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Abstract 

The most general flowshop scheduling problem is also addressed in the literature as non-

permutation flowshop (NPFS). Current processors are able to cope with the (n!)m combinatorial 

complexity of non-permutation flowshop scheduling by metaheuristics. After briefly discussing the 

requirements for a manufacturing layout to be designed and modeled as non-permutation flowshop, 

a disjunctive graph (digraph) approach is used to build native solutions. The implementation of an 

Ant Colony Optimization (ACO) algorithm has been described in detail; it has been shown how the 

biologically inspired mechanisms produce eligible schedules, as opposed to most metaheuristics 

approaches, which improve permutation solutions. ACO algorithms are an example of native non-

permutation (NNP) solutions of the flowshop scheduling problem, opening a new perspective on 

building purely native approaches. The proposed NNP-ACO has been assessed over existing native 

approaches improving most makespan upper bounds of the benchmark problems from Demirkol et 

al. (1998). 
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1 Introduction 

In a manufacturing system, parts (jobs) visit machines based on a production plan (or schedule). 

The scheduling problem has the purpose of optimizing resources (e.g. machines utilization, workers 

time etc.). A general solution is not yet available and hence heuristics and metaheuristics solutions 

are proposed and compared on given problem benchmarks in order to achieve better schedules and 

consequently economical benefits. 

https://doi.org/10.1007/s10845-012-0724-8


Scheduling solutions for a manufacturing system model can be scaled in many senses: a job can be 

a part, the whole product or a batch; machines (or stages) can be a single operating unit, a cell, a 

line, or their combinations; and time is measured by non-dimensional units (e.g. from seconds to 

months). Examples of flow lines include transfer lines (assembly, machining), continuous processes 

(steel-making, heat treatments, coatings, chemical plants), and are available outside the 

manufacturing environment (logistics, computer science, services, with high capacity utilization, 

Rossi et al., 2012). 

The flowshop scheduling problem occurs whenever it is necessary to schedule a set of n jobs on m 

machines so that each job visits all machines in the same order. In the literature, there are two major 

types of flowshop scheduling. In a permutation flowshop (PFS) the sequence jobs visit machines 

(routing) is the same for all jobs, and machines process all jobs with the same sequence (or 

permutation). On the contrary, in a non-permutation flowshop (NPFS) all jobs visit all machines in 

the same sequence, but passing of jobs on machines is allowed, i.e. the sequence (or permutation) of 

jobs can be different on subsequent machines. 
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Figure 1 Solution generation according to permutation, non-permutation and native non-

permutation (NNP) approaches. 

Figure 1 about here 

 

The logical steps, from a physical layout to a model, and the algorithm selection options are 

outlined in Figure 1. 

In job passing, a job can overtake another job while waiting in a queue to be processed by a 

machine. To allow job passing, buffers between machines are necessary. Buffers can be between, 



on board or shared among machines; they can be shared in the form of an automatic warehouse or 

an open space. 

The optimal solution of the flow shop scheduling problem can be determined in polynomial time 

when m=2 (Johnson, 1954), the general form of this kind of problem is known to be NP-complete 

in the strong sense when m≥3 (Garey et al., 1976). 

Permutation flowshop has been extensively investigated in the literature, as opposed to non-

permutation. A possible reason is that there are (n!)m different schedules for ordering jobs on 

machines in non-permutation flowshop; the number of schedules for permutation flowshop (PFS) 

reduces to n!  

In continuous lines, with bulky or difficult to handle items, and when buffers are not present, job 

passing between machines is not allowed. In this case, modeling a flow line as a permutation 

flowshop is the only choice. 

In other cases, modeling a manufacturing system as a non-permutation flowshop has several 

benefits. Among drawbacks of permutation flowshop are: 

1. If buffers are not present, either the blocking or the no-wait condition should be applied to the 

algorithm to achieve a feasible scheduling. In the former case, a job completed on one machine 

may block that machine until the next downstream machine is free, while in the latter the next 

machine must be available before a job leaves the previous one. 

2. Different permutations of jobs can be selected for subsequent machines, removing the constraint 

that all the sequences must be identical. By relaxing the permutation constraint, non-

permutation schedules are potentially better. Experimental evidence is also available in the 

literature (Liao et al., 2006), however due to the problem complexity, higher computation power 

is necessary. 

3. Heuristics approaches are easier to implement and provide good permutation schedules for 

practical purposes with lower computation time and are therefore preferred by the shop-floor 

manager, but unfortunately, this simplicity is bought at the price of drastically inferior schedules 

according to Potts et al. (1991), and Tandon et al. (1991). More recently, Pugazhendhi et al. 

(2002), Liao et al. (2006), and Ying et al. (2010) have overcome the permutation performance 

proposing better results (lower upper bounds) for benchmarks in non-permutation configuration; 

they are currently the state-of-the-art. 

4. In the application of permutation flowshop scheduling to a hybrid (flexible) flowshop system, to 

keep the same permutation on all stages it is required that jobs sorted by processing time have 

the same sorting on the different stages. Examples are the SPT (shortest processing time) and 

the LPT (longest processing time) dispatching rules. If jobs do not have the same sorting by 



processing time, the resulting permutation scheduling is not optimal, because permutation 

scheduling requires that jobs are processed in the same sequence. An example follows (Figure 

3). 

