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In this paper we propose a strategy, entirely relying on available experimental data, to
estimate the effect of a small control rod on the frequency of vortex shedding in the wake
past a thick perforated plate. The considered values of the flow Reynolds number range
between Re ~ 6.6 x 103 and Re = 5.3 x 10*. By means of particle image velocimetry, an
experimental database consisting of instantaneous flow fields is collected for different val-
ues of suction through the body surface. The strategy proposed here is based on classical
stability and sensitivity analysis applied to mean flow fields and on the formulation of
an original ad-hoc model for the mean flow. The mean flow model is obtained by cali-
brating the closure of the Reynolds Averaged Navier-Stokes equations on the basis of the
available experimental data through an optimisation algorithm. As a result, it is shown
that the predicted control map agrees reasonably well with the equivalent one measured
experimentally. Moreover, it is shown that even when turbulence effects are neglected,
the stability analysis applied to the mean flow fields provides a reasonable estimation of
the vortex shedding frequency, confirming what is known in the literature and extending
it up to Re = 5.3x10%. It is also shown that, when turbulence is taken into account in the
stability analysis using the same closure that is calibrated for the corresponding mean
flow model, the prediction of the vortex shedding frequency is systematically improved.

1. Introduction

Stability and sensitivity analysis can be rigorously applied to a baseflow which is at
incipient instability. As the baseflow departs from that condition the predictions provided
by stability analysis become progressively less accurate. This is shown for instance in
Sipp & Lebedev (2007) for the flow past a circular cylinder. However, there are classes
of oscillators characterised by the peculiarity that, if the stability analysis is applied
to the mean flow field, even if the contribution of the Reynolds stresses is neglected in
the stability equations, the analysis predicts a nearly marginally stable mode with a
frequency which is similar to that the non-linearly saturated instability.

Conditions for this behaviour to hold are investigated by Sipp & Lebedev (2007) and,
more recently, by Turton et al. (2015). In this last work it is shown that when a flow is
characterised by energetically dominant quasi-monochromatic oscillations, thus leading
to peaked temporal power spectra, the characteristics of the global mode leading to the
oscillations can be predicted by the stability analysis of the mean flow. For instance,
this behaviour is typical for a bluff-body wake. This was first noticed for wake flows
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in Hammond & Redekopp (1997); Pier (2002), where the local linear criterion for weakly
nonparallel flows (Monkewitz et al. 1993), applied to the mean flow field, is shown to
yield the correct prediction of the saturated wake instability. The same behaviour was
observed, by global stability analysis, for the flow past a circular cylinder up to Re = 180
by Barkley (2006); Sipp & Lebedev (2007); Mittal (2008) and it was confirmed up to
Re = 600 in Leontini et al. (2010). In the referenced papers the mean flow field was
computed by Direct Numerical Simulation (DNS) and stability analysis was carried out
on the mean (i.e. time-averaged) flow field. In Khor et al. (2008), local spatio-temporal
analysis is applied to mean wake profiles fitting experimental measurements in the wake
past a circular cylinder in the range 600 < Re < 4600, showing a good agreement between
the predicted and the measured vortex shedding frequency. In Emerson et al. (2016) sta-
bility and sensitivity analysis is applied to the experimental mean velocity and density
fields in reacting bluff-body wakes, showing good agreement in the prediction of the vor-
tex shedding frequency and of the associated flow fluctuations. In Camarri et al. (2013)
global stability analysis is performed on experimental Particle Image Velocimetry (PIV)
mean flow fields past a porous circular cylinder at Re = 3.5 x 10® for different transpi-
ration velocities through the cylinder surface, showing discrepancies between predicted
and measured vortex shedding frequencies which are less than 15%. In Camarri et al.
(2013) it is also shown that the inclusion of a very crude eddy-viscosity model in the
stability analysis of the mean flow leads to an improved prediction of the vortex shed-
ding frequency. The same conclusion concerning the use of an eddy-viscosity model in
the global stability analysis has been recently confirmed for instance in Tammisola &
Juniper (2016) for a swirling injector and in Rukes et al. (2016) for strongly swirling
flows.

