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Abstract

The Electric Solar Wind Sail is an advanced propulsion system concept that, similar to the more conven-

tional solar sail, is able to generate a propulsive thrust without any propellant. The main performances of

such a propulsion system have been studied in different mission scenarios and are reported in the literature.

However, the analyses available so far are based on a simplified thrust model that neglects the effect of

the spacecraft attitude on both the thrust modulus and its direction. The recent availability of a refined

thrust model requires a critical reappraisal of the simulation results and a new analysis of the optimal

trajectories of a spacecraft equipped with such a propulsion system. The aim of this paper is to review the

different thrust models used over the last years for mission analysis purposes, and to illustrate the optimal

control law and the corresponding minimum-time trajectories that can be obtained with the new, refined,

thrust model. The study highlights new analytical relations for the propulsive thrust as a function of the

spacecraft attitude, whereas simple and accurate closed-form equations are also proposed for the study of

a classical circle-to-circle coplanar heliocentric orbit transfer.
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1 Introduction

A major constraint in the planning of a space mission is represented by the amount of pro-

pellant it requires. The technological advances of the past years have contributed to mitigate

such a problem with the development of innovative propulsion means and new mission strate-

gies, which allows a given orbital transfer to be accomplished by minimizing the propellant

consumption. In this context, a very promising option is represented by the use of propellant-

less propulsion systems, which are able of supplying a net thrust to the spacecraft without

any reaction mass. Historically, the photonic solar sail [1,2] has been the first propellantless

propulsion system to be theoretically proposed and then in-depth analyzed from an engineering

viewpoint [3]. Thanks to the new technological availabilities, necessary to build and displace

a large gossamer structure, the Japanese probe Interplanetary Kite-craft Accelerated by Ra-

diation Of the Sun (IKAROS) [4,5,6] and the American NanoSail-D2 [7,8,9], have recently

demonstrated the effectiveness of a solar sail as a space propulsion system both in a low-Earth

orbit and in the interplanetary space. These important experimental proofs of the actual po-

tentialities of a solar sail have much stimulated the research of new mission scenarios [10,11]

and new control laws [12], capable of emphasizing the strength of such a propulsion system.

Over the years, other concepts of propellantless propulsion systems have been proposed to the

attention of the scientific community, such as the magnetic sail by Zubrin [13,14,15,16] and the

Mini-Magnetospheric Plasma Propulsion by Winglee [17,18,19]. More recently, Janhunen [20]

has introduced the Electric Solar Wind Sail (E-sail) concept, which consists of thin centrifugally

stretched tethers that are maintained charged by an onboard electron gun. The artificial electric

field generated by the tethers shields the spacecraft from the solar wind ions that, impacting

on it, generate a net thrust in the interplanetary space. For a more in depth discussion about

the E-sail general arrangement, the reader is referred to Refs. [21] and [22].
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So far, the soundness of the E-sail concept has been checked either by means of laboratory

tests, or through accurate plasmadynamic simulations [23,24,25]. A 100 m long E-sail tether

is scheduled to fly onboard the Aalto-1 CubeSat, which is planned to be launched into a LEO

orbit in late spring 2016 [26,27]. Despite the current availability of theoretical results only, the

E-sail concept has received a great interest in the last years, especially for what concerns the

preliminary study of its optimal performance in some specific mission scenarios [28,29,30,31,32].

In particular, much efforts have been devoted to the study of a mathematical model able to

accurately estimate the E-sail propulsive acceleration, but sufficiently simple to be used within

a preliminary mission analysis. In this context, a recent model proposed by Yamaguchi and

Yamakawa [33] is able to describe the effects of a spacecraft attitude change on the propulsive

thrust modulus and direction. This new model represents a substantial improvement compared

to the previous models available so far. In particular, it includes new additional parameters

(some of which obtained using experimental data) that increase the degree of accuracy of the

estimated thrust.

The aim of this paper is to revise the preliminary mission analysis of an E-sail-based spacecraft

and to reassess the study of its optimal control law for a classic interplanetary transfer in the

light of this new mathematical thrust model [33]. For the sake of completeness, the paper also

briefly describes the different mathematical models used along the years to quantify the E-sail

performance . The analysis is able to emphasize some interesting peculiarities of the new model

that underpin the development of a fully analytical minimum-time control law for a transfer

between heliocentric orbits of given characteristics.

The paper is organized as follows. The next section critically reviews the different mathematical

models used so far for mission analysis purposes. Section III illustrates the minimum-time

control law for a circle-to-circle heliocentric transfer based on the new thrust model [33].

Section IV reconsiders the same control law and illustrates how an analytical version of it

can be obtained. In the last part of the paper the optimal control law is applied to study a
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classic mission scenario, constituted by a heliocentric circle-to-circle orbit transfer. Within this

context some approximate analytical equations are presented that allow a first order estimate

of the mission performance to be obtained without using complex numerical simulations.