N. of identical machines: 2 at stage j: 2 at stage j+1 

N. of identical machines: 2 at stage j+1: 3 at stage j+1 

Processing time at stage j: T for J1; 3T for J2; T for J3; T for J4 

Processing time at stage j+1: T for J1; T for J2; T for J3; T for J4 

PFS sequence (on both stages): J1, J2, J3, J4 

Makespan for PFS: 5T 

Optimum sequence (for NPFS) 

on stage j: J1, J2, J3, J4 

on stage j+1: J1, J3, J2, J4 
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Figure 2 Example of reduced makespan by non-permutation flowshop scheduling in hybrid 

(or flexible) flowshop. 

Figure 3 about here 

 



5. In sequence-dependent setup, permutation scheduling is not optimal, because different 

sequences of jobs on different machines may share the same setup or incur lower setup change 

penalties. Instead, permutation flowshop scheduling imposes the same sequence on all 

machines. An example follows.  

PFS sequence: J1, J2, J3 

Setup type at stage j: A for J1 and J3; B for J2 

Setup sequence for PFS: A, B, A 

Setup sequence for NPFS: A, B 

To deal with the complexity of the non-permutation flowshop problem, a number of approaches are 

available, which improve an optimal permutation schedule by changing the job sequences on 

machines, as shown by the arrow paths in Figure 1. Examples are the well-known NEH heuristic to 

find good permutation solutions, further improved by metaheuristics, like ant colony optimization 

(ACO), genetic algorithms (GA), Particle Swarm Optimization (PSO, Vijay chakaravarthy et al., 

2011), and tabu search, to achieve non-permutation solutions. Lin and Ying (2009) propose a hybrid 

simulated annealing/tabu search method where job sequences are the same for all machines in the 

initial solution of their tabu search method. Pughazendi et al. (2004) propose a simple heuristic 

procedure to derive non-permutation schedules from a given permutation sequence, with the added 

complexity of sequence-dependent setups. Brucker et al. (2003) present a number of results for non-

permutation flowshop scheduling, with limited capacity buffer. They propose a procedure based on 

state-of-the-art tabu search, where the initial solution adopted is a permutation schedule evaluated 

by the NEH heuristic (Nawaz et al., 1983). Jain and Meeran (2002) consider a multi-level hybrid 

approach for the general flowshop scheduling problem. They hybridize a scatter search and a tabu 

search with the neighborhood structure proposed by Nowicki and Smutnicki (1996) for the job-shop 

scheduling. The initial solution is found by the insertion algorithm proposed by Werner and 

Winkler (1995) and it is implemented on the disjunctive graph. In general, the tabu search requires 

starting from a good initial solution to be improved by other heuristics. 

ACO has been recently considered to cope with the complexity of other flowshop scheduling 

systems (Arnaout et al., 2012). According to the recent literature review from Tavares Neto and 

Godinho Filho (2013) there are six most used ACO algorithms applied to scheduling problems, 

which were proposed between 1991 and 2000. Among approaches to flowshop scheduling, Stuezle 

(1998) proposed a Min-Max Ant System from Stuetzle and Hoos (2000) for the permutation 

flowshop scheduling. The proposed Ant Colony System (ACS) is from Dorigo and Gambardella 

(1997) as for Rajendran and Ziegler (2004). Similarly, Yagmahan and Yenisey (2010) consider a 

multi-objective makespan and flowtime criteria. They also propose to create initial ant trails with an 



amount of pheromone that is a function of the best solution generated by the NEH heuristic by 

Nawaz et al. (1983). This idea has been exploited by Sadjadi et al. (2008) who applied the standard 

ACO specifications from Bonabeau et al. (2000) except for the diversification mechanism: the 

initial amount of pheromone on the digraph trails is determined by the permutation solution found 

by the NEH heuristic. The best-found permutation schedules are improved by local search in order 

to obtain non-permutation solutions. 

To the best of our knowledge, a native ACO has been applied only by Ying and Lin (2007). They 

represent the problem by a disjunctive graph and use a multi-heuristic function of visibility in an ant 

colony system. The visibility represents the heuristic desirability, that together with the pheromone 

amount, drives an ant to the selection (and to the direction) of disjunctive arcs of the digraph. The 

multi-heuristic visibility proposed by Ying and Lin is based on the best selection within a set of 

schedules achieved by dispatching rules. The performance is evaluated using the benchmark 

problems from Demirkol et al. (1998), achieving new best results (lower upper bounds) on most 

benchmarks considered. Their ACO improves the previous best results obtained by the shifting 

bottleneck heuristic by Demirkol et al. and are compared with the proposed NNP-ACO. Extensive 

numerical research has indicated that the shifting bottleneck heuristic is extremely effective 

(Pinedo, 1995). 

 

2 The native non-permutation approach 

As opposed to all cited works, native metaheuristic approach enforces constructive schedules. 

Initially, it builds independent (arbitrary) initialization sequences on all machines. Next, a schedule 

is generated ex-novo by each ant. 

The native approach prevents the algorithm performance to be influenced by other (meta)heuristics 

and allows an accurate performance evaluation. 
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Figure 3 Digraph approach for candidate list selection (inset) and building a feasible solution. 

Figure 3 about here 

 

A possible representation of the (non-permutation flowshop) scheduling problem is based on a 

disjunctive graph. In a disjunctive graph (Figure 3, inset), nodes represent operations, conjunctive 

arcs correspond to precedence constraints among the operations for the same job, disjunctive arcs 

conform to possible constraints among the jobs on the same machine.  

