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Abstract

This paper describes a semi-analytical approach to electric sail mission analysis under the assumption

that the spacecraft experiences a purely radial, outward, propulsive acceleration. The problem is tackled

by means of the potential well concept, a very effective idea that was originally introduced by Prussing and

Coverstone in 1998. Unlike a classical procedure that requires the numerical integration of the equations

of motion, the proposed method provides an estimate of the main spacecraft trajectory parameters, as its

maximum and minimum attainable distance from the Sun, with the simple use of analytical relationships

and elementary graphs. A number of mission scenarios clearly show the effectiveness of the proposed

approach. In particular, when the spacecraft parking orbit is either circular or elliptic it is possible to find

the optimal performances required to reach an escape condition or a given distance from the Sun. Another

example is given by the optimal strategy required to reach a heliocentric Keplerian orbit of prescribed orbital

period. Finally the graphical approach is applied to the preliminary design of a nodal mission toward a

Near Earth Asteroid.
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Nomenclature

a = semimajor axis

a⊕ = E-sail characteristic acceleration

E = specific mechanical energy of the osculating orbit

Ew = potential well boundary

e = eccentricity

P = point in the energy plane

p = semilatus rectum

q = resonance ratio

R = prescribed distance

r = Sun-spacecraft distance (r⊕ � 1 AU)

T = orbital period

t = time

u = radial component of velocity

V∞ = hyperbolic excess velocity

v = circumferential component of velocity

β = dimensionless characteristic acceleration

θ = polar angle

μ� = Sun’s gravitational parameter

ω = argument of periapsis

Subscripts

0 = initial, parking orbit

a = aphelion
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b = point on the potential well boundary

e = escape

j = jettison

k = Keplerian

min = minimum

n = Near Earth Asteroid

p = perihelion

t = tangent

� = ascending node

� = descending node

Superscripts

· = time derivative

˜ = dimensionless value

� = critical value

1 Introduction

Due to their long flight times, space missions with low-thrust propulsion systems are usually

studied in an optimal framework, by maximizing (or minimizing) a suitable scalar performance

index. The latter coincides, for example, with the propellant mass for electrical propulsion

systems [1,2] or with the total flight time for a propellantless thruster as a solar sail [3,4] or

an electric sail [5,6,7,8,9,10]. The solution of the optimal control problem associated to the

design of the space trajectory is the output of a complex numerical optimization process, and
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the solution is typically found using a dedicated software. Only in a few cases the optimal

control problem can be fully solved in an analytical or graphical form. One of such special

cases is represented by the problem of calculating the optimal escape conditions for a space

vehicle with constant, outward, propulsive acceleration. The first solution to this problem was

analytically found by Tsien [11] assuming that the spacecraft is placed on a parking circular

orbit and, recently, was extended by Mengali and Quarta [12] to elliptical orbits using the

potential well, a concept originally introduced by Prussing and Coverstone [13].

The aim of this paper is to introduce a graphical approach for the preliminary deep space

mission analysis of an electric sail (E-sail) [7,14,15], whose attitude is oriented in such a way

to provide a purely radial thrust along the whole heliocentric trajectory. The space vehicle is

therefore subjected to a propulsive outward acceleration that, according to the most recent

studies [16], varies inversely proportional to the Sun-spacecraft distance r. Following Prussing

and Coverstone [13], when the propulsion system is switched on, the spacecraft trajectory can

be mapped into an “energy plane”, that is, the plane in which the specific mechanical energy

of the osculating orbit is expressed as a function of the spacecraft radial distance from the

primary. In particular, Prussing and Coverstone [13] suggest to partition the energy plane

into allowed and forbidden regions using the so called potential well, which bounds the radial

distance interval within which the spacecraft motion is feasible.

With the aid of a suitable choice of the independent variables, another definition of the energy

plane, slightly different than that of Ref. [13], is now introduced. In this new energy plane, the

specific mechanical energy of an E-sail depends linearly on the distance from the Sun, and its

slope is proportional to the E-sail characteristic acceleration, that is, the maximum propulsive

acceleration at a Sun-spacecraft distance equal to 1 Astronomical Unit (AU). The main results

of a preliminary mission analysis are thus obtained by simply intersecting the potential well

boundary with the line corresponding to the specific mechanical energy level.
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2 E-sail Motion with Radial Thrust

Consider a spacecraft, of constant mass, that initially tracks a heliocentric closed parking

orbit of semilatus rectum p0 and eccentricity e0. The spacecraft primary propulsion system is

constituted by an E-sail with characteristic acceleration a⊕, which, by assumption, provides

a radial outward thrust whose modulus is inversely proportional [16] to the Sun-spacecraft

distance r.