2 Review of E-sail thrust models for mission application

Over the last years, the mathematical model of the E-sail propulsive acceleration, used for

preliminary mission analysis, underwent important changes. Most of the variations introduced

are related to the availability of new and more accurate numerical simulations, mainly of

plasmadynamic nature. From a historical viewpoint, the E-sail concept was first proposed by

his inventor Janhunen [20] as a sort of evolution of the magnetic sail concept introduced by

Zubrin [13,14,15,16]. In Ref. [20] Janhunen estimated the modulus of the propulsive acceleration

that can be obtained using a large mesh made of thin conducting wires and kept at a high

positive potential with respect to the solar wind plasma. The first orbital simulations involving

a spacecraft propelled by an E-sail appeared only three years later in a paper by Janhunen

and Sandroos [34]. In particular, the study discussed in appendix C of Ref. [34] assumes a

simplified heliocentric scenario in which the E-sail provides a purely radial thrust (in the

outward direction) with a modulus that varies with the Sun-spacecraft distance r as 1/r7/6.

A fundamental performance parameter is the spacecraft characteristic acceleration ac, that is,

the modulus of the propulsive acceleration at a reference distance r⊕ � 1 au from the Sun.

Assuming a circular parking orbit with a radius equal to r⊕, Ref. [34] discusses a few elemen-

tary characteristics of the heliocentric trajectories tracked by an E-sail when its propulsive

acceleration vector a is expressed in the form

a = ac

(
r⊕

r

)7/6

r̂ (1)

where r̂ � r/r is the radial unit vector and r is the spacecraft inertial position vector. The
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analysis of Ref. [34] is however much simplified, as its main purpose is only to briefly highlight

the potentialities of such an innovative propulsion system. The main contribution of Ref. [34] is

to give a closed-form expression of the radial and circumferential spacecraft velocity along the

propelled trajectory. This result is obtained by noting that, as a consequence of Eq. (1), the

spacecraft motion takes place within a conservative force field generated by the gravitational

solar attraction and the E-sail thrust. This same characteristic has been subsequently exploited

by Mengali and Quarta to calculate the E-sail performance for flyby trajectories toward aster-

oids [31], or to find an analytical approximation of the E-sail trajectory in the interplanetary

space [35].

The first systematic study about mission performance of a spacecraft propelled by an E-sail

is found in Ref. [21], where heliocentric transfer trajectories are analyzed within an optimal

framework. The mathematical model for the propulsive thrust used in Ref. [21] is a direct

evolution of that shown in Eq. (1), as it takes into account the possibility of generating an

off-axis propulsive acceleration (that is, a thrust component orthogonal to the radial direction),

which is a necessary condition for changing the angular momentum of the spacecraft (in fact, as

long as the thrust is along the radial direction, the angular momentum is a constant of motion)

and achieving a transfer between two different Keplerian orbits. The off-axis component of the

propulsive acceleration can be obtained by changing the angle with which the charged particles

of the solar wind collide with the E-sail nominal plane P . The latter is the reference plane

containing the sail tethers, which are stretched out by centrifugal force, see Fig. 1.

In Ref. [21] the cone angle α ∈ [0, π/2] is defined as the angle between the radial direction

(that is, the direction of r̂) and the direction of the propulsive thrust a (that is, the direction

of â � a/ ‖a‖), with

a = ac τ
(
r⊕

r

)7/6

â with arccos (â · r̂) ≤ αmax (2)

where αmax is the maximum admissible value of the cone angle, ranging between 20 and 35 deg,
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while τ ∈ {0, 1} is referred to as switching function and is used to model the thruster on/off

condition (the latter depending on the electron gun’s status). According to Eq. (2), the mod-

ulus of the propulsive acceleration ‖a‖ = ac τ (r⊕/r)
7/6, at a given distance from the Sun, is

independent of the cone angle. This characteristic associates the E-sail performance with that

of a more conventional solar electric propulsion system.

Using the results from the first plasmadynamic simulations obtained by Janhunen [21], the

cone angle α was assumed to be approximately equal to one-half the sail nominal plane’s

inclination angle αn ∈ [0, π], referred to as pitch angle. The latter is the angle between the

radial direction and that of unit vector n̂, normal to the plane P in the direction opposite to

the Sun, see Fig. 2. In other terms, the unit vector â lies on the plane containing the unit

vectors r̂ and n̂, except for the particular case of αn = 0 when â ≡ r̂ (that is, when P is

orthogonal to the radial direction). A maximum cone angle αmax of about 30− 35 deg was also

assumed in order to prevent the E-sail from the possible occurrence of mechanical instabilities

related to a high value of the sail pitch angle (i.e., αn greater than about 60− 70 deg).

Subsequent and more refined plasmadynamic simulations [23] allowed Janhunen to estimate

a higher thrust level per unit tether length (about five times greater than the former values)

and to discover a variation of the propulsive acceleration modulus inversely proportional to

the distance from the Sun [36,22]. The new expression for a is similar to that of Eq. (2), but

with a different exponent, viz.

a = ac τ
(
r⊕

r

)
â with arccos (â · r̂) ≤ αmax (3)

The new relation simplifies the heliocentric motion analysis of the spacecraft in the special case

in which the cone angle remains constant during the mission and the characteristic acceleration

is sufficiently small compared to the solar gravitational acceleration [37].