We define as native non-permutation flowshop scheduling (NNPFS) an algorithm able to generate 

constructive solutions in O(nm). A native non-permutation flowshop scheduling algorithm directs 

some disjunctive arcs in order to connect all operations with only a starting and an ending arc, i.e. 

the graph becomes acyclic, and the related sequences of operations on machines represent a feasible 

schedule. The makespan Cmax is the length of the longest path between the dummy source and 

destination (critical path). When a disjunctive arc is directed, the ending node is inserted in the 

sequence of the related machine and in a tabu list, i.e. the partial schedule generated on the digraph 

cannot be modified anymore. Consequently, the longest path between the dummy source and the 

ending node is the completion time of the operation. Generally, the constructive mechanism is 

implemented by the list-scheduling algorithm (Giffler and Thompson, 1960). Besides, initially it 



starts with a random selection of nodes or a type of selection driven by dispatching rules. These 

features make list-scheduling mandatory in native non-permutation flowshop scheduling. 

A typical digraph framework metaheuristics is the ant colony optimization proposed by Bonabeau 

et al. (2000). In ACO, the digraph is an internal shared memory where, in analogy with nature, 

artificial ants, following trails of pheromone, direct disjunctive arcs to connect source and 

destination nodes (Figure 3). Each ant of the colony directs a number of disjunctive arcs in order to 

make the graph acyclic; finally, the ant that connects source and destination nodes with the shortest 

critical path (Figure 3, bottom left) is eligible to leave a pheromone amount proportional to the path 

length. This is a constructive way to generate a schedule. A complete solution is generated forward 

by a partial solution using the stigmergy of the colony, i.e. the selection of the more promising 

disjunctive arcs where a higher amount of pheromone is laid. The main goal of the ACO 

mechanism is to generate optimal solutions by constructive schedules. The concept is similar to 

“divide et impera”, because the stigmergy progressively concentrates the search in a low number of 

very small promising regions. Differently to local search, this fact makes the algorithm intrinsically 

parallel. 

 

3 Problem formulation 

Current problem is referred as Fm|Bi=+|Cmax using Graham’s notation, where  

Fm stands for flowshop with m machines, only one machine is present at each stage,  

Bi=+ denotes that buffers with infinite capacity are present, allowing non-permutation 

schedules, and  

Cmax denotes the makespan minimization as the optimization criterion. 

The n jobs have to be scheduled on the m machines. Each job i, i=1,..,n, is represented by a 

sequence of operations, Oi j; each job has to be processed as the jth operation on the machine at stage 

j, j=1,..,m, with a processing time t(Oi j); a machine j coincides with the belonging stage.  

Given a schedule S, the quantities st(Oi j) and L(Oi j) denote, respectively, the starting and the 

completion time of the operation Oi j. 

The following conditions apply: 

 no resource can process more than one operation at a time; 

 no operation Oi j can start until Oi (j-1), is completed; 

 no operation can stop after its start (no preemption allowed). 

The problem (Figure 3, inset) can be represented by a disjunctive graph DG = (N, A, Ej, WN) where 



N is the set of nodes (operations); the set of nodes N has (nm) elements plus two dummy 

nodes: the source “0” and the destination “*”; 

A is the set of conjunctive arcs (job routing); the set of conjunctive arcs A includes 

[(n+1)m)] elements; 

Ej is the set of disjunctive arcs (connecting a potential pair of operations to include in the 

sequence of machine/stage j); Ej includes [(n-1)n/2] disjunctive arcs, among all the n 

operations to be processed on machine j, and (2n) between each operation to be 

processed on machine j and the dummy nodes; 

WN is the weight on nodes (processing times, setup and transportation times etc.). 

A feasible solution can be constructively obtained by list-scheduling. This heuristic generates a 

feasible solution in (nm) steps by inserting an allowed operation in the related machine sequence at 

each step. An operation is included in an allowed list if it can be reached by a conjunctive arc of A 

from the previous operation in the job routing that is already inserted in the machine sequence. 

When an operation is selected by list-scheduling, it is removed from the allowed list and inserted in 

a tabu list.  

Figure 3 shows an example of how the solution can be achieved on the digraph and will be detailed 

in the next chapter showing the implementation of the proposed ACO. Initially, the dummy source 

“0” is the starting node. At the first step, all the operations that can be reached by a directed arc of A 

are the operations that must be processed by machine 1: O11, O21 and O31 (shown in light blue). At 

the second step, operation O31 is selected and inserted in the sequence of machine 1 (shown in red). 

At the second step, the disjunctive arc (0, O31)E1 is directed. Consequently, O31 is replaced from 

the allowed list by the next operation reached from O31 by an arc of A, i.e. O32. The length 17 in 

bold represents the completion time of operation O31 in the partial constructive schedule, i.e. 

L(O31)=st(O31)+t(O31)=17. At the third step, the disjunctive arc (0, O21)E1 is directed and O21 is 

replaced from the allowed list by the next operation reached from O21 by an arc of A, i.e. O22. The 

completion time L(O21)=31 is evaluated as the longest path from the dummy source “0”. This path 

length is evaluated by adding the processing time t(O21)=31 to the maximum length between the 

two nodes from which the current node can be reached, respectively: O31 from the just directed arc, 

and the dummy “0” from the related routing arc of A. It can be noticed that the maximum 

completion time between O31 and “0” is the starting time of node O32, st(O32). The algorithm runs 

for [(mn)–2] more steps generating the acyclic graph of Figure 3: at the (mn)th step all nodes will 

turn red and their completion time will be displayed. The makespan is evaluated from the node with 

the maximum path length. 