The E-sail thrust is switched-on at t = t0 � 0, and the succeeding spacecraft motion takes

place in the plane of the parking orbit. The corresponding spacecraft equations of motion in a

polar, heliocentric reference frame are [11,16]:

ṙ = u (1)

θ̇ =

√
μ� p0

r2
(2)

u̇ =
μ�

r2

(
p0

r
− 1

)
+ a⊕

r⊕

r
(3)

where θ is the polar angle measured counterclockwise from the direction of the parking or-

bit’s eccentricity vector, u is the radial component of the spacecraft velocity, μ� is the Sun’s

gravitational parameter, and r⊕ � 1 AU is a reference distance. In the special case of circular

parking orbit (e0 = 0), the polar angle θ is measured counterclockwise from the Sun-spacecraft

direction at time t0.

When Eq. (1) is substituted into (3), the following second order, nonlinear differential equation

in the variable r is obtained:

r̈ =
μ�

r2

(
p0

r
+ β

r

r⊕
− 1

)
(4)

where the dimensionless characteristic acceleration β is defined as

β =
a⊕

μ�/r2
⊕

(5)
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Note that β plays the same role in the E-sail performance characterization as the lightness

number [17] does for solar (or photonic) sails, when an ideal force model [18] is assumed.

The boundary conditions of Eq. (4) are given by the Sun-spacecraft distance and the spacecraft

radial component of velocity at the initial time t0, that is:

r0 =
p0

1 + e0 cos θ0

, u0 =

√
μ�

p0

e0 sin θ0 (6)

where θ0 � θ(t0) is the starting polar angle.

Taking into account the initial conditions (6), the first integral of the autonomous differential

equation (4) is:

u2 − u2
0

2
+

μ� p0

2

(
1

r2
− 1

r2
0

)
− μ�

(
1

r
− 1

r0

)
− β

μ�

r⊕
log

(
r

r0

)
= 0 (7)

Introduce now the specific mechanical energy E of the spacecraft heliocentric osculating orbit

E =
u2

2
+

μ� p0

2 r2
− μ�

r
(8)

and observe that Eq. (7) can be written in a compact form as

E = E0 + β
μ�

r⊕
log

(
r

r0

)
(9)

where

E0 � E(t0) =
u2

0

2
+

μ� p0

2 r2
0

− μ�

r0

(10)

is the specific mechanical energy of the spacecraft parking orbit. Note that the last term in

Eq. (9) coincides with the work, per unit of mass, of the E-sail propulsive thrust corresponding

to the radial displacement Δr = r − r0.

According to Prussing and Coverstone [13], Eq. (9) maps the spacecraft motion into the “en-

ergy plane”, that is, the plane where the osculating orbit’s specific mechanical energy E is

expressed as a function of the radial distance r. In this plane the spacecraft motion is from
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below constrained by the so called potential well [13], that is

E ≥ Ew (11)

where Ew is the minimum allowable value of the specific mechanical energy (corresponding to

a given radial distance r) that is obtained from Eq. (8) by enforcing the condition [19] u2 ≥ 0,

viz.

Ew =
μ� p0

2 r2
− μ�

r
(12)

The spacecraft heliocentric motion is better described using a modified energy plane (Ẽ , r̃),

which results from the introduction of the following dimensionless terms

Ẽ � E
μ�/r0

, Ẽw � Ew

μ�/r0

, r̃ � log
(

r

r0

)
(13)

Bearing in mind Eq. (6), the expressions for Ẽ and Ẽw are:

Ẽ =
e2
0 − 1

2 (1 + e0 cos θ0)
+ β

p0

r⊕ (1 + e0 cos θ0)
r̃ (14)

Ẽw =
(1 + e0 cos θ0)

2
exp(−2 r̃) − exp(−r̃) (15)

and Eq. (11) becomes:

Ẽ ≥ Ẽw (16)

From Eq. (15) it is clear that the shape of the potential well boundary Ẽw = Ẽw(r̃) depends

both on the parking orbit characteristics (through e0) and on the initial spacecraft position θ0,

but it is independent of the E-sail performance (quantified through the parameter β). On the

contrary, for a circular parking orbit (e0 = 0) the function Ẽw is independent of θ0.

Moreover, Eq. (14) states that the dimensionless specific mechanical energy is a linear function

of r̃, and its slope is proportional to the dimensionless characteristic acceleration β. For a

circular parking orbit (r̃ = 0), the initial value of the dimensionless specific mechanical energy

is simply Ẽ = −1/2.