Recently, Yamaguchi and Yamakawa [33], with the aid of new numerical simulations, discovered
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that the variation of α with αn is more complex than a simple linear law. Using a best-

fit interpolation of numerical data, the following polynomial relation between α and αn was

obtained [33]

α = b6 α
6
n + b5 α

5
n + b4 α

4
n + b3 α

3
n + b2 α

2
n + b1 αn + b0 (4)

where the coefficients bi, with i = 1, 2, . . . , 6 are summarized in Tab. 1 (the same table also

fixes a few typos in the original paper [33]).

The analysis of Ref. [33] points out that, for a given Sun-spacecraft distance r, the propulsive

acceleration modulus ‖a‖ is strongly dependent on the E-sail attitude through the pitch angle

αn. This is clearly shown by the dimensionless acceleration γ, defined as the ratio between the

modulus of the propulsive acceleration at an angle αn to the maximum propulsive acceleration

at a distance r from the Sun

γ � ‖a‖
ac (r⊕/r)

(5)

According to the procedure described in Ref. [33], a best-fit interpolation of numerical data

gives

γ = c6 α
6
n + c5 α

5
n + c4 α

4
n + c3 α

3
n + c2 α

2
n + c1 αn + c0 (6)

where the coefficients ci are summarized in Tab. 1.

Figure 3 shows the variations of α and γ (described by Eqs. (4)-(6)) with the pitch angle αn.

The linear variation of the cone angle with the pitch angle in the form α � αn/2 is in good

agreement with the numerical simulations of Ref. [33] until αn ≤ 20 deg. When αn > 20 deg,

the function α = α(αn) has a marked nonlinear behavior. It reaches a maximum value, slightly

less than 20 deg, when αn � 55 deg, then it decreases quickly and goes to zero at αn = 90 deg.

The dimensionless propulsive acceleration, instead, reaches its maximum (γ = 1) at αn = 0,

when the Sun-spacecraft line is normal to the E-sail nominal plane P . Note that γ decreases

monotonically with αn until it reaches a minimum value of about 0.5 at αn = 90 deg. Figure 3(b)

also shows that the propulsive acceleration is about 70% of its maximum value (that is, γ � 0.7)
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when the cone angle takes its maximum value. However, the case in which αn > 60− 70 deg is

likely to be unreachable due to the presence of possible mechanical instabilities [21]. For this

reason the two curves of Fig. 3 should be used within a reduced range of variation of αn, that

is, in a simplified way, in the range αn ∈ [0, 60] deg.

Bearing in mind that the propulsive acceleration vector lies on the plane containing r̂ and n̂,

that â ≡ r̂ when αn = 0, and that its modulus is inversely proportional to the Sun-spacecraft

distance, the following vectorial relation is obtained

a =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ac τ

(
r⊕

r

)
γ

[
sin (αn − α)

sinαn

r̂ +
sinα

sinαn

n̂

]
if αn ∈ (0, π/2]

ac τ
(
r⊕

r

)
r̂ if αn = 0

(7)

For a given position vector r, Eq. (7) states that the propulsive acceleration vector is a function

of the orientation of the normal unit vector n̂ only (this amounts to state that the direction

of a is uniquely defined by means of two scalar independent variables). In fact, cosαn = n̂ · r̂,

and recall that γ and α are both functions of αn, see Eqs. (4) and (6). Note that the old model

(3) coincides with the refined model of Ref. [33] when αn = 0, that is, in case of purely radial

thrust. This implies that all of the results obtained in previous studies involving the E-sail

dynamics under a radial thrust [31,35] remain valid under the new thrust model.

To summarize, the different E-sail thrust models available for preliminary mission analysis are

summarized by Eqs. (2), (3) and (7). The first two models, Eqs. (2) and (3), have been used to

analyze different mission scenarios (some of which using an optimal approach) and the results

obtained are reported in Refs. [21,37,38,39,40]. As far as the refined model by Yamaguchi and

Yamakawa [33] is concerned, so far it has been used only in the mission analyses discussed in

Refs. [32,41], which are not performed within an optimal framework. For this reason the next

section analyzes the classical minimum time transfer problem between two heliocentric circular

and coplanar orbits using the thrust model described by Eq. (7). This allows the two thrust
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models (3) and (7) to be compared using the same mission scenario. New insights involving

the new thrust model will also be proposed, thus extending the results discussed in Ref. [33].

3 Circle-to-circle optimal transfer analysis

Consider a two-dimensional heliocentric scenario, in which an E-sail-based spacecraft with a

characteristic acceleration ac is placed along a circular parking orbit of radius r0. The space-

craft must be transferred to a circular final orbit, coplanar to the first one, with radius r1.

