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1 Introduction

In this paper, we consider the so-called equilibrium problem with nonsmooth data in a finite-

dimensional setting, following its mathematical format as given in [1, 2]. This format was

shaped on the well-known Ky Fan’s minimax inequality [3] and has attracted increasing at-

tention ever since its introduction. Indeed, it provides a rather general model that includes

scalar and vector optimization, inverse optimization, variational inequalities, fixed point, com-

plementarity, saddle points and noncooperative games as particular cases.

Many classes of methods for solving the equilibrium problem have been developed: fixed

point and extragradient methods, descent methods, proximal point and Tikhonov-Browder

regularization methods (see, for instance, the survey paper [4]). In this paper, we focus on

algorithms that are based on descent procedures.

Descent techniques exploit the reformulation of the equilibrium problem as an optimization

problem through suitable merit functions (see, for instance, [4,5]), which are generally referred

to as gap functions. Many descent type algorithms have been developed exploiting both gap

functions [6–12] and D-gap functions [13–16] under the assumption that the equilibrium bi-

function is continuously differentiable. This assumption guarantees the differentiability of the

gap function; moreover, convergence results require some kind of monotonicity assumption
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on the gradients of the equilibrium bifunction. Entering nonsmoothness brings in some diffi-

culties: the differentiability of the gap function is generally lost, and monotonicity conditions

have to be addressed through generalized derivatives.

When the nonsmooth equilibrium problem takes the shape of a variational inequality, i.e.,

the equilibrium bifunction is affine in the second argument, with a Lipschitz operator, the

analysis of nonsmooth gap functions leads to error bounds [17–19] and to devise solution

methods under the strong monotonicity of the operator [20–22]. The algorithms require the

explicit knowledge of the modulus of strong monotonicity [21,22] or the Lipschitz constant [20].

In the general case, some algorithms have been developed just for those particular problems

in which the nonsmooth terms of the bifunction are additively separable [23,24]. Anyhow, the

connections between directional derivatives, monotonicity and descent properties given in [25]

pave the way to a general framework for descent type methods. In this paper, we deepen the

analysis of [25] using the generalized directional derivatives of the equilibrium bifunction, and

we exploit them to devise descent algorithms for the general case.

The paper is structured in the following way. Section 2 recalls the gap function approach,

analyses how the local Lipschitz continuity of the equilibrium bifunction is inherited by the

gap function and provides an upper estimate of its generalized directional derivative. Section

3 introduces monotonicity conditions on f through generalized directional derivatives and ex-

plores their connections with stationarity and descent properties of the gap function. Section

4 exploits the results of the previous sections to devise two different solution methods and to

prove their convergence. Finally, Section 5 reports the results of some preliminary numerical

tests.

2 Equilibria and Gap Functions

Given a bifunction f : Rn × Rn → R and a closed and convex set C ⊆ Rn, the format of the

equilibrium problem reads

(EP ) find x∗ ∈ C s.t. f(x∗, y) ≥ 0, ∀ y ∈ C.

Throughout the paper, we suppose the function f(x, ·) to be convex and f(x, x) = 0 for any

x ∈ Rn. Moreover, if C is bounded and f(·, y) is upper semicontinuous, then the solution set

is nonempty, closed and bounded (see, for instance, [4, Section 2] for further existence results

relaxing the two above assumptions).

A function ϕ : C → R is said to be a gap function for (EP ) if it is non-negative on

C, and x∗ solves (EP ) if and only if x∗ ∈ C and ϕ(x∗) = 0. Thus, gap functions allow

reformulating an equilibrium problem as a global optimization problem, whose optimal value

is known a priori. In order to build gap functions with good properties, it is helpful to consider

a continuously differentiable auxiliary bifunction h : Rn × Rn → R satisfying the conditions:

– h(x, y) ≥ 0 for all x, y ∈ C and h(z, z) = 0 for all z ∈ C,

– h(x, ·) is strongly convex for all x ∈ C,

– ∇yh(z, z) = 0 for all z ∈ C,

– 〈∇xh(x, y) +∇yh(x, y), y − x〉 ≥ 0 for all x, y ∈ C.
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A bifunction with the above properties can be obtained taking h(x, y) = g(y−x) for some

continuously differentiable and strongly convex function g : Rn → R+ with g(0) = 0.

Given any α > 0, the auxiliary problem principle (see, for instance, [26]) guarantees that

the solution set of (EP ) coincides with the solution set of the following problem:

(EPα) find x∗ ∈ C s.t. f(x∗, y) + αh(x∗, y) ≥ 0, ∀ y ∈ C.

Therefore, the value function

ϕα(x) := max {−f(x, y)− αh(x, y) : y ∈ C} (1)

is a gap function for (EP ). The optimization problem in (1) has a strongly concave objective

function, hence it admits a unique solution yα(x); moreover, x∗ solves (EP) if and only if

yα(x∗) = x∗ [6]. Indeed, the inequality

α τx
2
‖x− yα(x)‖2 ≤ ϕα(x)

holds for any x ∈ C, and it follows from [27, Theorem 6.1.2] applied to the strongly convex

function f(x, ·) + αh(x, ·), with τx > 0 being the modulus of strong convexity of h(x, ·).
If f is continuously differentiable, then ϕα is continuously differentiable as well [6], while if

f is nonsmooth and continuous, then the differentiability of the gap function is generally lost

and only continuity is preserved [28]. However, stronger conditions such as the local Lipschitz

continuity of ϕα are needed to develop descent methods for (EP). The following assumption

on f provides the right tool.

