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Abstract

The aim of this paper is to explore the capabilities of a solar electric propelled spacecraft on a mission

towards circumsolar space. Using an indirect approach, the paper investigates minimum time of transfer

(direct) trajectories from an initial heliocentric parking orbit to a desired final heliocentric target orbit,

with a low perihelion radius and a high orbital inclination. The simulation results are then collected into

graphs and tables for a trade-off analysis of the main mission parameters. Finally, a comparison of the

performance between a solar electric and a (photonic) solar sail based spacecraft is discussed.
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Nomenclature

A = matrix ∈ R7×3, see Eq. (2)

A = sail reflective area

a = semimajor axis

ac = solar sail characteristic acceleration

âT = propulsive acceleration unit vector

d = vector ∈ R7×1, see Eq. (3)

e = orbital eccentricity

f, g, h, k = modified equinoctial elements

H = Hamiltonian function

i = orbital inclination

Id = electric thruster operation point

J = performance index

L = true longitude

m = spacecraft mass

P = input power to Power Processing Unit

P = solar radiation pressure at 1 AU

PL = payload power

P⊕ = solar array initial output power

p = semilatus rectum

r = Sun-spacecraft distance

ra = target orbit’s aphelion radius

rp = target orbit’s perihelion radius

T = electric thruster’s propulsive thrust

t = time
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x = state vector

β = propellant mass flow rate

δ = ecliptic declination

ηP = duty cycle

λ = adjoint vector

λ = adjoint variable

µ� = Sun’s gravitational parameter

ν = true anomaly

ω = argument of perihelion

Ω = right ascension of the ascending node

σsa = sail assembly loading

Subscripts

0 = initial, injected, parking orbit

1 = final, target orbit

p = propellant

pay = payload

sa = sail assembly

Superscripts

· = time derivative
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1 Introduction

The circumsolar space, with particular reference to the region around the Sun’s poles, is still,

to a large extent, an unexplored part of our Solar System. Despite a continuous progress of

remote sensing capabilities, a deep knowledge of the inner heliosphere can be obtained only

through accurate in-situ measurements (Heliophysics Roadmap Team, 2009). In fact, an in-

depth analysis of the solar wind or a thorough measurement of the solar magnetic field, and

of its interaction with the external corona, requires the use (in situ) of a scientific probe. Even

more interesting is the possibility to observe the Sun at high inclinations above the Ecliptic

plane.

The interest of the scientific community for exploring the circumsolar space has been revived

after the remarkable results of the Ulysses mission, including the observation of an unexplained

constant decrease of the solar wind since the beginning of space based recordings, and further

confirmed by the launch of the European probe Solar Orbiter (ESA Study Scientists, 2011),

which is scheduled for the beginning of 2017. Its operating orbit is characterized by a perihelion

distance of about 0.28 AU and an inclination greater than 25 deg with respect to the solar

equatorial plane. Such a probe is expected to provide detailed information both of the inner

heliosphere and of the solar polar regions. A closer view of the Sun will be given by the American

Solar Probe Plus (APL Team, 2008), whose launch will take place on 2018. The Solar Probe

Plus should be the first spacecraft capable of traveling within the solar atmosphere (the solar

corona) and reaching a distance of 5.9 million kilometers (that is, 8.5 solar radii) from the

photosphere, the region from which the photons originate.

The difficulty of reaching the circumsolar space with a scientific probe comes from the high ∆V

necessary for those mission types. In fact, the desired scientific measurements typically require

the achievement of a heliocentric orbit with a low perihelion and a high inclination with respect
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to the Ecliptic plane. For example, a circular orbit with a radius of 0.28 AU and an inclination

of 28 deg with respect to the Ecliptic plane would require a minimum ∆V ' 29 km/s using a

two impulse maneuver. Such a value could be reduced, the perihelion distance and inclination

being the same, using an elliptic orbit. In fact, with an aphelion radius of 0.8 AU the ∆V

decreases to about 17.2 km/s. The Ulysses mission, one of the very first missions dedicated

to watch the Sun closely, acquired an orbit inclination of 80 deg while retaining a perihelion

radius larger than 1 AU. The spacecraft left the Earth with a staggering speed of 15.7 km/s,

making it, at that time, the fastest interplanetary spacecraft ever launched. Such a high speed

was the price to be paid to reach Jupiter and pump up there the inclination for free, which

also forced the orbit aphelion to be at roughly 5 AU.