 



4 The proposed ACS 

This section describes an ant colony system (ACS) for the native non-permutation flowshop 

scheduling problem. Ant colony systems, a subset class of ACO, are an emerging class of 

biologically inspired research dealing with artificial or swarm intelligence, which exploits the 

experience of an ant colony as a model of self-organization in co-operative food retrieval. Ants run 

the nest-food path by a probabilistic selection of nodes according to the following properties: 

i) diversification in order to produce promising alternative paths; 

ii) intensification to select a node in the vicinity of the current best paths. 

As soon as all the paths of the ants in the colony are generated, the best ant deposits on the arc a 

further amount of pheromone proportional to the path length and a pheromone decay routine is 

performed to prevent the stagnation in local optima solutions. The pheromone trail is the basic 

mechanism of communication among real ants and it is mimicked by the ant colony system in order 

to find the shortest path, connecting source and destination on a weighted graph, which represents 

the optimization problem. 

The two inverse mechanisms are achieved by negative and positive pheromone deposition, 

respectively through the local update rule and off-line pheromone update rule. Diversification by 

the local update rule pushes towards permutated schedules and is the core mechanism to generate 

natively non-permutation solutions. 

List-scheduling, which is a process guided only by the function of visibility, becomes driven also by 

the pheromone amount. In fact, the selection of a candidate node can be performed based on the 

disjunctive arc that connects it. At the start, the pheromone is randomly deposited; consequently, 

the node selection is random as in pure list-scheduling algorithms. As epochs evolve, the deposited 

pheromone drives the arc selection. 

The following mechanisms have been implemented in the proposed ACO and are described in 

detail: 

 path generation, to transform the digraph in an acyclic conjunctive graph by a stochastic process 

based on the amount of pheromone; 

 candidate list construction, to select operations, not only to achieve feasible schedules, but also 

in order not to exceed the idle time more than a predefined value; 

 local update rule, for diversification purposes; 

 off-line pheromone update rule, for intensification purposes; 

 local search, to better improve the best found solution. 



In addition to fulfill the requirements of a native non-permutation approach, the following 

innovative mechanisms have been implemented in the proposed ACO: list scheduling, and freezing 

and stability conditions. 

 

 

4.1. Digraph model 

The disjunctive graph is also able to implement pheromone trails. In this case the DG = (N, A, Ej, 

WN, WE ) has the new component WE, which represents the weight on disjunctive arcs (pheromone 

amount). The weight on the disjunctive arcs (Oi’j, Oi j) of Ej is represented by the pair WE(Oi’j, 

Oi j) = ([Oi’j, Oi j], [Oi j, Oi’j]). The first component array [Oi’j, Oi j] gives an index of desirability 

in order to insert the feasible move (i.e. the sub-sequence) [Oi’j, Oi j] in the current location of the 

loading sequence of resource j. The pheromone trail WE is a two-dimensional array of [mn(n+1)] 

elements (considering that the number of disjunctive arcs among all the n operations to be 

processed on machine j that can be replicated is [n (n-1)/2]). Hence, the internal shared memory of 

the proposed ant colony system is O(m  n2). 

 

4.2. Path generation 

To generate a feasible schedule Sa, each ant a visits every operation on DG one and only one time in 

order to transform the digraph in an acyclic conjunctive graph. Path generation is a stochastic 

process where an ant starts from the dummy “0” and selects the next node from a subset of the 

allowed operations, the candidate list CL. It uses the following transition probability rule of the 

pheromone trail as a function of both the heuristic function of desirability,  (the visibility 

function), and the amount of pheromone  on the edge (Oi j, J), with JCL: 
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The non-negative parameters  and  represent respectively the intensity of the amount of 

pheromone and the visibility included in the transition probability function. The non-negative 

parameter q0 is the cutting exploration, a mechanism that restricts the selection of the next operation 

from the candidate list CL. If a random number q is higher than the cutting exploration parameter q0 

(0 q0 1), the candidate operation is selected examining in probability all the candidate operations 



that are as much desirable as higher visibility and pheromone amount are; otherwise the most 

desirable operation is taken, i.e. the arc with the highest amount of pheromone and the highest 

visibility.  

The role of cutting exploration is that of explicitly split the search space in order to achieve a 

compromise between the probabilistic mechanism adopted for q  q0 or the further intensification 

mechanism of exploring near the best path so far, which corresponds to an exploitation of the 

knowledge available about the problem. By tuning parameter q0 near 1, cutting exploration allows 

the activity of the system to concentrate on the best solutions (exploitation activity) instead of 

letting it explore constantly (exploration activity, achieved by tuning parameter q0 near 0). In fact, 

when q0 is close to 0, all the candidate solutions are examined in probability, whereas when q0 is 

close to 1, only the local optimal solution is selected by equation. In this paper a freezing function 

similar to one proposed by Kumar et al. (2003) is considered. It progressively freezes the system by 

tuning q0 from 0 to 1, in order to favor the exploration in the initial part of the algorithm by means 

of the following expression: 
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where epoch is the current iteration and n_epochs is the total number of iterations of the ant colony 

system. 

The heuristic function of desirability  is a very critical component of ant colony systems. 