Assumption (A1) Given any bounded set D ⊆ C, the function f(·, y) is locally Lipschitz

continuous on C uniformly in y ∈ D.

Indeed, in this framework local Lipschitz continuity is preserved.

Theorem 2.1 If assumption (A1) holds, then ϕα is locally Lipschitz continuous on C.

Proof. Let x ∈ C, ε > 0 and D the intersection of C with the closed ball B(yα(x), ε).

Assumption (A1) and the convexity of f(x, ·) guarantee the continuity of f on C × C, hence

the mapping yα is continuous [28]. Thus, there exists δ > 0 such that yα(u) ∈ D for any

u ∈ B(x, δ). Since h is continuously differentiable and (A1) holds, there exists a constant

L > 0 such that

ϕα(u)− ϕα(v) = −f(u, yα(u))− αh(u, yα(u))− ϕα(v)

≤ f(v, yα(u))− f(u, yα(u)) + αh(v, yα(u))− αh(u, yα(u))

≤ L ‖u− v‖

holds for any u, v ∈ B(x, δ). 2

Remark 2.1 Assumption (A1) is clearly satisfied if f is continuously differentiable. More

generally, it is satisfied whenever f is locally Lipschitz continuous. For instance, if (EP) is a

variational inequality problem, i.e., f(x, y) = 〈F (x), y − x〉, with the operator F : Rn → Rn

being locally Lipschitz continuous, then f is locally Lipschitz continuous.

3



When the gap function ϕα is locally Lipschitz continuous near x ∈ C, its generalized

directional derivative

ϕ◦α(x; d) := lim sup
z→x
t↓0

[ϕα(z + t d)− ϕα(z)] /t

at x in any direction d ∈ Rn is finite [29]. In the following, f◦x((x, y); d) denotes the generalized

direction derivative of the function f(·, y) at x in the direction d, and ∂xf(x, y) the generalized

gradient of f(·, y) at x, i.e.,

∂xf(x, y) := {ξ ∈ Rn : f◦x((x, y); d) ≥ 〈ξ, d〉, ∀ d ∈ Rn},

while f ′y((x, y); d) the directional derivative of the convex function f(x, ·) at y in the direction

d. Accordingly, ∇xh(x, y) denotes the gradient of the function h(·, y) at x.

An upper estimate of ϕ◦α(x; d), which is based on the generalized directional derivative of

f and the gradient of h, can be achieved relying on the following additional assumption.

Assumption (A2) The graph of the set-valued map (x, y) 7→ ∂x(−f)(x, y), i.e., the set

{(x, y, ξ) ∈ C × C × Rn : ξ ∈ ∂x(−f)(x, y)},

is closed.

Theorem 2.2 If (A1) and (A2) hold, then the generalized directional derivative of the gap

function ϕα satisfies the inequality

ϕ◦α(x; d) ≤ f◦x((x, yα(x));−d) + α 〈∇xh(x, yα(x)),−d〉 (2)

for any x ∈ C, any direction d ∈ Rn and any α > 0.

Proof. By definition, there exist two sequences zk → x and tk ↓ 0 such that

ϕ◦α(x; d) = lim
k→∞

(ϕα(zk + tk d)− ϕα(zk))/tk.

Let uk = zk + tk d. The mean value theorem [29, Theorem 2.3.7] guarantees

(ϕα(uk)− ϕα(zk))/tk ≤ [−f(uk, yα(uk)) + f(zk, yα(uk))+

−αh(uk, yα(uk)) + αh(zk, yα(uk))]/tk

= 〈ξk, uk − zk〉/tk
−α 〈∇xh(zk + ηk d, yα(uk)), uk − zk〉/tk

= 〈ξk, d〉 − α 〈∇xh(zk + ηk d, yα(uk)), d〉,

(3)

where ξk ∈ ∂x(−f)(zk + θk d, yα(uk)) and θk, ηk ∈]0, tk[. Assumption (A1) and the continuity

of yα guarantee the existence of one index k̄ and a constant L > 0 such that the function

(−f)(·, yα(uk)) is locally Lipschitz continuous at zk + θk d with constant L for any k ≥ k̄.

Therefore, ‖ξk‖ ≤ L holds for any k ≥ k̄ [29, Proposition 2.1.2]. Without any loss of generality,
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we can suppose ξk → ξ, hence assumption (A2) implies ξ ∈ ∂x(−f)(x, yα(x)). Taking the

limit in (3), the chain of inequalities and equalities

ϕ◦α(x; d) ≤ 〈ξ, d〉+ α 〈∇xh(x, yα(x)),−d〉
≤ (−f)◦x((x, yα(x)); d) + α 〈∇xh(x, yα(x)),−d〉
= f◦x((x, yα(x));−d) + α 〈∇xh(x, yα(x)),−d〉,

follows. 2

Assumption (A2) is satisfied when f is continuously differentiable or concave with respect

to the first argument, and in the particular case of a variational inequality with a locally

Lipschitz operator.