The problem is conveniently described by introducing a polar heliocentric frame of reference

T�(O; r, θ), whose origin O coincides with the Sun’s barycenter, îθ is the transverse unit vector,

and θ is the polar angle measured counterclockwise from the SunŰspacecraft direction at the

initial time instant t0 � 0, see Fig. 4. By assumption, the unit vector n̂ lies in the plane of

the two circular orbits. For this reason the definition of the pitch angle (and so the definition

of the cone angle) is now slightly revised to account for the two possible cases n̂ · îθ > 0 or

n̂ · îθ < 0. To that end, without loss of generality, the pitch angle is assumed to vary in the

range αn ∈ [−π/2, π/2], and the components of n̂ in the frame T� are therefore

[n̂]T� = [cosαn, sinαn]
T (8)

A positive (negative) value of the pitch angle corresponds to a situation in which the transverse

component of the propulsive thrust tends to increase (decrease) the modulus of the angular

momentum of the osculating orbit.

The introduction of a negative value of the pitch angle requires a formal variation of the two

Eqs. (4) and (6) that define the thrust characteristics as a function of the control variables.

More precisely, taking into account that γ is always positive, see Eq. (5), and that the sign of
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α follows that of αn, Eqs. (4) and (6) are now rewritten as

α = sign (αn)
(
b6 α

6
n + b5 |αn|5 + b4 α

4
n + b3 |αn|3 + b2 α

2
n + b1 |αn|+ b0

)
(9)

γ = c6 α
6
n + c5 |αn|5 + c4 α

4
n + c3 |αn|3 + c2 α

2
n + c1 |αn|+ c0 (10)

where sign (�) is the signum function, and the coefficients bi and ci are those of Tab. 1. The

new variation of γ and α with αn is shown in Fig. 5. Note that α(αn) is an odd function,

whereas γ(αn) is an even function of the pitch angle.

The spacecraft equations of motion can be written as

ṙ = u (11)

θ̇ = v/r (12)

u̇ =
v2

r
− μ�

r2
+ ar (13)

v̇ = −u v

r
+ aθ (14)

where μ� is the Sun’s gravitational parameter, u (or v) is the radial (or transverse) component

of the spacecraft velocity, whereas ar and aθ are the two components of the spacecraft propulsive

acceleration in the polar reference frame. From Eqs. (7) and (8) it is found that

ar = ac τ
(
r⊕

r

)
γ cosα (15)

aθ = ac τ
(
r⊕

r

)
γ sinα (16)

where γ and α are given by Eqs. (9)-(10) as a function of the pitch angle. To summarize, the

heliocentric two-dimensional dynamics of the spacecraft is described by the equations of motion

(11)-(14), where τ and αn are the two control variables. The switching function regulates the

activation status of the propulsion system (and the corresponding presence of possible coasting

arcs along the trajectory), while the pitch angle adjusts the direction (and so the modulus)
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of the propulsive acceleration. The control law for τ and αn can be obtained by solving an

optimal control problem, as is described in the next section.

3.1 Trajectory optimization

The E-sail mission is now analyzed within an optimal framework by looking for the minimum

flight time Δt� � min(t1 − t0) ≡ min(t1), where t1 is the time at the end of the transfer. The

problem amounts to maximizing the performance index J � −t1. The optimal control law will

be found using an indirect approach, thus allowing for a direct comparison between the results

obtained with the thrust model of Eq. (7) and those previously discussed in [42,43] using the

model of Eq. (3).

Paralleling the procedure described in Ref. [42], the Hamiltonian function H of this problem is

H � λr u+ λθ
v

r
+ λu

(
v2

r
− μ�

r2

)
− λv

u v

r
+H′ (17)

where λr, λθ, λu and λv are the adjoint variables associated with the state variables r, θ, u, and

v, respectively, and H′ coincides with that portion of the Hamiltonian that explicitly depends

on the controls {τ, αn}, or

H′ � ac τ γ
(
r⊕

r

)
(λu cosα + λv sinα) (18)

The time derivatives of the adjoint variables are given by the Euler-Lagrange equations

λ̇r � −∂H
∂r

=
λθ v

r2
+ λu

(
v2

r2
− 2μ�

r3

)
− λv

u v

r2
+

H′

r
(19)

λ̇θ � −∂H
∂θ

= 0 (20)

λ̇u � −∂H
∂u

= −λr + λv
v

r
(21)

λ̇v � −∂H
∂v

= −λθ

r
− 2

λu v

r
+

λv u

r
(22)
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Note that, according to Eq. (20), the adjoint variable λθ is a constant of motion.