Generally, it is implemented by dispatching rules, as in Ying and Lin (2007). A comparison among 

a number of dispatching rules to implement the visibility function has been performed by Blum and 

Sampels (2004). In this paper the earliest stating time (EST) heuristic, i.e. the best heuristic tested 

by Blum and Sampels (2004), is used. 

 

4.3. Candidate list construction 

The candidate list does not include all the operations that can be selected at a given construction 

step of the algorithm. In fact, it is well known that the optimal schedule is always an active 

schedule, i.e. a feasible schedule in which no operation could be started earlier without delaying 

some other operations or breaking a precedence constraint. Thus, the search space can be safely 

limited to the set of all active schedules. An important class of active schedules is the non-delay 

schedule: in these schedules no machine is kept idle when it could start processing some operations. 



As no all-optimal schedules are non-delay, the concept of parameterized non-delay schedules is 

used. This type of schedule consists of schedules in which no machine is kept idle for more than a 

predefined value  if it could start processing some operations. As the minimum starting time of a 

candidate operation is: 

 

)(min jiji
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all the operations O* which can start if no machine is kept idle for more than a predefined value , 

verify the following condition: 

 

ALOOstOst ALO   *,)(min*)( jiji
  (4) 

 

In this paper a strategy which relaxes the expression (4) is considered by using the following 

parametric value of  :  
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where rf is the restricted factor. If the restriction is maximum, i.e. rf  +, the predefined value  

(rf) tends to zero and we obtain a non-delay schedule, i.e. CL=AL; on the contrary, if rf is set higher 

than 0, the property of non-delay schedule is relaxed; finally, if rf = 0 the candidate list does not 

differ from the allowed list, i.e. no restriction to AL occurs. To sum up, the following candidate list 

is used: 
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where a restricted factor rf equal to 3 is considered. 

 

4.4. Local update rule 

The local update rule is applied to favor the exploration of not visited nodes by other ants of the 

colony. This rule imposes to the ant that has selected a candidate operation J, of laying on the 

connecting arc (Oi’j, J) the following negative amount of pheromone: 



 

(Oi’j, J) = (1-)  (Oi’j, J) +   0 (7) 

 

This mechanism enhances diversification, a fundamental mechanism to generate permutated 

schedules (native non-permutation approach). The local update rule is a convex combination of the 

evaporation coefficient parameter; the convex combination has points, (Oi j , J) and 0. This causes 

a reduction of the pheromone amount on a selected arc, because it ranges between the previous 

value (Oi j , J) and the initial value 0. The effect of this rule is making nodes less and less attractive 

as they are visited by ants, indirectly favoring the exploration of not visited nodes. This is a basic 

diversification mechanism because it makes the generation of alternative paths by next ants 

possible. 

 

4.5. Off-line pheromone update rule 

This feature arises when a positive amount of pheromone has to be deposited. At the end of an 

epoch, in order to make a more directed exploration of the best nest-food paths by the entire colony, 

the ant which detects the best path in the epoch, termed best-epoch ant (Sbe) performs an off-line 

update rule of pheromone. This rule consists in depositing on the acyclic graph generated by Sbe a 

further amount of pheromone, proportional to the following convex combinations of points (Oi j, J) 

and makespan(Sbe)
-1, making a search intensification, by other ants of the colony, in the vicinity of 

the best solution possible: 

 

(Oi j, J) = (1- )  (Oi j, J) +   makespan(Sbe)
-1,         (Oi j , J)Sbe (8) 

                = (1- )   (Oi j, J),          otherwise 

 

The amount of pheromone remaining on the selected path ranges between the previous value, (Oi j, 

J), and closer value to the optimum: makespan(Sbe)
-1. On the contrary, a routine of pheromone 

decay on the pheromone trails is performed on the other arcs of the digraph, indicating that a rarely 

used path probably does not lead to optimal solutions. 

 



4.6. Local search 

When a path is generated, the solution is lead to its local optimum by a local search routine. A 

steepest descent algorithm is considered, where, at each iteration, current best solution is replaced 

with an improved solution in its neighborhood. The local search performance depends on the 

neighborhood structure. Here, a neighborhood structure derived from the state-of-the-art local 

search for job-shop scheduling, proposed by Nowicki and Smutnicki (1996) for their fast tabu 

search algorithm, is adopted. 

 

4.7. Stability condition 

The stop criterion is sometimes a fixed epoch number or computation time. Instead, a stability 

condition stops the algorithm: a fixed number of epochs (3000) producing an error reduction of at 

least one processing time unit per epoch. 

 

4.8. ACS implementation 

The following pseudo-code gives a high-level description of an Ant Colony System for Native Non-

Permutation Flowshop Scheduling. 