The remarkably high values of ∆V that characterize space missions (also referred to as “high

energy” missions) towards the circumsolar space, usually require a high hyperbolic excess ve-

locity at launch and multiple gravity assist maneuvers to reduce the propellant consumption

within acceptable limits. For example, the Solar Probe Plus mission plans seven flybys with

Venus, while the Solar Orbiter mission schedules two flybys with Earth in addition to several

Venus gravity assists.

Clearly, the presence of multiple flybys makes the transfer trajectory design more difficult and

introduces constraints on the launch windows. On the other side, a direct transfer, which could

offer a higher flexibility on launch windows, would be impossible for a (chemical) high thrust

propulsion system, due to an excessively high value of ∆V . Not surprisingly, missions towards

the heliosphere have been studied using innovative propulsion systems like solar sails (Sauer,

1999). Indeed, solar sails are particulary suitable for transfers in the inner Solar System as the

propulsive force they generate is proportional to the local solar flux, which in turns varies with

the inverse square distance from the Sun. Note that, in a solar-powered spacecraft in which the

electric power is supplied by solar arrays, the maximum input power (and then the propulsive

thrust) is an involved function of the distance from the Sun (Rayman and Williams, 2002),
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but also depends on the flight time due to the solar cells degradation (Saleh et al., 2002).

However, despite the recent successes of the Japanese IKAROS mission (Tsuda et al., 2011),

which first used a solar sail for an interplanetary mission, this kind of propulsion system

does not yet offer a satisfactory technology readiness level (Johnson et al., 2010). A possible

alternative, which currently guarantees a greater confidence level, is given by solar electric

propulsion (SEP) technology (Brophy and Noca, 1998; Circi, 2003). As is well known, the high

specific impulse provided by SEP systems allows for a significant reduction of the propellant

necessary to complete the transfer (Williams and Coverstone-Carroll, 1997). Current space

missions designed to reach the inner part of the Solar System with SEP technology, use solar

electric propulsion in combination with multiple gravity assists to maximize the payload mass

delivered into the final operational orbit. Examples are the initial design of the Solar Orbiter

mission (Vasile and Bernelli-Zazzera, 2003b) or the design of the BepiColombo mission (Vasile

and Bernelli-Zazzera, 2003a). Furthermore, future concepts envisage the use of these propulsion

systems in conjunction with a solar sail, thus constituting a hybrid solution (Leipold and Götz,

2002; Mengali and Quarta, 2007) that seeks to overcome the intrinsic limitations of the each

system alone (Circi, 2004; Macdonald and McInnes, 2011).

In any case, an assessment of the performance of a pure SEP system for a direct transfer is

useful to evaluate the possible improvements provided by a hybrid solution, or by the inclusion

of gravity assist maneuvers. This paper addresses a preliminary performance investigation for

a spacecraft equipped with a SEP propulsion system, whose aim is to reach the circumsolar

space. The study takes into account the actual performance of a SEP system of last generation.

Minimum time trajectories necessary to obtain a direct transfer towards a target orbit with

prescribed characteristics are found using an indirect approach based on optimal control theory.

The rationale is that a minimum time trajectory provides an upper limit on the propellant

mass along a possible optimal time vs. mass trade-off curve for a direct transfer. In other words

any other optimal direct transfer solution that aims at minimizing the mass of propellant will
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have a longer transfer time.

2 Mathematical Model

The equations of motion (Betts, 2000) of a SEP spacecraft, in a heliocentric inertial reference

frame, may be expressed in terms of Modified Equinoctial Orbital Elements (Walker et al.,

1985; Walker, 1986) (MEOE) p, f , g, h, k, and L as:

ẋ = ηP (T/m)A âT + d (1)

where x , [p, f, g, h, k, L,m]T is the state vector, m is the spacecraft mass, T ≥ 0 is the

propulsive thrust modulus, âT is the thrust unit vector whose components are expressed in

a local-vertical/local-horizontal orbital reference frame, and ηP = 0.92 is the duty cycle. The

latter, according to Rayman and Williams (2002), is the fraction of time during deterministic

thrust periods in which T 6= 0. In Eq. (1), A ∈ R7×3 is a matrix in the form:

A ,

√
p

µ�



0

[
2 p

1 + f cosL+ g sinL

]
0

[sinL]

[
(2 + f cosL+ g sinL) cosL+ f

1 + f cosL+ g sinL

] [
−g (h sinL− k cosL)

1 + f cosL+ g sinL

]

[− cosL]