Proposition 2.1 Assumption (A2) is satisfied if any of the following conditions hold:

a) f is continuously differentiable on C × C;

b) f(x, y) = 〈F (x), y − x〉, with F locally Lipschitz continuous on C;

c) f(·, y) is concave on an open and convex set D with C ⊆ D for any y ∈ C.

Proof.

a) By definition, the continuity of ∇xf coincides with assumption (A2).

b) Let y ∈ C be given. Lemma 3.1 in [20] guarantees

∂x(−f)(x, y) = ∂F (x)T (x− y) + F (x), (4)

where ∂F (x) is the generalized Jacobian of F at x [29, Definition 2.6.1]. Suppose (xk, yk)→
(x, y), ξk → ξ and ξk ∈ ∂x(−f)(xk, yk). Hence, (4) implies ξk = ATk (xk−yk)+F (xk) for some

Ak ∈ ∂F (xk). Since ∂F is upper semicontinuous at x [29, Proposition 2.6.2c], there exists

M > 0 such that ‖Ak‖ ≤ M for any k ∈ N. Thus, we can suppose Ak → A without any

loss of generality. Since the graph of ∂F is closed [29, Proposition 2.6.2b], then A ∈ ∂F (x).

Therefore ξk → ξ = AT (x− y) + F (x) ∈ ∂x(−f)(x, y), showing that assumption (A2) holds.

c) It follows immediately from Theorems 23.4 and 24.5 in [30]. 2

3 Stationarity and Descent

Though (EP) can be equivalently formulated as the optimization problem

min {ϕα(x) : x ∈ C} , (5)

there are still some difficulties to overcome in order to exploit descent methods. In fact, (5)

is a nonconvex problem since the gap function ϕα is generally nonconvex: descent algorithms

provide just local minima, while the required solutions are actually the global minima of (5).

A standard way to overcome this issue relies on monotonicity conditions that guarantee all the

stationary points of (5) to be global minima (see, for instance, [6–8]). When the bifunction
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f is continuously differentiable, these conditions can be addressed through the gradient of f .

Precisely, if f is strictly ∇-monotone on C, i.e.,

〈∇xf(x, y) +∇yf(x, y), x− y〉 < 0 ∀ x, y ∈ C, x 6= y,

then the stationary points of (5) coincide with its global minima [6, Theorem 2.1] though

the convexity of ϕα may be still missing. When f is just locally Lipschitz, this kind of

monotonicity condition can be addressed through its generalized directional derivatives in the

following way.

Definition 3.1 f is called strictly generalized ∇-monotone on C iff

f◦x((x, y);x− y) + f ′y((x, y);x− y) < 0, ∀ x, y ∈ C, x 6= y. (6)

Proposition 3.1 f is strictly generalized ∇-monotone on C if any of the following conditions

hold:

a) f is continuously differentiable on C × C and strictly ∇-monotone on C;

b) f(x, y) = 〈F (x), y − x〉, with F locally Lipschitz continuous on C and any matrix A ∈
Rn×n in the generalized Jacobian ∂F (x) is positive definite for any x ∈ C;

c) f(·, y) is strictly concave on an open set D with C ⊆ D for any y ∈ C;

d) f(·, y) is concave and f(x, ·) strictly convex on an open convex set D with C ⊆ D for

any x, y ∈ C.

Proof.

a) By definition, strict and strict generalized ∇-monotonicity coincide.

b) Since f ′y((x, y);x− y) = 〈F (x), x− y〉 and

f◦x((x, y);x− y) = max
A∈∂F (x)

〈AT (y − x)− F (x), x− y〉, (7)

strictly generalized ∇-monotonicity follows from the positive definiteness of A.

c) The strict concavity of f(·, y) implies

f◦x((x, y);x− y) = (−f)◦x((x, y); y − x)

= (−f)′x((x, y); y − x)

= −f ′x((x, y); y − x)

< f(x, y),

(8)

while the convexity of f(x, ·) guarantees

f ′y((x, y);x− y) ≤ −f(x, y). (9)

Hence, (6) follows just summing the inequalities in (8) and (9).

d) The same as c) just switching the strict inequality from (8) to (9). 2

Under condition (6) the equivalence between stationarity and global optimality is preserved

also in the nonsmooth case.
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Theorem 3.1 Suppose (A1) and (A2) hold. If f is strictly generalized ∇-monotone on C,

then the following statements hold:

a) If x ∈ C does not solve (EP), then ϕ◦α(x; yα(x)− x) < 0;

b) If x∗ is a stationary point of ϕα on C, i.e.,

ϕ◦α(x∗; y − x∗) ≥ 0, ∀ y ∈ C,

then x∗ solves (EP).

Proof.

a) The assumption guarantees yα(x) 6= x. Then, yα(x)− x satisfies

ϕ◦α(x; yα(x)− x) ≤ f◦x((x, yα(x));x− yα(x))

+α 〈∇xh(x, yα(x)), x− yα(x)〉
< −f ′y((x, yα(x));x− yα(x))

+α 〈∇xh(x, yα(x)), x− yα(x)〉
≤ −f ′y((x, yα(x));x− yα(x))

−α 〈∇yh(x, yα(x)), x− yα(x)〉,
≤ 0,

(10)

where the first inequality is guaranteed by Theorem 2.2, the second by assumption (6), the

third by the assumptions on h and the last by the first order optimality condition for yα(x).

b) Suppose x∗ does not solve (EP). Hence, a) implies ϕ◦α(x∗; yα(x∗)−x∗) < 0 in contradiction

with the stationarity of x∗. 2

The above theorem provides a descent direction at non stationary points as well: a basic

descent procedure can be therefore easily devised (see Algorithm 1 in the next section). When

f takes the shape of a mixed variational inequality, the descent property given in Theorem 3.1

a) was already shown in [22, Corollary 4.1].