A graphical interpretation of Eqs. (14)-(15) provides valuable insights into the spacecraft helio-
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centric trajectory without the need of integrating the equations of motion (1)–(3). This matter

is now illustrated in detail with the aid of a number of mission applications.

3 Minimum Propulsive Acceleration to Escape

As a first application of the previous concepts to an E-sail mission analysis, consider the

problem of finding the minimum propulsive acceleration required to escape from the Sun when

the propulsion system is operating for the whole mission duration. This is a classical problem

that has been extensively studied in the literature, especially under the assumption of constant

propulsive, outward, acceleration [11,13,19]. Here the minimum value of a⊕ [equivalently, the

minimum β, see Eq. (5)] will be found graphically in the energy plane. The two cases of circular

or elliptic parking orbit will be discussed separately.

3.1 Circular Parking Orbit

The shape of the potential well Ẽw = Ẽw(r̃) for a circular parking orbit of radius r0 ≡ p0 is

shown in Fig. 1. Recall that the points below the potential well boundary belong to a forbidden

region (shaded area in Fig. 1) where the spacecraft motion cannot take place.

According to Eq. (14), at the initial time t0 the spacecraft position in the energy plane is

represented by the point P0 = (0,−1/2), and the spacecraft radial velocity component at t0 is

zero. When the propulsion system is switched-on (t > t0), the spacecraft at first increases both

its specific energy Ẽ and its distance from the Sun r̃ moving along the straight line defined

by Eq. (14). This line will be referred to as “energy line”, and its slope is proportional to the

dimensionless characteristic acceleration β. The spacecraft motion corresponds to one of the

following three cases.
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3.1.1 Case a

The energy line, with a slope β� r0/r⊕, is tangent to the potential well boundary at point

Pt = (r̃t, Ẽt), see Fig. 1. In this case, the pair (r̃t, β�) is solution of the system of algebraic

equations:

Ẽ = Ẽw ∩ ∂Ẽ
∂r̃

=
∂Ẽw

∂r̃
(17)

or, with the aid of Eqs. (14)–(15)

2 r̃t exp (−r̃t) [1 − exp (−r̃t)] − 1 = exp (−r̃t) [exp (−r̃t) − 2] (18)

β� =
(

r⊕

r0

)
exp (−r̃t) [1 − exp (−r̃t)] (19)

whose solution is

r̃t � 1.256431 , β� � 0.203632
(

r⊕

r0

)
(20)

Substituting r̃t from (20) into Eq. (14), the energy at Pt is Ẽt � −0.244150.

The spacecraft motion can now be qualitatively described as follows. When the propulsion

system (whose dimensionless characteristic acceleration is β�, see Eq. (20)) is switched-on, the

Sun-spacecraft distance increases following the segment P0Pt. At time tt the spacecraft reaches

the point Pt whose distance from the Sun is

rt � r0 exp(r̃t) � 3.512862 r0 (21)

Here the spacecraft radial velocity component is zero, because Pt belongs to the potential well

boundary, while its radial acceleration component r̈t � r̈(rt) is obtained from Eq. (4) with the

substitution β = β� and r = rt. It can be verified that r̈t = 0. Therefore, the spacecraft reaches

Pt with zero velocity and zero acceleration in the radial direction. Accordingly, for t ≥ tt the

spacecraft tracks a circular, non-Keplerian [6,20], orbit of radius rt with a constant velocity

v =
√

μ� p0/rt, as is shown in Fig. 2.
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From Eq. (21), the orbital period Tt of the non-Keplerian orbit is

Tt =
2 π√
μ�/r3

0

exp (2 r̃t) (22)

A linear stability analysis reveals that this non-Keplerian orbit is unstable. In fact, from Eq. (4),

the derivative of the radial acceleration component is

∂r̈

∂r
=

μ�

r2
0

[2 exp (−2 r̃) − 3 exp (−3 r̃) − β (r0/r⊕) exp (−r̃)] (23)

Therefore, when β = β� and r̃ = r̃t, Eq. (23) states that ∂r̈/∂r � 0.0349 μ�/r2
0 > 0.

To summarize, in this case the spacecraft heliocentric trajectory presents a single perihelion

point (P0 in the energy plane) at a distance r0 from the Sun, and the maximum attainable

distance (rt) depends linearly on r0.