From Pontryagin’s maximum principle, the optimal control law must maximize, at any time,

the function H′ given by Eq. (18). To that end, it is useful to introduce an auxiliary angle

δ ∈ [−π, π], depending on the pair {λu, λv}, defined as [42]

cos δ � λu√
λ2
u + λ2

v

, sin δ � λv√
λ2
u + λ2

v

(23)

Note that δ can be thought of as a sort of cone angle of Lawden’s primer vector [44], whose

components, in the reference frame T�, are just λu and λv. Equation (18) can therefore be

rewritten as

H′ = ac

(
r⊕

r

)√
λ2
u + λ2

v τ H′
αn

with H′
αn

� γ (cos δ cosα + sin δ sinα) (24)

where H′
αn

is the portion of H′ that depends on the pitch angle only, see Eqs. (9)-(10). For a

given value of δ, the optimal pitch angle α�
n solves the problem

α�
n = max

αn

(
H′

αn

)
(25)

The function H′
αn

is maximized with a numerical algorithm based on a golden section search

and parabolic interpolation [45]. The results obtained from Eq. (25) are reported in Fig. 6. In

particular, Fig. 6(a) shows α�
n as a function of δ, while the corresponding maximum value of

H′
αn

is illustrated in Fig. 6(b). The relation between α�
n and δ turns out to be linear and in the

form α�
n = δ/2. The analytical proof of this result is postponed and will be given in the next

section. Figure 6(b) shows that max(H′
αn
) < 0 when |δ| > δ̃, where δ̃ � 110 deg is a sort of

critical primer vector’s cone angle. This is an important result, which is closely related to the

optimal value of the switching function τ . In fact, from Eq. (18) the reduced Hamiltonian H′

is a linear function of τ , and its sign coincides with the sign of H′
αn
. Accordingly, the optimal

value of τ is given by

τ � =
sign

(
δ̃ − |δ|

)
+ 1

2
(26)
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This last equation implies that the maximum value ofH′, and so the maximum ofH, is obtained

by switching the propulsion system on (τ � = 1) when |δ| ≤ δ̃, or off (τ � = 0) when |δ| > δ̃.

The optimal control law involving the two control variables αn and τ , is drawn in Fig. 7.

The same control problem can also be addressed by looking for the optimal values of cone

angle (α = α�) and dimensionless propulsive acceleration γ = γ� as a function of δ. The results

are summarized in Fig. 8. The two curves are obtained using the information taken from Fig. 7

and substituting Eq. (25) into Eqs. (9)-(10).

Notably, the optimal control law exploits the whole admissible range of variation of the cone

angle, cfr. Fig. 5(a), where the extreme values of α, about ±20 deg, are reached when the

primer vector’s cone angle is close to δ̃. Also note that the optimal control law with the new

thrust model is substantially different from that discussed in Ref. [42] using the thrust model

given by Eq. (2).

The optimal values of the trust components, that is a�r and a�θ, are calculated by substituting

the expressions of α� and τ � into Eqs. (15)-(16). Figure 9 illustrates how these optimal dimen-

sionless components vary with δ. The maximum value of the circumferential component turns

out to be within the admissible range of variation of δ. This is an important point, since the

presence of a circumferential thrust component allows the angular momentum of the osculating

orbit to be changed. Also note that the maximum value of |a�θ| takes place when δ = ±90 deg.

A mathematical explanation for this result is possible, and will be given in the next section.

Having found the optimal control law, which is summarized in Fig. 7, where the angle δ is given

by Eqs. (23), the minimum time transfer problem can be solved by numerically integrating the

four equations of motion (11)–(14) and the four Euler-Lagrange equations (19)–(22). The

differential problem is completed by eight boundary conditions at the initial time t0 and at the

final time t1. Exploiting the polar symmetry of the problem, the four boundary conditions at
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t0 are

r(t0) = r0 , θ(t0) = 0 , u(t0) = 0 , v(t0) =

√
μ�

r0
(27)

Assuming that the angular position of the spacecraft along the final orbit is left free, the four

boundary conditions at t1 become

r(t1) = r1 , λθ(t1) = 0 , u(t1) = 0 , v(t1) =

√
μ�

r1
(28)

The optimal mission time is obtained by enforcing the transversality condition [46] H(t1) = 1.

4 Analytical form of the optimal control law

In view of the peculiarity of some results obtained in the last section, especially the linear

relation of the optimal pitch angle with δ, the suspicion exists that an analytical form of the

optimal control law may be recovered. It will now be shown that this is indeed possible. To

that end it is first useful to draw the circumferential propulsive acceleration aθ as a function of

the radial component ar when the propulsion system is on (τ = 1). Substituting Eqs. (9)-(10)

into Eqs. (15)-(16), the two components of propulsive acceleration are shown in dimensionless

form in Fig. 10 (the normalization factor ac (r⊕/r) is the maximum propulsive acceleration at

a generic distance from the Sun). The dotted lines of Fig. 10 correspond to the locus of points

having the same value of α. The figure clearly shows that the relation ar = ar(aθ) can be

accurately approximated (in a dimensionless form) through a circle with center C = (0, d) and

radius R, where

d =
γ(αn = 0) + γ(αn = π/2)

2
� 0.7477 (29)

R =
γ(αn = 0)− γ(αn = π/2)

2
� 0.2523 (30)

and γ is taken from Eq. (10). The two propulsive acceleration components, including the

presence of the switching function τ , can be more conveniently rewritten in a parametric form
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with the aid of a new angular coordinate ν ∈ [0, 2 π], see Fig. 10. The result is

ar = ac

(
r⊕

r

)
τ (d+R cos ν) , aθ = ac

(
r⊕

r

)
τ R sin ν (31)

from which it is apparent that ν plays the role of an auxiliary control variable in the same way

as the pitch angle αn does in the original formulation of the refined thrust model.