Weakening strict generalized ∇-monotonicity by replacing the strict inequality in (6) with

an inequality, Theorem 3.1 is no longer true even if f is continuously differentiable (see the

counterexample in [10]). Indeed, no strict inequality would appear in the chain of inequalities

(10).

When f is continuously differentiable, a descent approach not relying on strict∇-monotonicity

has been proposed in [9]: the key assumption on f is the so-called c-monotonicity, i.e.,

f(x, y) ≥ 〈∇xf(x, y), x− y〉 ∀ x, y ∈ C.

When f is just locally Lipschitz, this kind of monotonicity condition can be addressed through

its generalized directional derivatives in the following way.

Definition 3.2 f is called generalized c-monotone on C iff

f(x, y) ≥ f◦x((x, y);x− y), ∀ x, y ∈ C. (11)

Proposition 3.2 f is generalized c-monotone on C if any of the following conditions hold:
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a) f is continuously differentiable on C × C and c-monotone on C.

b) f(x, y) = 〈F (x), y − x〉, with F locally Lipschitz continuous on C, and any matrix

A ∈ Rn×n in the generalized Jacobian ∂F (x) is positive semidefinite for any x ∈ C.

c) f(·, y) is concave on an open and convex set D with C ⊆ D for any y ∈ C.

Proof.

a) By definition, c-monotonicity and generalized c-monotonicity coincide for continuously

differentiable bifunctions.

b) The positive semidefiniteness of A and (7) imply

f◦x((x, y);x− y) = f(x, y) + max
A∈∂F (x)

〈AT (y − x), x− y〉 ≤ f(x, y).

c) The same argument of Proposition 3.1 c) (see (8)) with an inequality rather than a strict

inequality. 2

Note that generalized c-monotonicity is neither stronger nor weaker than strict generalized

∇-monotonicity (see the counterexamples in [31] for the continuously differentiable case).

Under generalized c-monotonicity, the equivalence between stationarity and global opti-

mality is generally lost. Anyhow, descent techniques can be exploited all the same relying on

the following inequalities and adjusting the parameter α accordingly.

Theorem 3.2 Suppose (A1) and (A2) hold. If f is generalized c-monotone on C, then the

following statements hold:

a) The inequality

ϕ◦α(x; yα(x)− x) ≤ −ϕα(x)− α [h(x, yα(x))+

+ 〈∇xh(x, yα(x)), yα(x)− x〉]
(12)

holds for any x ∈ C;

b) Let η ∈]0, 1[. If C is bounded and x ∈ C does not solve (EP), then there exists ᾱ > 0

such that

−ϕα(x)− α [h(x, yα(x)) + 〈∇xh(x, yα(x)), yα(x)− x〉] ≤ −η ϕα(x) (13)

holds for any α ∈]0, ᾱ[.

Proof.

a) The thesis follows from the chain of inequalities and equalities

ϕ◦α(x; yα(x)− x) ≤ f◦x((x, yα(x));x− yα(x)) + α 〈∇xh(x, yα(x)), x− yα(x)〉
≤ f(x, yα(x)) + α 〈∇xh(x, yα(x)), x− yα(x)〉
= −ϕα(x)− α [h(x, yα(x)) + 〈∇xh(x, yα(x)), yα(x)− x〉] ,

where the first inequality is guaranteed by Theorem 2.2, the second by assumption (11), and

the equality by the definition of ϕα itself.
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b) By contradiction, suppose there exists a sequence αk ↓ 0 such that

−ϕαk
(x)− αk [h(x, yαk

(x)) + 〈∇xh(x, yαk
(x)), yαk

(x)− x〉] > −η ϕαk
(x).

Then, any large enough k satisfies αk < 1 and

0 < ϕ1(x)

≤ ϕαk
(x)

< −αk [h(x, yαk
(x)) + 〈∇xh(x, yαk

(x)), yαk
(x)− x〉] /(1− η),

that is not possible because αk goes to 0 and C is bounded. 2

As a consequence of (12) and (13), yα(x)−x is a descent direction for ϕα at x whenever x

does not solve (EP), and therefore ϕα(x) > 0, provided that the parameter α is small enough.

Therefore, a procedure based on descent directions can be devised updating α whenever

necessary (see Algorithm 2 in the next section).

Remark 3.1 As already mentioned, the monotonicity conditions (6) and (11) are not related

even when f is continuously differentiable. In our locally Lipschitz framework, (6) coincides

with condition (2) of [25] and (11) with condition (8) of [25] if f(·, y) is concave on an open

and convex set D with C ⊆ D for any y ∈ C.

Remark 3.2 When f takes the shape of a mixed variational inequality, inequality (12) ex-

tends the upper estimate of the directional derivative given by (4.7) in [22] under the strong

monotonicity of the operator F, which implies that any matrix in the generalized Jacobian

∂F (x) is positive definite for any x ∈ C. Indeed, (12) requires generalized c-monotonicity

that amounts to the positive semidefiniteness of Jacobian matrices (see Proposition 3.2 b)),

which in turn is equivalent to the monotonicity of F (see, for instance, [22, Lemma 2.4]).