3.1.2 Case b

When the slope of the energy line is sufficiently high (that is, β > β�), P0 is the only intersection

point between the energy line and the potential well boundary, see Fig. 1. In this case, for all

t > t0, the spacecraft is pushed away from the Sun and eventually reaches the escape condition

Ẽ = 0 at a distance [see Eqs. (13) and (14)]:

re = r0 exp

(
r⊕

2 β r0

)
(24)

If the mission requirement is to reach a given hyperbolic excess velocity V∞ with respect to

the Sun, the E-sail can be jettisoned when the Sun-spacecraft distance is:

r = r0 exp

(
r⊕ V 2

∞ + μ� r⊕/r0

2 μ� β

)
(25)

In this case, P0 is the only trajectory point in which the radial velocity component is zero

and r0 is the corresponding perihelion distance. Figure 3 shows the spacecraft heliocentric
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trajectory when β = 1.1 β� � 0.223995 r⊕/r0. Note that, according to Eq. (24), the escape

condition occurs at a distance re � 9.3 r0 from the Sun.

3.1.3 Case c

The last case is obtained when the energy line intercepts the potential well boundary at three

points, P0, Pa = (r̃a, Ẽa) and Pb = (r̃b, Ẽb), as is shown in Fig. 1. This situation is representative

of a low-performance propulsion system, that is, an E-sail with a low characteristic acceleration

(β < β�). The values of r̃a and r̃b, with 0 < ra < rt < rb, are two of the three real solutions of

the nonlinear equation Ẽ = Ẽw, where Ẽ is given by Eq. (14) and Ẽw by Eq. (15). The nonlinear

equation Ẽ = Ẽw in the unknown r̃ can be solved numerically, and the solution r̃ = 0 can be

discarded as it coincides with r0. The least of the remaining two solutions corresponds to r̃a,

that is, the aphelion distance. To simplify the succeeding spacecraft trajectory analysis, Fig. 4

shows the values of aphelion distance ra/r0 as a function of the dimensionless characteristic

acceleration β < β�. The same figure also shows the spacecraft radial acceleration component,

which can be obtained from Eq. (4) when r = ra.

Figure 4(b) shows that r̈a < 0 for β ∈ (0, β�), whereas r̈a = 0 when β = {0, β�}. The special

case of β = 0 is of scarce importance, as it corresponds to a spacecraft without any propulsion

system. In that case the spacecraft tracks the initial circular parking orbit and the energy line

reduces to the point P0.

The spacecraft motion can be described as follows. Assuming that β ∈ (0, β�), for t > t0

the spacecraft increases its distance from the Sun until, at time ta, it reaches a distance ra <

rt (point Pa of Fig. 1). During this phase the spacecraft tracks, in the energy plane, the

segment P0Pa. Because Pa belongs to the potential well boundary, at Pa the spacecraft radial

velocity component is zero, but the radial acceleration component is negative (see Fig. 4(b)).

Therefore the spacecraft is subjected to a net inward force, proportional to r̈a, that curves the
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trajectory toward the Sun. As a result the distance from the Sun starts decreasing and the

spacecraft tracks backwards the segment P0Pa until it reaches P0 again (at time t1). Note that

the spacecraft polar angle θ1 � θ(t1) is, in general, different from θ0+2 k π, where k is a positive

integer. For t > t1 the motion in the energy plane repeats, that is, the spacecraft increases its

distance from the Sun until ra and so on. In other words the spacecraft oscillates indefinitely,

in the energy plane, along the segment P0Pa. Clearly, the point Pb cannot be reached because

the segment PaPb lies in the forbidden region. Therefore, the value of β�, given by Eq. (20),

is the minimum dimensionless characteristic acceleration required to escape from the circular

parking orbit of radius r0. In addition, rt is the maximum aphelion distance of a closed orbit

when the propulsion system is on. When viewed with respect to a heliocentric reference frame,

the spacecraft trajectory is constrained within the region between the two circles of radius

r0 (perihelion) and ra (aphelion). For example Fig. 5 illustrates the spacecraft trajectory for

β = 0.9 β� � 0.183269 r⊕/r0, in which the aphelion distance is ra � 2.06 r0, a value which is in

agreement with Fig. 4(a).

3.2 Elliptic Parking Orbit

If the parking orbit is elliptic, that is, e0 ∈ [0, 1), both the potential well boundary and the

energy line location depend on the starting polar angle θ0, see Eqs. (14)–(15). For a given value

of e0 the position of P0 in the energy plane changes with θ0 as is shown in Fig. 6 for e0 = 0.3.

Note that when θ0 ∈ {0, 180} deg the point P0 belongs to the potential well boundary, whereas

for θ0 ∈ (0, 180) deg the point P0 is inside the allowable region.