[
(2 + f cosL+ g sinL) sinL+ g

1 + f cosL+ g sinL

] [
f (h sinL− k cosL)

1 + f cosL+ g sinL

]

0 0

[
(1 + h2 + k2) cosL

2 (1 + f cosL+ g sinL)

]

0 0

[
(1 + h2 + k2) sinL

2 (1 + f cosL+ g sinL)

]

0 0

[
h sinL− k cosL

1 + f cosL+ g sinL

]

0 0 0



(2)
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where µ� , 132 712 439 935.5 km3/s2 is the Sun’s gravitational parameter, and the vector

d ∈ R7×1 is defined as

d ,

0, 0, 0, 0, 0,
√
µ� p

(
1 + f cosL+ g sinL

p

)2

,−ηP β

T

(3)

where β ≥ 0 is the propellant mass flow rate. Note that p is the semilatus rectum of the

spacecraft osculating orbit, whereas the transformations from MEOE to the classical orbital

elements are

a =
p

1− f 2 − g2
(4)

e =
√
f 2 + g2 (5)

i = 2 arctan
√
h2 + k2 (6)

sinω = g h− f k , cosω = f h+ g k (7)

sin Ω = k , cos Ω = h (8)

ν = L− Ω− ω (9)

where a is the semimajor axis, e is the eccentricity, i the orbital inclination, ω is the argument

of perihelion, Ω is the longitude of the ascending node, and ν is the true anomaly of the

spacecraft’s osculating orbit.

In a SEP spacecraft, the thrust level T and the propellant mass flow rate β are closely related

to the input power P to the Power Processing Unit (PPU). In particular, an electric thruster

has a finite number of operation points (Patterson et al., 2001; Patterson and Benson, 2007),

each one characterized by a corresponding set of values of T , β, and P . If the propulsion

system performance coincides with that of a NASA’s Evolutionary Xenon Thruster (NEXT)
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ion thruster (Patterson and Benson, 2007), a set of 40 operation points (or Id) is available,

see Fig. 1. In the simulations, a fictitious operation point (that is Id = 41, where T = 0 and

β = 0) has been added to the actual NEXT thrust table, to model the presence of possible

coasting phases in the spacecraft optimal trajectory. Therefore, within this simplified model,

the operation point Id ∈ N+ (with Id ≤ 41), represents the only control parameter that

describes the thruster performance in terms of T and β.

For example, when the first operation point Id = 1 is selected, the propulsion system sup-

plies the maximum thrust (about 0.236 N) at the maximum propellant mass flow rate (about

5.76 mg/s), see Fig. 1. Note that the condition Id = 1 can be selected only if the PPU input

power is (at least) 7.22 kW. In fact, assuming a photovoltaic power generation system with

degradation effects (Rayman and Williams, 2002; Oh, 2007), the set of all admissible operation

points is strictly related to the available input power. The latter is defined as the difference

of the solar array output power and the power allocated to operate the spacecraft systems

PL , 400 W. Therefore, when an initial output power P⊕ is given, the set of admissible opera-

tion points depends both on the Sun-spacecraft distance and the time (Rayman and Williams,

2002). The mathematical model and the flow diagram of the electric power calculation are

discussed in Quarta and Mengali (2011). In this paper P⊕ is chosen to coincide with the solar

array output power at the beginning of the mission, and at a reference Sun-spacecraft distance

equal to 1 AU.
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2.1 Trajectory optimization

Assume that the initial (corresponding to t0 , 0) spacecraft osculating orbit coincides with

the Earth’s (Keplerian) heliocentric orbit, viz.

p(t0) = 9.9878× 10−1 AU , f(t0) = −3.5778× 10−3 , g(t0) = 1.5344× 10−2

h(t0) = −1.5181× 10−5 , k(t0) = 2.1250× 10−5 (10)

This scenario is representative of a spacecraft injection on a parabolic Earth escape trajectory,

with zero hyperbolic excess energy with respect to the planet.

