the one whose branching bit is P [1] = 0. We
have therefore identified the edge e = (u, v) of Fact 2, so that the prefix-search
for P can be continued in the proper PTe according to Fact 3.

Theorem 4 The weak-prefix search problem can be solved in the cache-
oblivious model by using O(n log `) bits of space and O(p/B + logB n) I/Os.
The correctness holds with high probability.

5 A distribution-aware solution

Our two-level indexing scheme can be turned into one that guarantees query-
distribution awareness, so changing the term O(logB n) into a term that de-
pends on the probability of querying the pattern P , such as O(logB

1
℘(P)

) . This

5 The “jump” is logical since v can bring the two pointers within its occurrence in
the centroid tree, thus saving one I/O, and the duplicate storage of PT ′.

15

improvement can be significant in the case that some patterns are queried more
frequently than others.

To define correctly the scenario, let us start from a probability distribution
over the strings of S (and thus over the leaves of PTS), and then derive a
distribution over their prefixes: for every node v ∈ PTS , we define ℘(v) as
the sum of the probabilities of the descending leaves (i.e. strings having prefix
s(v)). We can adapt the centroid decomposition of the previous section in
order to work on the probability mass of the nodes in PT S rather than on the
number of their descending leaves. This guarantees that every prefix-search
for a pattern P [1, p] in PT S takes O(p/B + logB

1
℘(P)

) I/Os.

But we have to be careful with the very rare strings s such that ℘(s) < 1/n.
For these strings the above I/O-bound is worse than the one we achieved in
Theorems 3 and 4. So we need a different approach which consists of dividing
the nodes of PT S into two subsets: one composed by rare nodes, whose prob-
ability is < 1/n, and the other set formed by the rest. It is clear that the rare
nodes form subtrees of PT S that lead to trie leaves; whereas the un-rare nodes
form a single trie rooted in the root of PT S . We store the former subtries by
using the scheme of Theorems 3 and 4, which is UN-aware of the underlying
distribution. Conversely, we store the single trie of un-rare nodes by using the
distribution-aware approach sketched above.

The prefix-search for P starts in this latter trie and stops, as usual, at an edge
(u, v) such that s(u) prefixes P but either v belongs to the top trie (and thus
is un-rare as u) or it roots a rare subtrie (and thus it is rare too). In the former
case the search stops at this edge, and since it has acted on the distribution-
aware scheme, it takes O(|s(u)|/B + logB 1/℘(u)) I/Os. Since s(u) prefixes P
it is |s(u)| ≤ p and ℘(u) ≥ ℘(P). Moreover we know that u is an un-rare node,
hence ℘(u) ≥ 1/n. Consequently this case takes O(p/B+logB min{n, 1/℘(P)})
I/Os.

In the other case that v is rare, the search must continue in the sub-trie
of rare nodes rooted in v. Since this trie is lied down on disk by using the
distribution UN-aware scheme, this second prefix-search takes O(p/B+logB n)
I/Os. It is clear that this second case may occur only if P is a rare string, so
the total I/O-bound for the prefix search can be again written as O(p/B +
logB min{n, 1/℘(P)}) I/Os.

A final note is in order at this point. The above query-distribution aware
approach must be applied to both PT ′ and to all PTe in our two-level indexing
scheme to get the space bound of O(n log `) bits.

Theorem 5 The weighted weak-prefix search problem, for which a query-
distribution is known in advance, can be solved in the cache-oblivious model

16

using O(n log `) bits of space and O(p/B + logB min{n, 1
℘(P)
}) I/Os. The cor-

rectness holds with high probability.

6 Conclusions

Our algorithms can be made deterministic in the reasonable applicative sce-
nario (mentioned in [2]) that the strings can be stored on disk. We need only
to store on disk the sampled set S ′ and use just one additional disk I/O to
determine v in Step 2 (in practice we argue that p/B ≤ 1). Compared to
the String B-tree [9], we are performing the same number of I/Os but with a
smaller storage cost of o(n log n) bits in addition to the indexed strings, and
without the need to keep the whole string set S on disk.