 

Input: a weighted digraph WDG=(N, A, Ej, WN, WE) 

// Initialization 

for each disjunctive arc (Oi’j,Oi j) of EA deposit a small constant amount of pheromone WE(Oi’j,Oi j) 

= (0, 0) where 

1
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epoch  1; not_improve  0; 

// Main Loop 

while (not_improve < stability_condition) do 

// Epoch Loop 

for each ant a, a = 1 to colony_size do 

// Path Generation  

Sa  ; 

1. O  Oi j i=1,..,n, j=1,..,m; 

2.  Inizialization of Candidate Nodes: AL1  Oi j i=1,..,n, j=1; 



for each w =1 to nm do  

3. Restriction: restrict ALw to the candidate list CLw by means of expression (6); 

4. Inizialization of Feasible Moves (i.e. the disjunctive arcs connected to 

operation of CLw); 

5. Move Selection: select a feasible move (Oi’j, Oi j) of Ej, where Oi jCL, by 

means of the transition probability rules (1); directing the related disjunctive 

arc (Oi’j = dummy “0”, if j =1); 

6. Arc Removing: remove all disjunctive arcs connected to Oi’j (i.e. no other 

operation can be immediately subsequent to Oi’j in the machine sequence); 

7. Path length evaluation: the length L(Oi j) of the longest path connecting Oi j to 

the dummy “0” is evaluated by L(Oi j) = t(Oi j) + maxL(Oi’j), L(O(i-1) j) and it 

is placed as a mark near the scheduled operation; 

8. Local Updating: apply local update rule (8) to arcs (Oi’j, Oi j)WE; 

9. Update Allowed List: remove the scheduled operation from the allowed list,  

ALw ALw  Oi (j+1) Oi j if j  m-1; 

 ALw / Oi j otherwise; 

end for 

10. Directing the remaining disjunctive arcs (these arcs are connected to dummy “*”) 

11. Local Search: Apply local search with neighborhood structure of Nowicki and 

Smutnicki (1996) to Sa; 

12. Best Evaluation: if (makespan(Sa) < makespan(Sbe)) 

then (makespan(Sbe)  makespan(Sa) and Sbe  Sa) 

end if 

end for 

Global Updating: Apply global update rule (5); 

Best Ant Evaluation: if (makespan(Sbe) < makespan(S*)) 



then ((makespan(S*)  makespan(Sbe); S*  Sbe and epoch 0) 

and 

        not_improve  0; 

else epoch ++ and not_improve ++; 

end if 

end while 

Output: S* 

 

 

5 Computation experiments 

The proposed heuristics have been verified by computation experiments on well-known benchmark 

problems for comparison with other approaches using an identical test set. Selected benchmarks are 

from Demirkol et al. (1998), are enclosed as supplementary material and downloadable from 

http://tinyurl.com/demirkol (or http://www.ing.unipi.it/lanzetta/demirkol/dataset.txt). Benchmarks 

are arrays bnm. The nm operations of each job on all machines are represented by their processing 

times. Each benchmark instance k is characterized by a lower bound (LB n m k). The lower bound is 

the minimum theoretical target for the objective function, in this case the makespan Cmax. If the 

makespan found by an algorithm coincides with the lower bound, the global optimum has been 

reached. The best-known makespan is assumed as the benchmark upper bound (UB). 

Metrics for algorithm performance are the %gap from the lower bound of benchmark instances bnm 

of the original dataset and from the best-known solution of other researchers, e.g.: 

 

knm

knmbest

knm
LB

LBC
gap

knm


%  (9) 

 

The proposed Native Non Permutation Ant Colony Optimization (NNP-ACS) is compared with the 

Shifting Bottleneck DMU-SB from Demirkol et al. (1998) and the Multiheuristic Desirability Ant 

Colony System MHD-ACS from Ying and Lin (2007). These three algorithms are visually 

compared in Figure 4 and detailed in Table 3. 

http://tinyurl.com/demirkol
http://www.ing.unipi.it/lanzetta/demirkol/dataset.txt


The benchmark set adopted herein was established by Demirkol, Mehta, and Uzsoy (DMU) and 

includes 40 test instances, generated as follows. All jobs are available at time zero, and the 

operation processing times are generated by a discrete uniform distribution between 1 and 200. 

Four job number values n=20, 30, 40 and 50 and two machine number values m=15 and 20 result in 

eight combinations of m and n and a total number of operations on all jobs and machines ranging 

from 300 to 1000. 

The ratio of n to m varies between 1 and 3.3. These combinations yield a problem set that is not 

based on a specific application. Ten instances were generated for each of the eight combinations of 

m and n. Since the size and complexity of the instances make exact solutions impractical, Demirkol 

et al. solved each instance by five different constructive heuristics and three versions of the shifting 

bottleneck procedure. All algorithms were run on a SUN SPARC® server 1000 Model 1104 with a 

50 MHz processor, which is a multitasking system running under Unix®. The upper bound for each 

instance was the best solution found by any of the algorithms. 

The best available solutions for the test problem set in the literature appear to be those proposed by 

Demirkol et al. (1998). A lower bound (LB) was obtained for each instance by relaxing the capacity 

constraints on all but one machine and solving to optimality the resulting single machine problem of 

minimizing makespan with release and delivery times (Demirkol et al., 1998). Demirkol et al. 

performed this method for each machine, and reported the highest makespan value obtained as a 

lower bound in each instance. To obtain a more compact and challenging set of test problems, 

Demirkol et al. ranked the instances according to decreasing order of %gap between the upper and 

lower bounds for each combination of m and n. Only the first five instances for each combination 

were finally presented. Thus, a total of 40 test instances were obtained as listed in the first three 

columns of Table 3 and denoted by the term flcmax_n_m_k. 
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Figure 4 %gap (9) of tested algorithms on benchmark problems. 