The optimization problem consists of finding the minimum time trajectory that transfers the

spacecraft from the initial orbit to a final (prescribed) target orbit. This amounts to maxi-

mizing the objective function J , −t1, where t1 is the total flight time. Using an indirect

approach (Betts, 1998), the optimal thrust direction âT is obtained through Pontryagin’s

maximum principle (Chobotov, 1996) as

âT =
AT λ

‖AT λ‖
(11)

where λ ∈ R7×1 is the adjoint vector

λ , [λp, λf , λg, λh, λk, λL, λm]T (12)

whose time derivative is given by the Euler-Lagrange equations

λ̇ = −∂H
∂x

(13)

where H , [ηP (T/m)A âT · λ+ d · λ] is the Hamiltonian function. The explicit expressions of
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the Euler-Lagrange equations, evaluated using a symbolic math toolbox, has been omitted for

the sake of brevity. According to Quarta and Mengali (2011), the optimal thrust level T (and

so the propellant mass flow rate β) is obtained, using a numerical approach (Hoare, 1962),

by maximizing the Hamiltonian function H with respect to Id. Note that the maximization

process of H should take into account the constraint condition on the actual value of the

available power for the propulsion system.

The spacecraft motion is described by the seven equations of motion (1) and the seven Euler-

Lagrange equations (13). This differential system must be completed with 14 suitable boundary

conditions, the first five of these are shown in Eq. (10). Because the initial spacecraft angular

position is left free, the initial true longitude L(t0) is an output of the optimization process.

The sixth boundary condition refers to the initial (given) spacecraft mass m0 , m(t0), whereas

the remaining eight conditions (along with the minimum flight time t1) are obtained by en-

forcing the transversality condition (Bryson and Ho, 1975), following the procedure described

in Casalino et al. (1998, 1999). In particular, when the inclination i1, the perihelion radius rp,

and the aphelion radius ra of the heliocentric target orbit are all fixed, Eqs. (5) and (6) provide

the following three constraints on the final value (subscript 1) of MEOE:

i1 = 2 arctan
√
h21 + k21 ,

ra − rp
ra + rp

=
√
f 2
1 + g21 , p1 =

2 rp ra
rp + ra

(14)

A set of heliocentric canonical units (Bate et al., 1971), in which the spacecraft injected massm0

coincides with the mass unit, has been used in the integration of the differential equations to re-

duce their numerical sensitivity. The equations of motion (1) and the Euler-Lagrange equations

(13) have been integrated in double precision using a variable order Adams-Bashforth-Moulton

solver scheme (Shampine and Gordon, 1975) with absolute and relative errors of 10−12. Finally,

the boundary-value problem associated to the variational problem has been solved through a

hybrid numerical technique that combines genetic algorithms (to obtain a first estimate of
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adjoint variables), with gradient-based and direct methods to refine the solution.

3 Problem Description and Simulations Results

Assume that the spacecraft, with an injected mass m0, is equipped with a SEP system, whose

performance model is based on that of the NEXT thruster. The problem is to find the min-

imum time, direct trajectory (that is, without gravity assist maneuvers) that transfers the

spacecraft from an Earth’s heliocentric orbit to a Keplerian target orbit, under the assump-

tion that perihelion radius rp, aphelion radius ra and orbital inclination i1, are all given, see

Eqs. (14). The optimization problem is solved by means of the indirect approach described in

the previous section. Note that, in all of the simulations, the initial ν0 and final ν1 spacecraft

true anomaly, the final spacecraft mass m1, the target orbit’s argument of perihelion ω1, and

the right ascension of the ascending node Ω1, are all left free. Their optimal values are therefore

obtained as outputs of the optimization process.

For a given target orbit characteristics, that is, for a given set of values (rp, ra, i1), the min-

imum flight time t1 is a function of both the injected mass m0 and the initial solar array

output power P⊕. Equivalently, in mathematical terms, the flight time may be expressed as

t1 = t1 (rp, ra, i1, m0, P⊕). For example, assume that m0 = 1000 kg, P⊕ = 10 kW, and that

the target orbit characteristics are rp = 0.3 AU, ra = 0.8 AU and i1 = 24 deg. These data

are consistent with the Solar Orbiter operational orbit (ESA Study Scientists, 2011). The op-

timization process provides a minimum flight time t1 = 952.9 days, whereas the propellant

consumption is mp , m0 −m1 ' 436.3 kg (the propellant mass fraction is mp/m0 = 43.6%).

The corresponding transfer trajectory is shown in Fig. 2, where the asterisk denotes the per-

ihelion of the parking and target orbit, whereas the circle refers to the starting (or arrival)

point.

12 of 37



The heliocentric transfer starts when the spacecraft initial true anomaly is ν0 ' 136 deg, as

is shown in Fig. 2(a), and ends when the spacecraft completes approximately four revolutions

around the Sun. Note that the departure orbit coincides, by construction, with the Earth’s

heliocentric orbit (see Eq. (10)), and therefore an optimal launch opportunity occurs (yearly)

on May 20.