4 Algorithms

Both assumption (A1) and (A2) are fundamental in our nonsmooth setting. Therefore,

throughout all the section we suppose that they both hold. Note that they provide prop-

erties that are always met by a continuously differentiable bifunction f (see Propositions 3.1

and 3.2), so that there is no need to underline them in smooth settings.

As briefly anticipated, Theorems 3.1 and 3.2 provide the tools to devise descent type

methods under different assumptions, i.e., strict generalized ∇-monotonicity and generalized

c-monotonicity.

Given any α > 0, strict generalized ∇-monotonicity guarantees that yα(x)−x is a descent

direction unless x solves (EP), that is, yα(x) = x. Therefore, a line search along yα(x) − x
can be performed to choose the next iterate until a solution of (EP) is found. This basic idea

is detailed in Algorithm 1.

Algorithm 1
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0. Choose α > 0, β, γ ∈]0, 1[, x0 ∈ C and set k = 0.

1. Compute yk = arg min{f(xk, y) + αh(xk, y) : y ∈ C}.

2. If dk := yk − xk = 0, then STOP.

3. Compute the smallest non-negative integer s such that

ϕα(xk + γs dk)− ϕα(xk) ≤ −β γ2s ϕα(xk),

set tk = γs, xk+1 = xk + tk d
k, k = k + 1 and goto Step 1.

Theorem 4.1 Suppose C is bounded and f is strictly generalized ∇-monotone on C. Then,

either Algorithm 1 stops at a solution of (EP) after a finite number of iterations, or it produces

a bounded sequence {xk} such that any of its cluster points solves (EP).

Proof. The line search procedure at Step 3 is always finite. By contradiction, suppose there

exists an iteration k such that

ϕα(xk + γs dk)− ϕα(xk) > −β γ2s ϕα(xk)

holds for all s ∈ N. Then, taking the maximum limit as s→ +∞ yields

ϕ◦α(xk; dk) ≥ lim sup
s→∞

[
ϕα(xk + γs dk)− ϕα(xk)

]
/γs ≥ 0,

that contradicts Theorem 3.1 since it guarantees ϕ◦α(xk; dk) < 0.

If the algorithm stops at xk after a finite number of iterations, then the stopping criterion

guarantees that xk solves (EP ).

Now, suppose the algorithm generates an infinite sequence {xk}: the sequence is bounded

since xk is a convex combination of xk−1 and yα(xk), which both belong to C. Consider any

cluster point x∗ of the sequence. Taking the appropriate subsequence {x`}, x` → x∗ holds.

Moreover, the continuity of the map yα and the function ϕα guarantees d` → d∗ = yα(x∗)−x∗
and ϕα(x`) → ϕα(x∗). Proving that x∗ solves (EP ) is equivalent to proving d∗ = 0 or

ϕα(x∗) = 0. By contradiction, suppose d∗ 6= 0 and ϕα(x∗) > 0. Since the sequence {ϕα(xk)}
is monotone, decreasing and bounded below, it has a limit and hence

lim
`→∞

[
ϕα(x`)− ϕα(x`+1)

]
= 0

holds as well. Moreover, the step size rule guarantees

ϕα(x`)− ϕα(x`+1) ≥ β t2` ϕα(x`) > 0.

Therefore, t` → 0 as `→ +∞ since ϕα(x∗) > 0. Moreover, the inequality

ϕα
(
x` + t` γ

−1 d`
)
− ϕα(x`) > −β (t` γ

−1)2 ϕα(x`) (14)

holds for all ` ∈ N. Since ϕα is locally Lipschitz continuous by Theorem 2.1, the mean value

theorem guarantees

ϕα
(
x` + t` γ

−1 d`
)
− ϕα(x`) = 〈ξ`, t` γ−1 d`〉, (15)
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holds for some θ` ∈]0, 1[, where ξ` is a generalized gradient of ϕα at x` + θ` t` γ
−1 d`. Hence,

(14) and (15) imply

〈ξ`, d`〉 > −β t` γ−1 ϕα(x`).

On the other hand, by definition ξ` satisfies

ϕ◦α
(
x` + θ` t` γ

−1 d`; d`
)
≥ 〈ξ`, d`〉,

and thus

ϕ◦α
(
x` + θ` t` γ

−1 d`; d`
)
> −β t` γ−1 ϕα(x`)

holds. Since x` → x∗, d` → d∗, and t` → 0, we get x` + θ` t` γ
−1 d` → x∗. Since ϕ◦α is upper

semicontinuous as function of (x; d) [29, Proposition 2.1.1], taking the limit as `→ +∞ yields

ϕ◦α(x∗; d∗) ≥ lim sup
`→∞

ϕ◦α
(
x` + θ` t` γ

−1 d`; d`
)
≥ 0. (16)

On the other hand, Theorem 3.1 ensures ϕ◦α(x∗; d∗) < 0 in contradiction with (16). Therefore,

x∗ solves (EP ). 2

When f is generalized c-monotone, the choice of a unique parameter α may not be enough.