Figure 4 about here 

 

The %gap defined in (9) for the original dataset (DMU-SB) is graphically shown by the blue 

diamonds in Figure 4 and ranges between 32 and 18%. The periodic behavior of error curves is 

observed in each subset of 5 benchmark instances of increasing size (increasing machine number 

and/or job number), and to the decreasing difficulty according to which benchmark instances have 

been originally sorted. Comparing the trends among subsets of 5 benchmark instances of size nm, 

some differences can be noticed: both for n=20 and n=30 the %gap slightly decreases from m=15 to 

20 (from 32-25% to 28-23% and from 30-23% to 29-22%). For n=40 the trend of the %gap within 

the subsets for m=15 and for m=20 is similar (26-22% and 26-20%). For n=50 the %gap, inversely 

with respect to smaller benchmarks, the %gap increases from 15 to 20 machines (from 22-19% to 

31-24%). This visual analysis shows the different intrinsic difficulty of benchmarks. 

The best makespan of 5 runs of the MHD-ACS algorithm and its corresponding time are listed for 

comparison within the same class of native non-permutation algorithms as the proposed NNP-ACS 

in Table 3. 

Preliminary tests have been run with the main parameters in Table 1. The tested parameters from 

the previous ACO approach are also listed. 

 



Table 1 Tested parameters for the ant colony systems under comparison from Ying and Lin 

(2007) and from the proposed NNP-ACS. 

Parameter MHD-ACS NNP-ACS 

colony_size 5, 10, 20, 50, 100 5, 6, 7, 8 

 (0.1 + 0.2  i), i=1,…,5 0.1, 0.2, 0.5, 1, 1.5, 2 

 0.1, 0.5, 1, 2, 5 (0.04  i), i=1,…,9 

q0 (0.1 + 0.2  i), i=1,…,5 
)_(ln

)1_(ln

conditionstability

improvenot 
 

 (0.1 + 0.2  i), i=1,…,5 (0.1  i), i=1,…,8 

Visibility function MHD 
EST, PAST (Rossi and Dini, 

2007) 

 

The selected parameters used in the comparison on benchmarks are in Table 2. The proposed NNP-

ACS has run 10 times on 3 GHz 32 bit Intel® Pentium® IV based PCs with 2 GB RAM on each of 

the 40 benchmark problems, providing a total of 400 results. The average and the best solutions for 

each of the 40 instances along with its corresponding time are reported in Table 3. A scale factor of 

two, based on the speed of PC processor used by respective authors, can be applied to the 

processing time for comparison with the MHD-ACS algorithm. 

 



Table 2 Selected non-optimal parameters for the ant colony system in Ying and Lin (2007) and the 

proposed NNP-ACS. 

Parameter MHD-ACS NNP-ACS 

Colony size 5 8 
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 0.1 2 

 2 0.3 

Epoch number 5000 not_improve < stability_condition 

Stability_condition NA 3000 

q0 0.9 
)_(ln

)1_(ln

conditionstability

improvenot 
 

 0.1 0.12 

Local search NA steepest descent (Nowicki and Smutnicki, 1996) 

Visibility function MHD EST 
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5.1. Results 

Table 3 lists the results of the state-of-the-art ant colony system algorithm from Ying and Lin (2007) 

and those achieved with the described NNP ant colony system. Figure 4 visually displays the 

performance of the three native non-permutation algorithms under comparison with respect to the 

LB using the metrics in (9). 

In bold the new upper bounds for the three native approaches. For 35 of the 40 benchmarks 

examined, new upper bounds have been found. The only original upper bounds from Demirkol et 

al., which have not been met, are flcmax_30_20_2 and flcmax_50_20_4. 

 



Table 3 Benchmark problems, state-of-the-art solutions, and results of computation experiments. 

Algorithm  Bench-
mark 

DMU-
SB 

MHD-ACS NNP-ACS 

Instance  
LB Cbest Cbest 

Time 
[s] 