Figures 3 and 4 show the variation of the semimajor axis a, inclination i, perihelion p/(1 + e)

and aphelion p/(1 − e) radius of the osculating orbit along the optimal transfer trajectory.

In particular, Fig. 3 shows that the orbital inclination changes mainly at aphelion passages

(which are placed close to the nodes), and the aphelion radius is initially increased to improve

the propulsive acceleration effectiveness in the plane change maneuver. Unlike locally optimal

steering laws (Macdonald and McInnes, 2005), a non-monotonic time-variation of the osculating

orbit elements and characteristics (such as aphelion and perihelion) is typical of truly optimal

control laws, even though this does not constitute a proof of the global optimality of the

performance index (in this case the total flight time). Such a behavior is consistent with what

was observed by Dachwald et al. (2006b) in a similar mission scenario, where a near-term solar

sail reaches an heliocentric orbit with a low perihelion radius and a high inclination.

Figure 5 shows the time variation of the Sun-spacecraft distance r and the spacecraft (ecliptic)

declination δ during the time-optimal transfer. Note that δ is the angle between the Sun-

spacecraft line and the Ecliptic plane. Figure 5 also shows that the local maxima of r = r(t)

are all located in the neighboring of the Ecliptic plane (δ = 0).

3.1 Sensitivity analysis

A sensitivity analysis of mission performance, obtained by varying the injected mass in the

range m0 ∈ [550, 1350] kg and the initial solar array output power in the interval P⊕ ∈
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[5.5, 10] kW, is now presented. Note that a variation of P⊕ with respect to the reference value

(of 10 kilowatts) may reasonably be used to model a (partial) failure of the solar electric power

system. The simulation results are summarized in Tables 1 and 2. When the initial electric

power P⊕ is kept fixed, and injected mass m0 is varied within the selected range, the propellant

mass fraction mp/m0 displays a small fluctuation around a mean value of about 43.21%, see

the third column of Table 1. This corresponds roughly to a linear variation of the propellant

mass mp versus the spacecraft injected mass m0, in the selected range. A similar conclusion

holds true for the minimum flight time t1 versus m0, which may be approximated as

t1 ' 0.9479m0 (15)

where t1 is expressed in days and m0 in kilograms.

Note that the propellant throughput capability of a NEXT propulsion system (Van Noord,

2007) is about 450 kg (qualification-level), which corresponds to 22000 hours of operation at

maximum thrust (operation point Id = 1, see Fig. 1). Therefore, according to Table 1, only the

mission scenario in which m0 ≤ 1050 kg is consistent with the actual characteristics of a single

propulsive unit. Table 1 also shows that, when m0 = 1050 kg, the spacecraft dry mass is less

than m1 ' 600 kg, a value consistent with those reported in Table 2 of Oh et al. (2008) for a

rendezvous mission towards comet Tempel 1 of a SEP spacecraft with a NEXT thruster and

P⊕ = 10 kW. However, laboratory tests (Herman et al., 2009; Reckart, 2009) indicate that the

NEXT thruster could (potentially) provide a propellant throughput greater than 750 kg, and

this enhanced capability would make other mission scenarios possible.

For a given injected mass m0, the propellant mass fraction mp/m0 is affected by the value of

P⊕, see the third column of Table 2. This behavior is closely related to the propulsion system

mathematical model. In fact, as the simulations show, the optimal thrusting strategy consists of

selecting (at any time) the maximum propulsive thrust. If the available power is always greater
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than 7.22 kW, then the thruster operation point is Id = 1 along the whole transfer trajectory.

This explains why a initial power P⊕ ≥ 9.5 kW gives the same mission performance, see the last

two rows in Table 2. However, when the available power becomes less than 7.22 kW, because

either the spacecraft is too far from the Sun or the value of P⊕ is insufficient, the optimization

process selects an operation point different from Id = 1. This situation is illustrated in Figure 6,

where the time history of the thruster operation point Id is shown as a function of P⊕. Note,

from Table 2, that there is a little difference in performances between the case of P⊕ = 7 kW

and P⊕ = 7.5 kW. In other terms, the value P⊕ ' 7 kW is suboptimal in this mission scenario.

The flight time and the propellant mass fraction depend on the target orbit characteristics.