In fact, yα(x)− x is not necessarily a descent direction unless α is sufficiently small and the

magnitude of smallness depends upon x. Therefore, the basic idea of Algorithm 1 has to

be enhanced: the direction yα(x) − x is exploited to perform the line search as long as the

sufficient decrease condition (13) is satisfied, otherwise α is reduced according to some given

scheme. This idea is detailed in Algorithm 2.

Algorithm 2

0. Choose γ, η ∈]0, 1[, β ∈]0, η[, a sequence {αk} ↓ 0, x0 ∈ C and set k = 1.

1. Set z0 = xk−1 and j = 0.

2. Compute yj = arg min{f(zj , y) + αk h(zj , y) : y ∈ C}.

3. If dj := yj − zj = 0, then STOP.

4. If −ϕαk
(zj)− αk

[
h(zj , yj)− 〈∇xh(zj , yj), zj − yj〉

]
< −η ϕαk

(zj),

then compute the smallest non-negative integer s such that

ϕαk
(zj + γs dj)− ϕαk

(zj) ≤ −β γs ϕαk
(zj),

set tj = γs, zj+1 = zj + tj d
j , j = j + 1 and goto Step 2.

else set xk = zj , k = k + 1 and goto Step 1.

Theorem 4.2 Suppose C is bounded and f is generalized c-monotone on C. Then, either

Algorithm 2 stops at a solution of (EP) after a finite number of iterations, or it produces either

an infinite sequence {xk} or an infinite sequence {zj} such that any of its cluster points solves

(EP).
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Proof. The line search procedure at Step 4 is always finite. By contradiction, suppose there

exist k and j such that

ϕαk
(zj + γs dj)− ϕαk

(zj) > −β γs ϕαk
(zj)

holds for all s ∈ N. Therefore, taking the maximum limit as s→ +∞ yields

ϕ◦αk
(zj ; dj) ≥ lim sup

s→∞
γ−s(ϕαk

(zj + γs dj)− ϕαk
(zj)) ≥ −β ϕαk

(zj),

that is not possibile since Theorem 3.2 and η > β guarantee the inequalities ϕ◦αk
(zj ; dj) ≤

−η ϕαk
(zj) < −β ϕαk

(zj).

If the algorithm stops at zj after a finite number of iterations, then the stopping criterion

guarantees that zj solves (EP).

Now, suppose that the algorithm generates an infinite sequence {xk}. Let x∗ be a cluster

point of {xk}: taking the appropriate subsequence {x`}, then x` → x∗ holds. Since α` ↓ 0,

we can suppose α` ≤ 1 for any ` without any loss of generality. Since the rule at Step 4 fails

at zj = x`, the inequalities

0 < ϕ1(x`) ≤ ϕα`
(x`) < −α`

[
h(x`, y`) + 〈∇xh(x`, y`), y` − x`〉

]
/(1− η)

hold. Since x` and y` belong to the bounded set C, the continuity of h and ∇xh guarantee

that the sequence {h(x`, y`) + 〈∇xh(x`, y`), y` − x`〉} is bounded from above. Thus, taking

the limit as ` → +∞, the continuity of ϕ1 implies that ϕ1(x∗) = 0, and therefore x∗ solves

(EP).

Now, suppose the algorithm generates an infinite sequence {zj} for some fixed k. There-

fore, we can set α = αk as this value does not change anymore, and let z∗ be a cluster point

of {zj}: taking the appropriate subsequence {z`}, then z` → z∗ holds. The continuity of yα
implies d` → d∗ = yα(z∗)− z∗.

By contradiction, suppose that z∗ does not solve (EP), or equivalently ϕα(z∗) > 0. The

step size rule implies

ϕα(z`)− ϕα(z`+1) ≥ β t` ϕα(z`) > 0.

Taking the limit as `→ +∞ yields t` → 0 since ϕα(z∗) > 0. Moreover, the inequality

ϕα
(
z` + t` γ

−1 d`
)
− ϕα(z`) > −β t` γ−1 ϕα(z`)

holds for all ` ∈ N large enough. Since ϕα is locally Lipschitz continuous, the mean value

theorem guarantees that there exists θ` ∈]0, 1[ such that

ϕα
(
z` + t` γ

−1 d`
)
− ϕα(z`) ≤ (t` γ

−1)ϕ◦α
(
z` + θ` t` γ

−1 d`; d`
)
.

Since ϕ◦α is upper semicontinuous as function of (z; d), the chain of inequalities

ϕ◦α(z∗; d∗) ≥ lim sup
`→+∞

ϕ◦α
(
z` + θ` t` γ

−1 d`; d`
)
≥ −β ϕα(z∗) (17)

follows. On the other hand, the condition at Step 4 is satisfied for all `, hence

−ϕα(z`)− α
[
h(z`, y`) + 〈∇xh(z`, y`), y` − z`〉

]
≤ −η ϕα(z`).

12



Thus, taking the limit as `→ +∞, the upper estimate of Theorem 3.2 and ϕα(z∗) > 0 give

ϕ◦α(z∗; d∗) ≤ −ϕα(z∗)− α [h(z∗, yα(z∗)) + 〈∇xh(z∗, yα(z∗)), d∗〉]
≤ −η ϕα(z∗)

< −β ϕα(z∗),

which contradicts (17). Therefore, z∗ solves (EP). 2

Note that the two algorithms employ slightly different procedures for the line search.