For a given quadruple (p0, e0, θ0, β) the potential well boundary and the energy line are uni-

vocally defined, and the analysis of the spacecraft motion coincides with that described in the

last section. In particular, the minimum value β� of the dimensionless characteristic acceler-

ation required to escape from the Sun is now a function of the triplet (p0, e0, θ0). Bearing in
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mind Eqs.(14) and (15), the numerical solutions of Eqs. (17) have been summarized in Fig. 7

where, for symmetry reasons, the analysis of the initial polar angle range has been confined to

θ0 ∈ [0, 180] deg.

A few remarks are in order. For a circular parking orbit, both β� and r̃t are constant with respect

to the starting polar angle θ0, and their values are in agreement with Eq. (20). More important,

Fig. 7(a) shows that, for a given value of the pair (p0, e0), the parameter β� increases with θ0.

Therefore, for a given parking orbit, the minimum value of the dimensionless characteristic

acceleration β�
min � min[β�(θ0)] is obtained when θ0 = 0, that is, when the propulsion system

is switched-on at the initial perihelion [12]. Figure 8 shows the required value of β�
min as a

function of p0 and e0.

The quantity β�
min p0/r⊕ is almost linear with e0, and can be approximated (with errors less

than 0.6%) by the function

β�
min

p0

r⊕
� −0.2036 e0 + 0.2036 (26)

Figure 8 and Eq. (26) reveal that β�
min → 0 as e0 → 1. However this corresponds to the special

case of a parabolic parking orbit and, indeed, the spacecraft reaches the escape condition at

t = 0 without the need of any propulsion system.

As an example, if the elliptic parking orbit coincides with the Earth’s heliocentric orbit of

semimajor axis a0 = 1 AU and eccentricity e0 = 0.0167102, one obtains that β�
min � 0.201 (the

characteristic acceleration is 1.19 mm/s2). Starting instead from the Mercury’s heliocentric

orbit (a0 = 0.3870989 AU and e0 = 0.2056307) the value of β�
min increases to about 0.449 and

the minimum characteristic acceleration required to escape is 2.662 mm/s2.
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4 Attainment of a Given Distance from the Sun

As a second practical application of the potential well’s concept consider now the problem of

finding the minimum characteristic acceleration required to reach a prescribed distance R from

the Sun. Without any loss of generality, a circular parking orbit of radius r0 is assumed. Indeed,

the extension to an elliptic parking orbit is straightforward. Unlike the previous analysis, in

this case the propulsion system can be switched-off one time along the trajectory to model

a situation in which the E-sail is jettisoned. To solve the problem, it is useful to distinguish

between the following three cases.

4.0.1 Case a

Assume first that R̃ ∈ (0, r̃t], where r̃t is given by Eq. (20). In the energy plane the parking

orbit is defined by the point P0 = (0,−1/2) while the target point belongs to a vertical line

of equation r̃ = R̃. The dimensionless specific mechanical energy at the intersection point

PR = (R̃, ẼR) between this vertical line and the potential well boundary is obtained from

Eq. (15):

ẼR =
1

2
exp(−2 R̃) − exp(−R̃) (27)

with ẼR > −1/2 for R̃ > 0. Because for t > t0 the spacecraft tracks an energy line whose slope

is proportional to the dimensionless characteristic acceleration [see Eq. (14)], the value of βmin

is

βmin =
r⊕

R̃ r0

(
ẼR + 1/2

)
≡ r⊕

2 R̃ r0

[
exp(−2 R̃) − 2 exp(−R̃) + 1

]
(28)

In other terms, when β = βmin the spacecraft moves along the segment P0PR, and reaches the

target distance R̃ at the aphelion of the transfer trajectory, as is shown in Fig. 9.

For example, assume that R = 1.524 AU (a value corresponding to the Sun-Mars mean dis-

tance), and a parking circular orbit of radius r0 ≡ r⊕. In this case R̃ � 0.421338 and, from
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Eq. (28), βmin � 0.140291, that is, a⊕ � 0.832 mm/s2. The spacecraft transfer trajectory is

shown in Fig. 10.

4.0.2 Case b

If R̃ > r̃t, a portion of the segment P0PR belongs to the forbidden region of the energy plane

and the previous transfer strategy fails. In this case, as PR is on the right of Pt (see Fig. 11),

the optimal solution is simply the energy line that passes through P0 and Pt. From Eq. (20),

the minimum value of the dimensionless characteristic acceleration is:

βmin > 0.203632
(

r⊕

r0

)
(29)

Assuming R = 5.2 AU, equal to the Sun-Jupiter mean distance, and r0 ≡ r⊕, the dimensionless

distance is R̃ � 1.648658 and the minimum characteristic acceleration is a⊕ � 1.2087 mm/s2.