For example Tables 3 and 4 show the mission performance as a function of i1 ∈ [0, 30] deg and

ra ∈ [0.3, 1] AU, respectively. In particular, the case of i1 = 0 corresponds to a two-dimensional

transfer towards an elliptic target orbit with perihelion radius rp = 0.3 AU and aphelion radius

ra = 0.8 AU. The case of ra = 0.3 AU, instead, corresponds to an optimal transfer towards a

circular heliocentric orbit with inclination i1 = 24 deg, see Fig. 7 for the spacecraft’s trajectory.

3.2 Comparison with an ideal solar sail

A comparison of the performance of a SEP spacecraft with a vehicle equipped with an advanced,

propellantless, propulsion system, such as a (photonic) solar sail, is briefly discussed in this

section. Note that a thorough comparison between two different propulsion systems is a very

complex task and, in this respect, the following analysis does not intend to provide a conclusive

indication on which type of propulsion system is best for the type of missions considered in

this paper. Instead, this simplified comparison aims at highlighting some of the technological

requirements and potentialities of the two propulsion systems in the context of circumsolar

missions.
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The comparison between the performance of a SEP and a solar sail spacecraft can be made

by taking into account different performance indexes as, for example, the mission flight time,

the payload mass, or the payload mass fraction. In this analysis, the payload for a solar sail

based spacecraft should be intended as the vehicle that will perform the science operations at

the given target orbit (Macdonald et al., 2006).

Instead, in this comparison, the flight time of the sail spacecraft is fixed to the one required

to the SEP spacecraft, and the characteristic acceleration of the solar sail ac is minimized

using an optimization algorithm, adapted from Mengali and Quarta (2009). Recall that ac

is defined (McInnes, 1999) as the maximum solar sail propulsive acceleration when the Sun-

spacecraft distance is 1 AU.

Introduce now a simplified solar sail mass breakdown model, where the total spacecraft mass

m0 is the sum of the payload mass mpay, and the sail assembly mass msa. Recall that the sail

assembly mass includes the mass of both the reflective film, and the required structure for

storing, deploying and tensioning the sail (Dachwald, 2004). Consider an ideal flat solar sail

force model without degradation (Dachwald et al., 2006a, 2007), that is a sail with a perfectly

reflecting film. For a given payload mass fraction mpay/m0, the sail assembly loading σsa is

related to the solar sail characteristic acceleration ac through the simple equation

σsa =
2P (1−mpay/m0)

ac
(16)

where P , 4.56 × 10−6 N/m2 is the solar radiation pressure at a distance of 1 AU from the

Sun. In Eq. (16), the sail assembly loading σsa , msa/A, usually measured in grams per square

meter, is defined as the ratio between the sail assembly mass msa and the sail reflective area

A. According to Dachwald (2005), σsa is the key parameter for the efficiency of the solar sail’s

structural design. In particular, a goal value of the sail assembly loading for an advanced,

near-term, solar sail is about 10 g/m2. Currently, realistic values of σsa are on the order of
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25− 30 g/m2 (Ceriotti, 2011).

When a ideal solar sail is considered in the trajectory simulations, the (minimum) values of

the characteristic acceleration shown in the second last column of Tabs. 1–4 are obtained. For

example, the simulations show that an ideal solar sail with a characteristic acceleration ac '

0.375 mm/s2, could perform a transfer towards a target orbit with rp = 0.3 AU, ra = 0.8 AU,

and i1 = 24 deg, in about 1000 days, see Tab. 1. The same mission can be completed by a SEP

spacecraft, using a realistic propulsion system, with a final mass fraction of about 56.47%.

From the definition of sail characteristic acceleration in Eq. (16), one can derive, for the same

mass fraction, an assembly loading of about 10.6 g/m2. In other terms, this mission scenario

requires an advanced, near-term solar sail in order to release, on the operational orbit, the

same final mass fraction of a SEP spacecraft.

Note, however, that the value of the sail loading is not conservative, because an ideal sail force

model was used in the simulations. If a realistic sail force model (that is, a model that consider

both the sail film optical properties and the sail actual shape) was considered, the value of the

required sail assembly loading would decrease with respect to the ideal case. Of course, the

value of the (corresponding) sail assembly loading changes with the total flight time and the

mission scenario, as shown in the last column of Tabs. 1–4.