By direct comparison between Eqs. (31) and Eqs. (15)-(16) it is found that

γ cosα = d+R cos ν , γ sinα = R sin ν (32)

Squaring and summing the last two equations, the dimensionless propulsive acceleration γ is

written as a function of the triplet {d,R, ν} as

γ =
√
d2 +R2 + 2Rd cos ν (33)

while the cone angle α becomes

α = arctan
(

R sin ν

d+R cos ν

)
(34)

It can be verified that Eqs. (33) and (34) are equivalent to the original Eqs. (10) and (9),

provided that

ν = 2αn (35)

The latter claim is confirmed by Fig. 11, which compares the two functions γ = γ(αn) and

α = α(αn) obtained using the results from Ref. [33] and the analytical approximations of

Eqs. (33)–(35). The soundness of Eqs. (33)–(35) can also be confirmed through the optimal

control law obtained using ν as the control variable in place of the pitch angle. In fact, when

Eqs. (32) are substituted into Eq. (24), the resulting expression for H′ is

H′ = ac

(
r⊕

r

) √
λ2
u + λ2

v τ H′
ν with H′

ν � cos δ (d+R cos ν) +R sin δ sin ν (36)

The optimal value ν� of the auxiliary control variable is obtained by maximizing the function
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H′
ν . From the necessary condition ∂H′

ν/∂ν = 0 it is found that

ν� = δ (37)

Therefore, in an optimal transfer, the angular variable ν coincides with the primer vector’s

cone angle δ. Substituting Eq. (35) into (37), the optimal pitch angle is α�
n = δ/2, which is in

accordance with the previous results of Fig. 6(a). Substituting Eq. (37) into (34), the analytical

form of the optimal control law for the cone angle is

α� = arctan

(
R sin δ

d+R cos δ

)
(38)

which overlaps exactly with that drawn in Fig. 8 when τ = 1. Likewise, using Eq. (33), the

optimal expression for the dimensionless propulsive acceleration is

γ� =
√
d2 +R2 + 2Rd cos δ (39)

The maximum value of H′
ν is obtained by substituting Eq. (37) into the second of Eqs. (36),

that is

max (H′
ν) = d cos δ +R (40)

Recall that H′ depends linearly on τ , see Eq. (36), and note that the sign of H′ coincides with

that of H′
ν . From Eq. (40), the optimal switching function is found as

τ � =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 when δ > arccos (−R/d)

1 when δ ≤ arccos (−R/d)

(41)

where arccos (−R/d) � 109.7 deg, using the values of d and R from Eqs. (29)-(30). The control

law (41) is therefore equivalent to the previous Eq. (26) since δ̃ � arccos (−R/d). Notably,

Eq. (41) has a nice geometrical interpretation, illustrated in Fig. 12. In particular, the arc of

circle corresponding to τ = 0 is bounded by two half-lines from the origin and tangent to the

circle that describes the variation of the two acceleration components. From the geometrical
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interpretation of Fig. 12, the maximum cone angle is found as

αmax = arccos (−R/d)− π

2
(42)

that is, about 20 deg, which is in agreement with the results of Fig. 8.

In conclusion, the optimal values of the propulsive acceleration components have the following

analytical expressions

a�r = ac

(
r⊕

r

)
sign (arccos (−R/d)− |δ|) + 1

2
(d+R cos δ) (43)

a�θ = ac

(
r⊕

r

)
sign (arccos (−R/d)− |δ|) + 1

2
R sin δ (44)

which coincide with the results illustrated in Fig. 9. In particular, the maximum value of the

circumferential acceleration component is reached when the modulus of the primer vector’s

cone angle equals 90 deg.

To summarize, the two-point boundary value problem to be solved is constituted by the eight

differential equations (11)–(14) and (19)–(22), along with the eight initial conditions (27)–(28)

and the transversality equation H(t1) = 1 (the latter is necessary to calculate the flight time).

The components of the propulsive acceleration ar and aθ are obtained from Eqs. (43)–(44)

and δ is given by Eqs. (23). A simplification to the problem is obtained by noting that when

Eq. (20) is combined with the second of (28), the adjoint variable λθ is zero for all t ∈ [t0, t1].

5 Numerical simulations

The optimal control law discussed in the last section has been used to simulate minimum-time

circle-to-circle transfers of an E-sail-based spacecraft starting from a circular heliocentric orbit

of radius r0 � 1 au. This scenario is representative, for example, of an E-sail deployment on

a parabolic Earth escape trajectory with zero hyperbolic excess energy with respect to the
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planet.