The spacecraft transfer trajectory is shown in Fig. 12.

4.0.3 Case c

Finally, assume that the target distance is less than r0, or R̃ < 0. In this case a transfer

without an E-sail jettison is unfeasible, because the propulsion system provides an outward

radial thrust only. However the target distance can be reached using a Keplerian orbit whose

perihelion distance is rp ≤ R. Because the spacecraft can be transferred only towards Keplerian

orbits whose semilatus rectum is p0 ≡ r0, the equation rp ≤ R represents a constraint on the

minimum aphelion radius ra of the candidate Keplerian orbit, that is:

ra ≥ r0 R

2 R − r0

(30)
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In particular, Eq. (30) states that the spacecraft cannot reach a distance from the Sun less

than r0/2.

Assuming R > r0/2 (that is, R̃ > log(1/2) � −0.6931), from a geometric viewpoint the

optimal mission strategy corresponds to transfer the spacecraft to a Keplerian orbit whose

perihelion radius rp is equal to R. For a given value of rp = R, the corresponding Keplerian

orbit is represented, in the energy plane, by a horizontal segment ranging from Pp = (R̃, ẼR)

to Pa = (r̃a, ẼR), see Fig. 13, where

r̃a � log
(

R

2 R − r0

)
(31)

and ẼR is given by Eq. (27). Note that Pp and Pa map, in the energy plane, the perihelion and

the aphelion point of the Keplerian orbit, respectively.

The minimum value of the dimensionless characteristic acceleration required to reach a point

of the segment PpPa, depends on the horizontal position of Pa, that is, on the value of r̃a. In

fact, for r̃a ≤ r̃t, with r̃t given by Eq. (21), the minimum value of β corresponds to the transfer

orbit that reaches the Keplerian orbit at its aphelion Pa, viz.

βmin =
r⊕

r̃a r0

(
ẼR + 1/2

)
≡ r⊕

2 r̃a r0

[
exp(−2 R̃) − 2 exp(−R̃) + 1

]
(32)

The E-sail is jettisoned exactly at a distance ra from the Sun, where ra is given by the right

hand side of Eq. (30). This strategy is summarized in Fig. 13(a). For example, if R = 0.723 AU,

equal to the Sun-Venus mean distance, and r0 ≡ r⊕, the target distance is R̃ � −0.324346 and

r̃a � 0.483090 < r̃t. From Eq. (32), the minimum dimensionless characteristic acceleration is

βmin � 0.1519 (that is a⊕ � 0.901 mm/s2), and the spacecraft transfer trajectory is shown in

Fig. 14 along with the corresponding Keplerian orbit.

As was discussed in Case b, when r̃a > r̃t the minimum dimensionless characteristic acceleration

is equal to β�, see Eq. (29), and the E-sail is jettisoned at a distance rj < ra. This situation is
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illustrated in Fig. 13(b) and the jettison distance is

rj = r0 exp

( ẼR + 1/2

β� r0/r⊕

)
≡ r0 exp

(
exp(−2 R̃) − 2 exp(−R̃) + 1

2 β� r0/r⊕

)
(33)

For example, if r0 ≡ r⊕ and R = 0.55 AU (R̃ � −0.597837), the E-sail jettison distance is

rj � 5.174 AU and the transfer trajectory is shown in Fig. 15.

5 Reaching a Keplerian Orbit of Given Period

The third practical application of the potential well’s concept is the study of the minimum

characteristic acceleration βmin required to reach a heliocentric Keplerian closed orbit of given

period Tk. By assumption, the target Keplerian orbit is coplanar to the circular parking orbit

of radius r0. Moreover, the E-sail can be jettisoned at a suitable point of the transfer trajectory.

As discussed in the previous section, the target Keplerian orbit in the energy plane is repre-

sented by a horizontal segment whose dimensionless specific mechanical energy Ẽk is

Ẽk � − r0

2 3

√
T 2

k μ�/(4 π2)
(34)

The segment endpoints, Pp = (r̃p, Ẽk) and Pa = (r̃a, Ẽk), map the target Keplerian orbit

perihelion and aphelion points, respectively, where r̃p = log(rp/r0) and r̃a = log(ra/r0) with

rp = 3

√
T 2

k μ�/(4 π2)

⎛⎜⎝1 −
√√√√1 − r0

3

√
T 2

k μ�/(4 π2)

⎞⎟⎠ (35)

ra = 3

√
T 2

k μ�/(4 π2)