To the authors knowledge, the first work conjecturing the property of marginal stability
of a mean flow field is documented in Malkus (1956). In the specific context of bluff-body
wakes, an interpretation of the above behavior was reported in Noack et al. (2003),
suggesting that the amplitude of the oscillating wake saturates precisely when the mean
flow becomes nearly marginally stable. The same conjecture has been recently used in
Manti¢-Lugo et al. (2014) in order to formulate a self-consistent model for the vortex
shedding in the laminar flow past a circular cylinder.

When the considered wakes are turbulent, a formally consistent approach to justify
the stability analysis of mean flow fields was originally proposed in Reynolds & Hussain
(1972) (see also Reau & Tumin 2002), where a triple decomposition is used for the flow
variables, separating the following contributions: (i) the time-averaged flow field, (ii) the
large-scale coherent part and (iii) the fluctuating part. This decomposition is well suited
for wakes as they show self-sustained oscillations which are strongly periodic and related
to large-scale flow structures. The occurrence of this kind of instability can be detected in
the framework of the triple decomposition by applying stability analysis to the linearised
equations for the coherent velocity fluctuations evolving on the mean flow field.

Provided that the stability analysis of mean flow fields in a bluff-body wake leads to
a realistic prediction of the vortex shedding frequency, techniques based on sensitivity
analysis (see e.g. the review in Camarri 2015) can be applied for its control. Conversely, no
information is directly provided on the action of the control on the saturated amplitude of
the periodic motion. As shown in Marquet et al. (2008), in order to estimate the effect on
vortex shedding of a passive control that might be obtained by introducing a small control
cylinder in the wake, it is necessary to have a model for the simulation of the mean flow.
This is done for instance in Meliga et al. (2012) for reproducing the experiments results
documented in Parezanovi¢ & Cadot (2012, 2009). In the experiments the sensitivity
of the global characteristics of the turbulent wake past a plane D-shaped cylinder at
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Re = 13000 was investigated by placing a small control cylinder in generic positions of
the wake. In Meliga et al. (2012) the sensitivity map of the vortex shedding to a generic
placement of the control cylinder is estimated on the basis of a sensitivity analysis of the
Reynolds Averaged Navier-Stokes (RANS) equations governing the problem. The RANS
equations are closed using the Spalart-Allmaras (SA) one equation closure (see Spalart
& Allmaras 1994) and they are used in order to compute an approximation of the same
mean flow field of the experiments in Parezanovié¢ & Cadot (2012, 2009). The linearisation
of the RANS equations (including the additional equation for the SA model) around
the mean flow field is used to carry out a global stability and sensitivity analysis. The
control cylinder is modelled as a pure drag force estimated on the basis of a constant drag
coefficient, of the size of the cylinder and of the local velocity. The resulting sensitivity
map shows a good agreement with the experiments thus demonstrating the potential of
the described strategy to predict control of large-scale instability in the turbulent wake
past a bluff body.

The main objective of the present work is to derive and validate experimentally the
sensitivity map of the vortex shedding frequency in a bluff-body wake similarly to what is
done in Meliga et al. (2012) but basing the analysis solely on available PIV flow fields of
the uncontrolled flow. Thus, we renounce to use the mean flow field obtained numerically
by a set of a-priori closed RANS equations but we derive a numerical model of the
mean flow which incorporates the PIV measurements available from the experiments,
and in particular the mean flow field itself and the phase-averaged Reynolds stresses.
The objective of the proposed model is to provide the (linearised) variation of the mean
flow as a small control cylinder. This is done for a generic position of the cylinder using
the same adjoint methods described in Meliga et al. (2012). The mean flow model is built
starting from the triple decomposition of the flow and closing the equations for the mean
flow field by an eddy-viscosity closure. The eddy viscosity is successively found by an
optimisation algorithm, thus minimising the discrepancies between the mean flow field
given by the model and the reference mean flow field available from the experiments.