In all of the simulations, the E-sail characteristic acceleration is assumed to be ac = 1mm/s2.

Even though such a value is representative of a an E-sail with medium-high performance, it is

usually referred to as“canonical”value, in analogy with a similar definition adopted for photonic

solar sails [2]. It also represents an useful reference parameter for performance comparisons

between different thrust models. The characteristic acceleration, of course, depends on the

spacecraft mass and, therefore, on the payload mass. For example, using the mass breakdown

model discussed in Ref. [47], a value of ac = 1mm/s2 could (theoretically) be obtained with a

spacecraft having a total mass of about 400 kg with a payload mass of 100 kg.

Figure 13 summarizes a parametric study in which the minimum flight time Δt� is shown

for different values of the final orbital radius in the range r1 ∈ [0.3, 1.6] au. The figure also

shows a comparison with the minimum flight time that can be obtained with a classical thrust

model, described by Eq. (3), and a maximum cone angle of αmax = 30 deg. As expected, the

performance (in terms of transfer times) with the new thrust model are much worse than those

attainable with a classical model. This is mainly due to the different values of the maximum

value of the cone angle between the two models (about 20 deg in the new model, compared

to about 30 deg in the previous one). The performance differences tend to markedly increase

as the final radius becomes smaller, due to a higher complexity of the resulting spacecraft

trajectory, with an increasing number of revolutions around the Sun and a number of coasting

arcs along the trajectory. This problem is highlighted in Fig. 14, which shows the transfer

trajectories for different values of r1.

The flight time varies considerably also as a function of the spacecraft characteristic acceler-

ation. In this context, the dependence of Δt� on ac has been studied in the special case of

r0 = 1 au and r1 = 1.524 au, which is representative of an Earth-Mars transfer when the ec-

centricity of the planetary orbits and their relative inclination are both neglected. The optimal
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transfer problem is solved under the assumption of free planetary ephemerides (that is, the

final angular position of the spacecraft along the Mars’ orbit is left free), which amounts to

finding the minimum flight time between the two heliocentric orbits. The results are reported

in Fig. 15 as a function of ac ∈ [0.1, 1]mm/s2 for the two different thrust models. Taking

the performance corresponding to a classical thrust model as a reference value, the flight time

obtained with the new model (solid line) is increased of about 30% when ac = 1mm/s2, while

the difference between the two transfer times is even 1500 days (with an increase of 100%)

when ac = 0.1mm/s2. The increased complexity of the spacecraft trajectory when the value of

ac is decreased, is shown in Fig. 16.

In particular, when the value of ac is sufficiently small, the transfer trajectory resembles a

spiral without coasting arcs. In fact, when the propulsive acceleration is much smaller than the

solar gravitational acceleration, the transfer between the initial and the final orbit takes place

as if the spacecraft were continuously moved along a series of circular orbits with an increasing

radius. Such a characteristic is clearly illustrated in Fig. 17, which shows the simulation results

corresponding to ac = 0.1mm/s2. Note that the time variations of the radial (u) and circum-

ferential (v) velocity components are normalized with the local circular velocity (
√
μ�/r). The

time scale is also normalized with the minimum flight time, equal to Δt� � 3281 days. Fig-

ure 17 also shows the time variation of the cone angle (α�) and of the angular momentum of

the osculating orbit

h � r v (45)

In particular, the time variation of h has been normalized using either the angular momen-

tum of the initial orbit (
√
μ� r0), or using the angular momentum of the local circular orbit

(
√
μ� r). Figure 17 shows that the optimal cone angle α� has small oscillations around a nearly

constant mean value α. The latter, of about 18 deg, is close to the maximum admissible value

(αmax
∼= 20 deg). The reason is that when ac is small, the orbital radius variation is obtained,

at each distance r from the Sun, by exploiting the maximum circumferential component of the
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propulsive thrust aθ. Bearing in mind Eq. (35) and recalling Fig. 10, the maximum value of aθ

is obtained when αn = π/4. The latter corresponds to a cone angle α � 18.6 deg, see Eq. (4),

which is close to the mean value obtained from Fig. 17.

The fact that the cone angle is about constant during the whole transfer is confirmed by the

linearity of the function h = h(t), as is shown in Fig. 17. The reason is that if the cone angle is

about constant (and equal to α), so is the pitch angle (which is about equal to its mean value

αn). Under the assumption that the propulsion system is on (τ = 1) along the whole flight,

and using the Eq. (16) for aθ, the equation of motion (14) can be written as

ḣ = r aθ ≡ ac r⊕ γ sinα (46)

As long as the pitch angle is constant, i.e. αn = αn, the dimensionless propulsive acceleration

is about constant and equal to its mean value γ. The right hand side of Eq. (46) is therefore a

constant of motion, and the approximate law of variation of the angular momentum becomes

h � √
μ� r0 + (ac r⊕ γ sinα) t (47)

where
√
μ� r0 is the value of h at the initial time, that is, along a circular orbit of radius r0.