⎛⎜⎝1 +

√√√√1 − r0

3

√
T 2

k μ�/(4 π2)

⎞⎟⎠ (36)

In fact, because the semilatus rectum pk of the target Keplerian orbit is equal to r0, the
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semimajor axis ak and the eccentricity ek of the final orbit are obtained as

ak = 3

√
T 2

k μ�/(4 π2) (37)

ek =

√
1 − r0

ak

≡
√√√√1 − r0

3

√
T 2

k μ�/(4 π2)
(38)

Note that the constraint pk = r0 implies that a transfer towards an orbit of period Tk <

T0 � 2 π
√

r3
0/μ� (or Ẽk < −1/2) is infeasible. Therefore assume that Tk > T0, as Tk = T0

corresponds to a situation in which at time t0 the spacecraft is already on the target Keplerian

orbit. The problem can be solved in the energy plane with the aid of the two cases illustrated

in Fig. 16.

5.0.4 Case a

The dimensionless specific mechanical energy of the target Keplerian orbit ranges in the interval

Ẽk ∈ (−1/2, Ẽt], where Ẽt � −0.244150 is the ordinate of point Pt. In this case r̃a ≤ r̃t and,

as was discussed in the previous section, the optimal strategy is to reach the Keplerian orbit

aphelion where the E-sail is jettisoned. The minimum required dimensionless characteristic

acceleration is

βmin =
r⊕

r̃a r0

(
Ẽk + 1/2

)
(39)

and the jettison distance is rj = ra, see Eq. (36).

5.0.5 Case b

The dimensionless specific mechanical energy of the target Keplerian orbit ranges in the interval

Ẽk ∈ (Ẽt, 0), that is, the dimensionless aphelion radius is greater than r̃t. In this case the optimal

strategy requires that βmin = β� [see Eq. (20)], and the jettison distance rj is given by

rj = r0 exp

( Ẽk + 1/2

β� r0/r⊕

)
(40)
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The previous relationships are useful for a preliminary mission analysis whose aim is to reach a

Keplerian orbit in mean motion orbital resonance with the parking one. The transfer trajectory

characteristics and the E-sail required performances have been summarized in Table 1 for some

values of resonance ratio Tk/T0. The resonance ratio corresponds to the number of spacecraft

revolutions for one revolution of the given celestial body around the Sun. Note that for a given

value of r0, both the dimensionless characteristic acceleration βmin and the jettison distance rj

increase with the resonance ratio Tk/T0. In fact, an increment of the period Tk increases both

Ẽk and ra.

6 Nodal Flyby Missions to NEAs

The last mission application is related to a nodal flyby mission [21,22] towards a Near Earth

Asteroid (NEA) whose population, calculated at mid-January 2011, consists of 7600 bodies 1 .

In such a mission scenario, a spacecraft that moves in the ecliptic plane, performs a sequence

of close encounters with NEAs. To this end, the spacecraft is transferred to a Keplerian orbit

in mean motion orbital resonance with the target asteroid’s orbit. Accordingly, a flyby occurs

in one of the two nodes of the asteroid’s heliocentric orbit, that is, when the Sun-spacecraft

distance is r� (ascending node) or r� (descending node) with

r� =
an (1 − e2

n)

1 + en cos ωn

, r� =
an (1 − e2

n)

1 + en cos(π − ωn)
(41)

where an is the semimajor axis, en is the eccentricity, and ωn is the argument of periapsis of

the target asteroid’s heliocentric orbit.

The analysis of the problem in the energy plane detects the optimal strategy and provides an

estimate of the minimum characteristic acceleration required to perform the transfer phase of

1 The catalog of NEAs orbital elements is available online at http://newton.dm.unipi.it/neodys/

[retrieved 14 January 2011].
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the mission. To reduce the problem complexity, the ephemeris constraint is neglected, and a

circular parking orbit of radius r0 = r⊕ is assumed. In other terms, the problem is now to find

the minimum value βmin and the jettison distance rj required to transfer the spacecraft from

a circular parking orbit of radius r⊕ to an elliptic heliocentric orbit of given resonance ratio

q � Tk/Tn, where Tn = 2 π
√

a3
n/μ� is the asteroid’s orbital period. For a given pair (q, Tn), the

optimal dimensionless characteristic acceleration βmin and the corresponding jettison distance

rj are obtained with the approach described in the previous section.