Following the modelling documented in Viola et al. (2014), the same eddy viscosity,
tuned so as to build the mean-flow model, is included in a physically consistent way in
the stability analysis of the mean flow field. As a second objective of this paper we show
that the inclusion of this turbulence model in the stability equations, derived by the
calibration of the mean flow model, leads to a significant improvement in the accuracy
of the predicted vortex shedding frequency and of the associated eigenmode. As a final
output, this paper also confirms that, when turbulence is not included in the analysis,
the predictions of the vortex shedding frequency based on the PIV mean flow fields is
acceptable for Reynolds numbers up to 5.3 x 10*. Lastly, the mean flow model and the
stability analysis are used here to derive a control map for the vortex shedding frequency
in the considered wake flow, and results are compared to the corresponding map derived
experimentally similarly to what done in Meliga et al. (2012) and in Parezanovi¢ & Cadot
(2012, 2009).

As a prototype flow for the analysis described above we have considered the flow past
a rectangular forebody with a smooth leading edge and a blunt trailing edge, which
offers the possibility to modify the boundary layer on the upper and lower sides of the
body through wall suction from the perforated surfaces. A modification of the boundary
layers prior to separation results in an altered near-wake topology and consequently, a
change of the vortex shedding frequency (Fallenius et al. 2014; Trip & Fransson 2014,
2016). The range of considered Reynolds numbers, Re ~ 6.6 x 10% - 5.3 x 10%, is chosen so
as to include both laminar and turbulent boundary layers detaching from the body and
impinging onto the wake. For each considered value of the flow Reynolds number, the flow
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Figure 1: A schematic drawing of the experimental setup, with: (1) the perforated surface of
the rectangular forebody, (2) the hot-wire probe, and (3) and (4) the cameras and
laser of the PIV system, respectively, aligned as to capture the field of view delineated
with dash-dotted lines.

at issue is investigated for different levels of suction from the body surface, which implies
different values of the vortex shedding frequencies and different mean flow fields. The
available experimental database permits to test the robustness of the proposed method
and its performance for a wide range of wakes.

The experimental setup employed to obtain mean and phase-averaged velocity fields
will be introduced first, followed by a detailed description of the theoretical tools, i.e.
the ad-hoc tuned model for the mean flow and the sensitivity analysis for predicting the
effect of a small control rod on the vortex shedding frequency. The results obtained by
the application of these tools are successively presented in section 5.

2. Experimental setup

The experiments were carried out in the Boundary Layer (BL) wind tunnel at the
Odqvist Laboratory, located at the Royal Institute of Technology (KTH). The BL tunnel
has a background turbulence intensity of 0.04% and 0.06% in the streamwise and cross-
flow directions, respectively, at a free-stream velocity of 25 m/s.

The perforated, thick, plate is best described as a 2.3 m long rectangular forebody
with a smooth leading edge and a blunt trailing edge. The plate is mounted horizontally
in the 4 m long test section, with a cross-sectional area of 0.5 m in width and 0.75 m in
height, see figure 1. The body is h = 4cm thick and spans the entire width of the test
section. Boundary layer modification by means of wall suction and/or blowing is possible
through perforations in the top and bottom titanium surfaces with a porosity of 0.5%.
The perforations constitute of laser-drilled discrete holes of 60 pwm in diameter. A detailed
description of the test section and of the rectangular forebody is given by Fallenius et al.
(2014).
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Figure 2: Frequency-premultiplied power spectral energy estimate via Welch method for two
hot-wire signals measured at (a) 2.5 m/s (case U2.5Dp0) and (b) 20.0 m/s (case
U20Dp0) without suction from the body wall.