Following [3] we could further squeeze the space occupancy of our solutions
by using the locality preserving front-coding scheme introduced in that paper.
This allows to achieve space close to the front-coding of the set of strings
S ′, but without penalizing asymptotically the cost of one string decoding.
The combination of our results with the LPFC-scheme would give a win-win
situation because we would save space both for the storage of the indexing
data structure and for the storage of the indexed strings.

We conclude this paper by foreseeing a challenging scenario that actually goes
beyond the weak prefix-search problem investigated in these sections. Energy
efficiency has now become a key issue for servers and data center operations
because “The cost of power and cooling is likely to exceed that of hardware”
[1]. It is commonly believed that improvements in the energy efficiency of IT
devices will be much more dramatic, and eventually have much greater impact,
than in other areas of technology. Much prior work was concerned with electri-
cal and systems engineering, with a relatively smaller amount of investigation
in the core areas of Computer Science. Recently [5,12] proposed the study
of a “Science of Power Management” which should develop theoretical mod-
els of power-performance tradeoffs at multiple levels of granularity, and design
canonical algorithmic techniques to attain better results than the ones obtain-
able via engineering system knobs and parameters. Following this proposal, we
addressed in [8] the energy-issues that arise in the design of compressed data
structures, and illustrated some preliminary experimental results showing that
a careful orchestration of patterns of memory accesses and computation can
lead to “dramatic improvements” in the energy consumption of IT systems,
as the ones aimed for by [5,12]. We believe that the data structures presented
in this paper are concrete examples of this new line of research: they could
be used for implementing a prefix-search black-box in modern smart-phones.
Experiments over real applicative scenarios are needed to validate this guess.

17

Acknowledgements

I thank Djamal Belazzougui and the anonymous referees of CPM ’11 for their
useful comments.

References

[1] L.A. Barroso and U. Hölzle. The case for energy-proportional computing. IEEE
Computer, 40(12):33–37, 2007.

[2] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Fast prefix search in little
space, with applications. In Procs 18th European Symposium on Algorithms
(ESA), volume 6346 (part I), Lecture Notes in Computer Science, Springer,
pages 427–438, 2010.

[3] M. Bender, M. Farach-Colton, and B. Kuszmaul. Cache-oblivious String B-
trees. In Procs 25th ACM Symposium on Principles of Database Systems
(PODS), pages 233–242, 2006.

[4] G. Brodal and R. Fagerberg. Cache-oblivious string dictionaries. In Procs 17th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 581-590, 2006.

[5] K.W. Cameron, K. Pruhs, S. Irani, P. Ranganathan, and D. Brooks. Report of
the science of power management workshop. NSF Report, August 2009.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, 1990.

[7] E.D. Demaine, J. Iacono, and S. Langerman. Worst-case optimal tree layout in
a memory hierarchy. Manuscript, available on arXiv:cs.DS/0410048, 2004.

[8] P. Ferragina. Data structures: Time, I/Os, entropy, joules! In Procs 18th
European Symposium on Algorithms (ESA), volume 6347 (part II), Lecture
Notes in Computer Science, Springer, pages 1–16, 2010.

[9] P. Ferragina and R. Grossi. The String B-tree: A new data structure for string
search in external memory and its applications. Journal of the ACM, 46(2):236–
280, 1999.

[10] P. Ferragina, R. Grossi, A. Gupta, R. Shah, and J.S. Vitter. On searching
compressed string collections cache-obliviously. In Procs 27th ACM Symposium
on Principles of Database Systems (PODS), pages 181–190, 2008.

[11] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In Procs 40th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 285–298, 1999.

[12] K. Kant. Toward a science of power management. IEEE Computer, 42(9):99–
101, 2009.

18

[13] P. Ko and S. Aluru. Obtaining provably good performance from suffix trees
in secondary storage. In Procs 17th Symposium on Combinatorial Pattern
Matching (CPM), volume 4009, Lecture Notes in Computer Science, Springer,
pages 72–83, 2006.

[14] A. Maheshwari and N. Zeh. A survey of techniques for designing i/o-efficient
algorithms. In Algorithms for Memory Hierarchies, volume 2625, Lecture Notes
in Computer Science, Springer, pages 36–61, 2003.

[15] J.S. Vitter. External memory algorithms and data structures: dealing with
massive data. ACM Computing Surveys, 33(2):209–271, 2001.

19