Note that Eq. (47) is consistent with the results discussed in Ref. [37], where the dynamics of

an E-sail was investigated under the assumption of constant value of pitch angle.

Figure 17 also shows that the instantaneous value of h oscillates around
√
μ� r, which corre-

sponds to the angular momentum of the local circular orbit. Substituting the equation

h � √
μ� r (48)

into Eq. (47), the minimum flight time can be approximated as

Δt� �
√
μ� r1 −√

μ� r0

ac r⊕ γ sinα
(49)

where, assuming αn = π/4, one has γ � 0.7891 and α � 18.6 deg. For example if ac =
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0.1mm/s2, r0 = 1 au, r1 = 1.524 au, and from Eq. (49) the flight time is Δt� � 3204 days,

which differs of 2.3% only from the actual value of 75 days.

The soundness of approximation (49) depends on the characteristic acceleration value, which

must be sufficiently small as confirmed by Fig. 18. Note that the results for an Earth-Mars

transfer are in good agreement with those obtained with the simplified formula (49) if ac ≤

0.15mm/s2. This is an important point, since the simulations of the optimal trajectory may

be affected by convergence problems for small values of the characteristic acceleration due to

the high sensitivities of the adjoint variables to their (unknown) initial conditions. As a final

remark, Eq. (49) is to be applied for an orbit raising case, or r1 > r0. It can however be verified

that when r1 < r0, the same Eq. (49) is still valid by simply changing the sign of α, that is,

using α � −18.6 deg.

6 Conclusions

A thorough analysis of the new thrust model allowed us to obtain new information about the

potentialities of an Electric Solar Wind Sail for mission applications. The study of minimum-

time heliocentric missions for a classic circle-to-circle coplanar transfer has clearly shown that

the Electric Solar Wind Sail performance attainable with the new model are definitely lower

than those calculated in the past. Nevertheless, this does not imply that the results obtained

with the previous model have become useless. In fact, the new model and the old one are

substantially coincident (in terms of thrust vector) for small pitch angles. This kind of thrust

strategy, which amounts to a nearly radial propulsive acceleration outward from the Sun, is

particularly simple to obtain due to the natural tendency of the Electric Solar Wind Sail to

orient its nominal plane orthogonal to the Sun-spacecraft direction. In other terms, the Electric

Solar Wind Sail performance calculated with the old thrust model are essentially equivalent

to that attainable with the new model until the cone angle remains sufficiently small.
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The new thrust model is able to take into account (within some limits) the effects of a spacecraft

attitude variation in the preliminary mission analysis. It is known, however, that not all of

the physical phenomena have been modelled. In particular, the thrust model neglects the

variability of the solar wind characteristics and implicitly assumes the existence of a closed

loop control system for continuously adjusting the tether voltage and modulating the thrust

intensity. Further improvements are therefore possible, even though the model complexity

could probably reach a so high degree of complexity that it could be hardly applicable to a

preliminary mission analysis. Nevertheless, further refinements of the mathematical model are

necessary for obtaining new confirmations about the actual Electric Solar Wind Sail capability

of balancing the local fluctuations of the solar wind.
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adapted from Ref. [33].
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(b) Dimensionless propulsive acceleration.

Figure 5. E-sail propulsive characteristics for mission analysis purposes in a two-dimensional scenario.
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Figure 6. Optimal value of pitch angle and maximum of the reduced Hamiltonian as a function of δ.
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Figure 7. Optimal control law as a function of the primer vector’s cone angle δ.
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Figure 8. Optimal cone angle and dimensionless propulsive acceleration of δ.
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Figure 9. Optimal dimensionless components of the propulsive acceleration as a function of δ.
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Figure 10. Components of the dimensionless propulsive acceleration.
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Figure 11. Cone angle and dimensionless propulsive acceleration as a function of the pitch angle: best–
fit polynomial [solid line, see Eqs. (9)-(10)] vs. analytical approximation [circles, see Eqs. (34)-(35)].
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Figure 12. Thruster-off condition in the (aθ, ar) plane, see Eq. (41).
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Figure 13. Minimum transfer time as a function of the final radius. Refined (solid line) vs. classical
(dashed line) thrust model, see Eq. (3).
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Figure 14. Optimal circle-to-circle transfer trajectories as a function of the final radius r1 when
r0 = 1au and ac = 1mm/s2. Dashed lines correspond to coasting arcs.
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Figure 15. Minimum transfer time as a function of ac in a simplified, circle-to-circle, Earth-Mars
mission scenario. Refined (solid line) vs. classical (dashed line) thrust model, see Eq. (3).
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Figure 16. Optimal Earth-Mars circle-to-circle transfer trajectories as a function of the characteristic
acceleration. Dashed lines correspond to coasting arcs.
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Figure 17. Results for an Earth-Mars circle-to-circle optimal transfer with a refined thrust model
(Δt� � 3281 days).
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Figure 18. Earth-Mars optimal circle-to-circle transfer. Comparison between actual flight time (solid
line) and approximated value from Eq. (49) (dashed line).
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