Cbest 
Time 

[s] 
Cavg 

flcmax_20_15_3 3354 4437 4420 46 4047 330 4113.4 

flcmax_20_15_6 3168 4144 4044 46 3950 36 3977.5 

flcmax_20_15_4 2997 3779 3786 46 3692 114 3730.6 

flcmax_20_15_10 3420 4302 4265 45 4176 96 4221.7 

flcmax_20_15_5 3494 4373 4310 45 4097 66 4124.9 

flcmax_20_20_1 3776 4821 4819 59 4790 30 4826.9 

flcmax_20_20_3 3758 4779 4723 60 4694 114 4715.7 

flcmax_20_20_9 3902 4944 4922 60 4720 282 4775.4 

flcmax_20_20_2 3881 4886 4847 60 4731 282 4781.3 

flcmax_20_20_10 3823 4717 4715 60 4554 24 4607.6 

flcmax_30_15_3 4020 5226 5210 93 4927 438 5032.2 

flcmax_30_15_4 4080 5304 5284 94 5033 78 5092.4 

flcmax_30_15_9 4022 5079 5075 95 4912 114 4968.6 

flcmax_30_15_8 4490 5605 5593 94 5220 42 5320.2 

flcmax_30_15_6 4184 5147 5149 93 5097 456 5158.5 

flcmax_30_20_3 4806 6183 5987 121 5794 84 5846.9 

flcmax_30_20_1 4772 6037 5989 124 6179 126 6221.8 

flcmax_30_20_6 5004 6241 6195 124 6039 84 6133.9 

flcmax_30_20_10 4899 6095 5923 121 5888 54 5967.7 

flcmax_30_20_2 4757 5822 5840 123 5842 798 5886.1 

flcmax_40_15_5 5560 6986 6972 154 6521 180 6594.1 

flcmax_40_15_9 5119 6351 6310 154 6244 354 6303.3 

flcmax_40_15_2 5290 6506 6532 154 6302 78 6395.6 

flcmax_40_15_10 5596 6845 6712 156 6413 1260 6445.2 

flcmax_40_15_8 5576 6783 6771 156 6526 294 6611.7 

flcmax_40_20_3 5693 7154 7132 210 7208 6 7274.5 

flcmax_40_20_9 5998 7528 7496 208 7388 2262 7484.7 

flcmax_40_20_6 5990 7469 7476 209 7455 936 7553.1 

flcmax_40_20_7 6170 7608 7588 207 7405 1314 7473.5 

flcmax_40_20_5 6011 7219 7217 210 7326 1614 7399.4 

flcmax_50_15_6 6290 7673 7631 238 7559 120 7606.8 

flcmax_50_15_5 6355 7679 7496 240 7317 2916 7368.4 

flcmax_50_15_1 6198 7416 7402 240 7205 1266 7303.8 

flcmax_50_15_8 6312 7548 7558 237 7348 318 7468.7 

flcmax_50_15_2 6531 7750 7712 236 7547 762 7644.8 

flcmax_50_20_2 6740 8838 8836 312 8436 738 8684.4 

flcmax_50_20_1 6736 8539 8521 312 8064 2442 8189.7 

flcmax_50_20_7 6756 8417 8425 313 8370 1470 8526 



flcmax_50_20_8 6897 8590 8536 313 8430 6024 8509.2 

flcmax_50_20_4 6830 8493 8502 312 8538 2472 8625.1 

 

The range of the %gap of the proposed ACS is between 14.6% (flcmax_40_15_10) and 29.5% 

(flcmax_30_20_1) above the LB.  

As also shown by the visual trend in Figure 4, performance are uniformly distributed in the 

benchmark size range from small to high. 

The best makespan of the proposed algorithm is between 3.2% above (flcmax_30_20_1) and 8.4% 

below (flcmax_20_15_3) the best results from the competitor MHD approach. In 37 of 40 

benchmarks, the best makespan found is lower. It has also been calculated that the average 

makespan of the proposed ACO (from the 10 runs for each benchmark) is lower than the best MHD 

solution on 31 out of 40 cases. 

Similarly, comparing the %gap with the corresponding upper bound from Demirkol et al., it ranges 

from 2.4% above (flcmax_30_20_1) to 8.8% below (flcmax_20_15_3). The best makespan found is 

lower in 38 out of 40 benchmarks. 

On average, the %gap from the LB before current work was 24.22% and has been lowered now to 

21.01%, still leaving room for further improvements and research. 

 

6 Discussion 

The features of the proposed ACS described in section 4 and implemented as in section 4.8 with the 

parameters in Table 1, have shown to improve the state of the art native non-permutation flowshop 

scheduling upper bounds. By watching the %gap pattern in Figure 4 it can be clearly observed that 

the proposed ACO is better performing than the competitors’ approaches over the full range of 

available job and machine sizes. 

ACO has been selected because of the following intrinsic features, which are able to produce 

natively non-permutation solutions to the flowshop problem: 

- selection of nodes from the candidate list, which restricts the size of operations allowed, in 

addition to  

- random initialization of pheromone and diversification mechanism by the local update rule.  

The following innovative features have been applied to the basic ACO formulation: 

i) pheromone based list-scheduling on a digraph; 

ii) trade-off of the  and  parameters (Table 1), which strongly reduces the number of ants of 

the colony (selected colony_size = 8);  



iii) computation efficiency induced by the selected low colony_size (Table 2), where each ant 

visits the digraph and produces the minimum computation time, O(m  n); 

iv) freezing condition in the ant path generation, described in section 4.2, which favors the 

exploration in the initial part of the digraph and then favors the exploitation activity instead 

of letting it explore constantly. This mechanism represents a compromise between exploring 

all possible paths (high computation time) and focusing only on the best ones (stagnation in 

local optima). This mechanism produces better solutions in less computation time; 

v) effective mechanism to generate the candidate list, described in section 4.3, based on a 

parameterization of the non-delay schedules, which improves the algorithm convergence; 

vi) use of the stability condition, described in 4.7, which has the expected benefit of finding 

better solutions by additional iterations, while there are improvements, and consequently it 

improves the repeatability of the algorithm on different runs. This benefit has been 

experimentally found. The standard deviation versus the average of the makespan obtained 

in the 10 runs ranges from 0.29% for flcmax_40_15_10 to 1.73% for flcmax_50_20_7 only. 

The main drawback of the stability condition is that the processing time increases and can 

vary significantly. No correlation has been found between processing time and %gap from 

UB or LB, so the better results do not seem a consequence of the higher processing time. 

 

7 Conclusion 

We have defined and described how to build a native non-permutation algorithm and shown how 

the basic ACO algorithm fulfils this requirement, based on a digraph approach. 

A novel ACS with the original mechanisms of list scheduling and with the freezing and the stability 

conditions has also been proposed. 

The better performance have been assessed versus the FS benchmark from Demirkol and make the 

proposed ACO the new state-of-the-art native non-permutation algorithm. 

Future research includes designing other metaheuristics to tackle the non-permutation flowshop 

problem, by taking advantage of the digraph approach discussed in this paper, including hybridized 

algorithms and other implementations of ACO, like collaborative or hierarchical ACO. 
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