Note that the constraint on the semilatus rectum states that the transfer is infeasible if q <

T0/Tn. Moreover, for a given value of q > T0/Tn, the flyby is impossible if {r�, r�} ∩ [rp, ra] =

{0}, where rp and ra, that is, the perihelion and aphelion distances of the Keplerian orbit, are

given by Eqs. (35)-(36) with Tk = q Tn.

The number of unreachable asteroids decreases with the resonance ratio q, as is shown in

Fig. 17. For example, when q = 1 about 824 asteroids (10.8% of the entire population) are

not reachable, whereas when q = 2 the number of “forbidden” asteroids reduces to 33 (0.43%

only of the entire population). The horizontal asymptote in Fig. 17 shows that a nodal flyby

mission is impossible for a set of 16 NEAs. For these asteroids the value of both r� and r� is

less than r0/2 = 0.5 AU.

Figure 18 shows the minimum dimensionless characteristic acceleration βmin and the jettison

distance rj as a function of the resonance ratio q for the asteroids population. Note that the

cumulative percent in the abscissa of Fig. 18 refers to the actually reachable asteroids for a

given value of q, see also Fig. 17.

Figure 18(a) shows that the required value of βmin increases with q and for q > 3 nearly all

of the asteroids population is reachable with an E-sail of βmin = β�. The resonance ratio q

is therefore an important parameter for assessing the E-sail capabilities in this mission type.

In fact, when a⊕ ≤ 0.5 mm/s2 (or β ≤ 0.0843) the number of reachable asteroids is strongly
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dependent on the value of q, as is shown in Tab. 2.

7 Conclusions

A new graphical approach for the preliminary mission analysis of an E-sail spacecraft has been

illustrated. Assuming the thrust is always oriented radial with respect to the Sun-spacecraft

direction, the space vehicle is subjected to a propulsive, outward, acceleration that varies

inversely proportional with the distance from the Sun. The assumption of radial thrust not

only is a means to reduce the problem mathematical complexity, but could also be a potentially

useful concept from an engineering viewpoint. Indeed, while in principle the E-sail can be

slightly inclined and thereby produce an off-radial thrust, maintaining the sail nominal plane

orthogonal to the solar wind flow during the whole mission would simplify the design of some

spacecraft elements as, for example, thermal and high voltage subsystems. Therefore, it cannot

be excluded that a purely radial thrust could be, in practice, an optimal engineering solution,

or that if the E-sail nominal plane is inclined, a useful starting point for mission analysis

could be provided by the purely radial propulsive acceleration approximation. In this scenario,

the spacecraft trajectory is conveniently described in the energy plane, in which the feasible

motion is constrained by the potential well concept. With a suitable choice of the independent

variables, a new definition of energy plane and potential well has been introduced to obtain

a problem solution through a graphical approach. In particular, the main orbital parameters,

as the maximum and minimum attainable distance from the Sun, can be calculated by simply

intersecting the potential well boundary with a straight line whose slope is proportional to the

E-sail characteristic acceleration. As a result, a number of interesting problems involving an

E-sail subject to a purely radial thrust can be solved using a semi-analytical approach, without

the need to resort to lengthy numerical simulations.
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Tk/T0 rp/r0 ra/r0 βmin r0/r⊕ rj/r0 Case

2 0.6218 2.5530 0.1974 2.5530 a

3 0.5812 3.5790 0.2036 3.5786 b

4 0.5629 4.4768 0.2036 4.3972 b

5 0.5521 5.2959 0.2036 5.0313 b

6 0.5450 6.0589 0.2036 5.5388 b
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Table 1
Optimal performance to obtain a mean motion orbital resonance with the parking orbit.
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q = 1 q = 3:2 q = 2

a⊕ ≤ 0.07 mm/s2 1 0 0

a⊕ ≤ 0.2 mm/s2 5 2 0

a⊕ ≤ 0.1 mm/s2 2 0 0

a⊕ ≤ 0.3 mm/s2 19 7 1

a⊕ ≤ 0.4 mm/s2 45 15 2

a⊕ ≤ 0.5 mm/s2 88 25 3

Table 2
Number of reachable NEAs as a function of a⊕ and q.
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Figure 16. Optimal strategy to reach a heliocentric (closed) Keplerian orbit of given period, starting
from a circular parking orbit.
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Figure 17. Number of unreachable asteroids as a function of the resonance ratio q ≥ 1.

46 of 47



0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

cumulative percent

�
m

in
1q �

3 : 2q �

2q �

3q �

� �

(a) Dimensionless characteristic acceleration.
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(b) Jettison distance.

Figure 18. Optimal performances for a nodal flyby mission towards a NEA, starting from a circular
parking orbit of radius r0 = r⊕.
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