Finally, taking into account that for a given target orbit ac = ac(t1) is a monotonic decreasing

function, it is noteworthy to observe that the discussed results are consistent with those of

an optimization analysis in which both the flight time is minimized and the sail characteristic

acceleration is fixed. In other terms, in a mission scenario in which a flat, ideal, solar sail of

characteristic acceleration ac ' 0.375 mm/s2 reaches a target orbit with rp = 0.3 AU, ra =

0.8 AU, and i1 = 24 deg, the minimum flight time is indeed t1 = 1000 days.
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4 Conclusions

The design of high-energy space physics missions offer the intriguing opportunity to explore

the capabilities of advanced electric propulsion systems and exotic propulsion technologies as

(photonic) solar sail. This paper investigates minimum time optimal direct transfer scenarios

for a mission to the circumsolar space, in which a solar electric propelled spacecraft enters an

elliptical highly inclined orbit around the Sun with a perihelion radius of 0.3 AU (about 65

solar radii). A comparison of the performance between a solar electric and a solar sail propelled

spacecraft in this high energy mission scenario, is also discussed.

Using an indirect approach, a number of time-optimal direct transfer trajectories have been

simulated, and the resulting data have been collected in graphs and tables for a trade-off

analysis of the main mission parameters. Taking into account the actual performance of an ad-

vanced electric propulsion system (the NASA Evolutionary Xenon Thruster), the simulations

show that a spacecraft with an injected mass of 1000 kg reaches a target orbit of inclination

24 deg and aphelion radius 0.8 AU in about 2.6 years. In this mission scenario, the final space-

craft mass is slightly greater than the 56% of the injected mass. This rather small value could

be increased, at the expense of an increased flight time, by including, in the performance in-

dex, a term depending on the final spacecraft mass. On the other hand, a transfer trajectory

that minimizes only the propellant consumption, should be time-constrained. Therefore, the

results of the minimum-time problem ensure that the time-constraint in a fuel-optimal prob-

lem is feasible. The use of optimal control theory has provided an optimal switching law for

the operation point of the engine, showing substantially different behaviors depending on the

available power. This situation can correspond to an intentionally undersized power system or

to a partial failure.

A natural extension of the analysis discussed in this paper, is to explore the influence of the
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launch C3 on the flight time and required propellant mass through a sensitivity analysis. On

the other hand, one or more gravity-assist maneuvers, whose aim is to reduce the propellant

consumption as in the case of the ESA’s Solar Orbiter mission study, can be included in the

trajectory optimization process. However, a multiple gravity assist trajectory places additional

constraints related to the planetary ephemerides, whereas a direct transfer offers a greater

flexibility in the launch window selection.
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m0 [ kg] t1 [ days] mp/m0 mp [ kg] ac [ mm/s2] σsa [ g/m2]

550 509.7 0.4243 233.3 0.7727 5.01

600 550.2 0.4198 251.9 0.7236 5.29

650 601.7 0.4239 275.5 0.6888 5.61

700 658.6 0.4308 301.5 0.5800 6.77

750 712.8 0.4351 326.3 0.5180 7.66

800 749.9 0.4292 343.4 0.4953 7.90

850 793.2 0.4273 363.2 0.4722 8.25

900 843.4 0.4291 386.1 0.4606 8.49

950 902.9 0.4351 413.4 0.4321 9.18

1000 952.9 0.4363 436.2 0.3898 10.20

1050 998.1 0.4352 457.0 0.3752 10.57

1100 1031.2 0.4292 472.1 0.3656 10.70

1150 1080.7 0.4303 494.8 0.3571 10.99

1200 1135.6 0.4333 519.9 0.3265 12.10

1250 1187.0 0.4348 543.5 0.3151 12.58

1300 1240.1 0.4368 567.7 0.3081 12.93

1350 1307.4 0.4434 598.6 0.2828 14.29

1400 1319.2 0.4314 604 0.2808 14.01

1450 1371.7 0.4331 628.1 0.2723 14.50

1500 1432.8 0.4373 656 0.2659 15.00

1600 1511.1 0.4324 691.8 0.2454 16.07

1700 1612.4 0.4342 738.3 0.2338 16.93

1800 1720 0.4375 787.5 0.2163 18.44
Table 1
Mission performance as a function of the injected mass m0 (with P⊕ = 10 kW, rp = 0.3 AU, ra =
0.8 AU, and i1 = 24 deg).
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P⊕ [ kW] t1 [ days] mp/m0 ac [ mm/s2] σsa [ g/m2]