Indeed, Theorem 3.2 provides an estimate of the generalized directional derivative of ϕα that

can be exploited to further control the decrease, while Theorem 3.1 guarantees just that

yα(x)− x is a descent direction.

5 Numerical Tests

To the best of our knowledge, benchmarks of test problems for (EP) are not yet available for

the nonsmooth case. Therefore, we decided to test the two algorithms on a set of mathematical

examples with box constraints and bifunctions given by the sum of multiplicatively separable

nonsmooth terms with quadratic and bilinear ones. Precisely, we considered (EP ) with the

constraint C = [0, b1]× · · · × [0, bn] and the bifunction

f(x, y) = 〈P x+Qy + r, y − x〉+ g1(x) g2(y)− g1(y) g2(x),

where P,Q ∈ Rn×n are positive definite matrices, r ∈ Rn and

g1(x) = min{〈c1, x〉, 〈d1, x〉}, g2(x) = max{〈c2, x〉, 〈d2, x〉}

for some c1, c2, d1, d2 ∈ Rn+. Note that the key assumptions (6) and (11) of both algorithms

are satisfied since f(·, y) is strongly concave for any y ∈ C (indeed, the functions g1 and g2 are

both non-negative on C, g1 is concave while g2 is convex, and the term −〈Px, x〉 is strongly

concave).

Instances have been produced relying on uniformly distributed pseudorandom numbers

for the data of the bifunction f and the size of the box constraint C. Moreover, the formulas

P = aAAT + b I and Q = a′BBT + b′ I with pseudorandom entries for the matrices A

and B allow producing also uniformly distributed pseudorandom minimum and maximum

eigenvalues of P and Q by exploiting the coefficients a, a′, b, b′. The choice of the ranges for

the data and the eigenvalues are summarized in Table 1.

The algorithms have been implemented in MATLAB 7.10.0, choosing the auxiliary bifunc-

tion h(x, y) = ‖y − x‖22/2. Since the evaluation of the gap function ϕα and the computa-

tion of yα(x) amount to solving a nonsmooth optimization problem, derivative-free methods

are an appropriate tool. Specifically, direct search methods have been used relying on the

built-in function patternsearch from the Optimization Toolbox together with its pattern

GSSPositiveBasis2N. Finally, the value 10−3 was used as the threshold for the stopping cri-

terion at step 2 of both algorithms: more precisely, the algorithms stopped whenever ‖dk‖∞
in Algorithm 1 or ‖dj‖∞ in Algorithm 2 was less or equal to 10−3.
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Table 1: Ranges for uniform distributions.

data range

Aij , Bij [0,50]

bi [10,15]

c1, d1 [0,1]

c2, d2 [0.5,2]

r [-5,5]

eigenvalue range

λmin(P ) ]0,10]

λmax(P ) [λmin(P ), 5 + λmin(P )]

λmin(Q) [0.5,1]

λmax(Q) [λmin(Q), 1 + λmin(Q)]

Computational tests have been carried out with n = 10 to analyse the sensitivity of the

two algorithms with respect to their parameters and to compare their behaviour.

First, we ran Algorithm 1 for different choices of the parameters α, β and γ on a set of

100 random instances with random starting points. Results are given in Tables 2 and 3: each

row reports the average and the minimum and maximum number of iterations, evaluations

of the gap function (i.e., optimization problem solved) and evaluations of the bifunction that

have been performed. The results suggest that a value of α close to 1 and a large value of β

are good choices. The choices γ = 0.5 and γ = 0.7 produce comparable performances while

γ = 0.9 seems too large.

Table 2: Algorithm 1 with α = 1: sensitivity with respect to β and γ.

iterations opt. problems function evaluations

β γ min avg max min avg max min avg max

0.1 0.5 3 18.07 78 3 18.37 78 2714 25008.43 103568

0.1 0.7 3 18.09 78 3 19.01 78 2714 25992.64 103568

0.1 0.9 3 21.07 78 3 24.40 96 2714 33309.90 143393

0.3 0.5 3 14.12 42 3 14.69 42 2714 20238.07 58614

0.3 0.7 3 13.95 42 3 15.41 42 2714 21239.42 58614

0.3 0.9 3 17.41 43 3 22.29 89 2714 30548.21 132419

0.5 0.5 3 11.13 25 3 12.08 25 2714 16967.44 33605

0.5 0.7 3 11.08 25 3 13.16 25 2714 18318.07 38236

0.5 0.9 3 14.25 27 3 20.78 68 2714 28534.42 103033

0.7 0.5 3 9.06 15 3 10.96 16 2714 15512.88 23588

0.7 0.7 3 9.06 15 3 11.85 24 2714 16533.97 38236

0.7 0.9 3 12.30 24 3 20.87 68 2714 28597.91 103033

0.9 0.5 3 8.08 10 3 12.64 19 2714 17797.70 27899

0.9 0.7 3 6.99 13 3 10.46 24 2714 14591.36 38236

0.9 0.9 3 10.35 19 3 21.38 57 2714 29015.21 87819

Afterwards, similar tests have been performed on Algorithm 2 for different choices of the
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Table 3: Algorithm 1 with β = 0.9 and γ = 0.7: sensitivity with respect to α.

iterations opt. problems function evaluations

α min avg max min avg max min avg max

0.01 2 9.45 26 2 17.48 59 1785 24668.08 87660

0.1 2 9.20 27 2 16.74 52 1758 23556.82 73221

1 3 7.81 26 3 12.60 50 2575 17724.08 78488

10 3 12.13 37 3 21.13 97 3398 26980.33 122493

parameters β, η and γ relying of the sequence αk = 1/2k. Tables 4 and 5 report the results

of the tests and they suggest that close and large values for β and η and γ = 0.5 or γ = 0.6

are good choices.

Table 4: Algorithm 2 with γ = 0.6: sensitivity with respect to β and η.

iterations opt. problems function evaluations

β η min avg max min avg max min avg max

0.1 0.3 2 14.94 57 2 15.61 57 1927 21761.03 76493

0.1 0.5 2 14.94 57 2 15.61 57 1927 21761.03 76493

0.1 0.7 2 14.94 57 2 15.61 57 1927 21761.03 76493

0.1 0.9 3 19.58 100 3 20.86 100 2598 29323.04 146863

0.3 0.5 2 13.35 45 2 14.14 45 1927 19809.19 62235

0.3 0.7 2 13.35 45 2 14.14 45 1927 19809.19 62235

0.3 0.9 3 14.70 40 3 16.20 40 2598 23073.93 60288

0.5 0.7 2 10.94 26 2 12.06 26 1927 17128.34 36013

0.5 0.9 3 11.87 24 3 13.81 36 2598 20010.51 53968

0.7 0.9 3 9.83 20 3 12.76 36 2598 18590.27 53968

Finally, Table 6 reports the results of a comparison between Algorithms 1 and 2. According

to the previous tests, we set α = 1, β = 0.9 and γ = 0.7 for Algorithm 1 and αk = 1/2k,

β = 0.5, η = 0.7 and γ = 0.6 for Algorithm 2. We chose to focus the comparison on the

minimum eigenvalue λmin(P ) of P since it plays a relevant role in the convergence of the

algorithms: indeed, Algorithm 2 converges if λmin(P ) ≥ 0, while Algorithm 1 if λmin(P ) > 0.

We ran each algorithm on a set of 100 random instances for given ranges to draw λmin(P )

from. Each row corresponds to the choice of a range and it reports the average number

of iterations, optimization problems and evaluations of the bifunctions required by a single

instance. As expected, the results show that Algorithm 2 performs better and better than

Algorithm 1 as λmin(P ) gets closer and closer to 0, while their performances become at least

comparable as it grows.
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Table 5: Algorithm 2 with β = 0.5 and η = 0.7: sensitivity with respect to γ.

iterations opt. problems function evaluations

γ min avg max min avg max min avg max

0.5 2 9.31 23 2 10.49 23 1860 14290.57 30437

0.6 2 8.91 23 2 10.53 23 1860 14233.29 30437

0.7 2 10.06 23 2 12.90 38 1860 17431.60 51727

0.8 2 11.40 33 2 16.09 64 1860 21791.92 83276

0.9 2 13.29 28 2 23.37 96 1860 31672.35 136625

Table 6: Comparison between Algorithm 1 and Algorithm 2.

iterations opt. problems function evaluations

λmin(P ) Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2

]0, 0.1] 18.40 12.98 39.20 15.97 47219.51 17034.09

[0.1, 0.5] 15.80 12.06 30.89 14.17 40503.23 15534.95

[0.5, 1] 12.85 12.24 23.36 16.09 34692.60 17769.72

[1, 5] 11.26 14.80 20.59 25.00 25375.46 25947.82

6 Conclusions

The paper studies gap functions and descent type methods for nonsmooth equilibrium prob-

lems. The gap function inherits local Lipschitz continuity from the equilibrium bifunction f ;

stationarity and descent properties are achieved under new generalized monotonicity condi-

tions on f , which involve generalized derivatives. This analysis leads to devise two globally

convergent solution methods. Further work can be carried out trying to improve the results

in a few directions.

The evaluation of the gap function is the most demanding task of the algorithms, since

it amounts to solving a nonsmooth convex optimization problem. The numerical tests of

Section 5 have been performed exploiting derivative-free direct search methods. Different

nonsmooth optimization algorithms, such as bundle and dual methods, could be exploited as

well, while ad hoc methods might be developed relying on the particular properties of the

convex program at hand. Moreover, the algorithms rely on the exact evaluation of the gap

function: inexact evaluations together with non-monotone line searches could be considered

to make each iteration computationally less expensive [11].

Linear approximations of nonlinear constraints could be exploited to introduce new classes

of gap functions, which require to minimize a convex function just over a polyhedron. A

combination of descent and penalization techniques could lead to alternative solution algo-

rithms [10,12].

The difference of a pair of gap functions, that is the so-called D-gap functions, could be

analysed, hopefully leading to solution methods based on unconstrained optimization tech-

niques. Indeed, some interesting results have been developed in the smooth case (see, for
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instance, [4, Section 3.1.3]). Anyhow, the difference of functions is likely to bring in some

additional difficulties in the development of nonsmooth stationarity and descent properties

based on generalized monotonicity.

Finally, it would be very interesting to apply the approach of this paper to quasi-equilibria,

that is, equilibrium problems in which the feasible region changes together with the consid-

ered point. Indeed, they are much more challenging problems that have not received much

attention up to now (see [32]).
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