5.5 1278.6 0.5125 0.2880 16.22

6 1134.7 0.4895 0.3267 13.66

6.5 1044.6 0.4713 0.3619 11.87

7 1004.6 0.46 0.3733 11.23

7.5 1003 0.4592 0.3737 11.20

8 987.2 0.4520 0.3786 10.88

8.5 964.8 0.4418 0.3858 10.44

9 959.7 0.4394 0.3875 10.34

9.5 952.9 0.4363 0.3898 10.20

10 952.9 0.4363 0.3898 10.20
Table 2
Mission performance as a function of the initial solar array output power P⊕ (with m0 = 1000 kg,
rp = 0.3 AU, ra = 0.8 AU, and i1 = 24 deg).
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i1 [ deg] t1 [ days] mp/m0 ac [ mm/s2] σsa [ g/m2]

0 673.4 0.3083 0.4058 6.92

5 693.6 0.3176 0.4015 7.21

10 732.9 0.3355 0.4355 7.02

15 788.3 0.3609 0.4015 8.19

20 873.9 0.4001 0.4034 9.04

25 965.8 0.4422 0.3924 10.27

30 1052.8 0.4820 0.4048 10.85
Table 3
Mission performance as a function of i1 (with m0 = 1000 kg, P⊕ = 10 kW, rp = 0.3 AU, and ra =
0.8 AU).
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ra [ AU] t1 [ days] mp/m0 ac [ mm/s2] σsa [ g/m2]

0.3 1240 0.5679 0.2614 19.81

0.4 1151.5 0.5272 0.2884 16.66

0.5 1078.6 0.4938 0.3179 14.16

0.6 1018.8 0.4665 0.3551 11.98

0.7 969.7 0.444 0.3756 10.78

0.8 952.9 0.4363 0.3898 10.20

0.9 914.5 0.4187 0.4108 9.29

1 893.5 0.4091 0.4260 8.75
Table 4
Mission performance as a function of ra (with m0 = 1000 kg, P⊕ = 10 kW, rp = 0.3 AU, and i1 =
24 deg).

29 of 37



List of Figures

1 Propulsion system operation points in terms of thrust T , propellant mass flow
rate β, and PPU input power P [data adapted from Patterson and Benson
(2007)]. 31

2 Optimal transfer trajectory when m0 = 1000 kg, P⊕ = 10 kW, rp = 0.3 AU,
ra = 0.8 AU, and i1 = 24 deg. 32

3 Orbital inclination over perihelion and aphelion radius of the spacecraft
osculating orbit (m0 = 1000 kg and P⊕ = 10 kW, rp = 0.3 AU, ra = 0.8 AU and
i1 = 24 deg). 33

4 Time variation of the osculating orbit’s semimajor axis, inclination, perihelion,
and aphelion radius (with m0 = 1000 kg, P⊕ = 10 kW, rp = 0.3 AU, ra = 0.8 AU
and i1 = 24 deg) 34

5 Sun-spacecraft distance r and ecliptic declination δ vs. time (with m0 = 1000 kg,
P⊕ = 10 kW, rp = 0.3 AU, and ra = 0.8 AU). 35

6 Thruster operation point Id vs. time as a function of the initial solar array
output power P⊕ (with m0 = 1000 kg, rp = 0.3 AU, ra = 0.8 AU, and
i1 = 24 deg). 36

7 Ecliptic projection of the optimal transfer trajectory when m0 = 1000 kg,
P⊕ = 10 kW, rp ≡ ra = 0.3 AU, and i1 = 24 deg. 37

30 of 37



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

50

100

150

200

250

T
[m
N
]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

2

4

6

8

P
[k
W
]

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

2

4

6

Id

β
[m
g
/
s]

Figure 1. Propulsion system operation points in terms of thrust T , propellant mass flow rate β, and
PPU input power P [data adapted from Patterson and Benson (2007)].
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Figure 2. Optimal transfer trajectory when m0 = 1000 kg, P⊕ = 10 kW, rp = 0.3 AU, ra = 0.8 AU,
and i1 = 24 deg.
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Figure 3. Orbital inclination over perihelion and aphelion radius of the spacecraft osculating orbit
(m0 = 1000 kg and P⊕ = 10 kW, rp = 0.3 AU, ra = 0.8 AU and i1 = 24 deg).
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Figure 5. Sun-spacecraft distance r and ecliptic declination δ vs. time (with m0 = 1000 kg,
P⊕ = 10 kW, rp = 0.3 AU, and ra = 0.8 AU).
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Figure 6. Thruster operation point Id vs. time as a function of the initial solar array output power
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Figure 7. Ecliptic projection of the optimal transfer trajectory when m0 = 1000 kg, P⊕ = 10 kW,
rp ≡ ra = 0.3 AU, and i1 = 24 deg.
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