In the present study, we limit ourselves to cases of wall suction, and a pressure drop
over the surface of at most 500 Pa. A measure of the wall-normal velocity Vj, which was
found to be in the range —3.3 cm/s — 0 cm/s, was obtained. Different experimental cases
are referred to “UXDpY”, where X and Y correspond to the free-stream velocity (m/s)
and the pressure difference (Pa) over the perforated surface.

2.1. Vortez-shedding frequency

To obtain the frequency of vortex shedding, a hot-wire probe was mounted 6h down-
stream of the body, 3h above the wake centreline. The hot-wire probe, with a wire that
is 0.5 mm long and 2.5 um in diameter, is built in-house. It was operated in combination
with a Dantec Dynamics StreamLine 90N10 system, equipped with a Constant Temper-
ature Anemometer (CTA) module. A total of 91250 samples were recorded at a sampling
frequency of 1 x 10* Hz. The time signal was converted to the frequency spectrum em-
ploying a Welch-algorithm. A bin size of 215 was used, which corresponds to a frequency
resolution of 0.3 Hz.

Two examples of frequency-premultiplied power energy spectra obtained from hot-wire
signals at the lowest (2.5 m/s, case U2.5Dp0) and highest (20.0 m/s, case U20Dp0) speed,
without suction from the wall, are shown in figure 2. As can be evinced from the spectra
in figure 2, vortex shedding is strongly periodic, the power spectra are narrow-banded
around the vortex shedding frequency and the related energy peak in the spectra are
by far dominant on all other frequency components. Note that in figure 2(b) there are
other peaks distributed at 150Hz, 250Hz, 350Hz and so on. These peaks are due to the
PIV system which was activated at a frequency of 150Hz while the hot-wire signal was
measuring, and the higher frequencies are caused by the interaction between the PIV
frequency at 150Hz and the vortex shedding one, which is close to 100Hz, and thus they
are not related to flow structures. More details on the spectral characteristics of hot-wire
signals for this flow case, even when suction is applied from the wall, can be found in
Trip & Fransson (2014).

2.2. Phase-averaged flow

The time-resolved hot-wire signal was recorded simultaneously to the PIV experiment,
and can therefore be conveniently used as a phase indicator to sort the PIV images. The
PIV snapshots of a complete ensemble are subdivided into 16 discrete phase bins, based
on their phase angle in the shedding cycle. The mean of the snapshots in each bin is
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Figure 3: Flow case U2.5Dp0: phase averaged velocity (a) and vorticity (b) fields at a generic
phase angle; black line indicates the wake vortices identified by the Ay criterion (see
Jeong & Hussain 1995)

approximately equal to the phase-average of the velocity field. The independence of the
phase average on the number of phase bins was checked by increasing the number of
phase bins up to 128. An example of the phase averaged flow field, at a generic phase,
obtained for the flow case U2.5Dp0 is given in figure 3, where the velocity vectors and
the vorticity fields are reported, together with the identification of the wake vortices
through the Ao criterion (see Jeong & Hussain 1995) plotted with a black line on the
figures. As highlighted by figure 3, the phase-averaged flow field is smooth enough for
the application of differential operators (i.e. so as to derive the vorticity field) and the
vortices which dominates the wake dynamics are clearly visible.

As an additional information on the unsteadiness of the flow field, the components of
the Reynolds stresses resolved by PIV for case U2.5Dp0 have been reported in figure 4
(first column), together with the contribution given solely by the phase-averaged velocity
field (second column) and that given by the residual velocity fluctuations (third column),
in the spirit of the triple decomposition of the flow variables (see in the following for more
details).

2.3. Maps for passive control

To study the effect of a small body on the vortex shedding frequency, a control cylinder
is introduced in the wake of the body. The control cylinder, with a diameter equal to
d* = 3mm, is rigid such that it can be clamped between the wind tunnel walls. The mini-
mum diameter of the cylinder, which is the one adopted here, is dictated by technological
realisability of the experiment. However, from an aerodynamic viewpoint this cylinder is
rather intrusive. Indeed, the maximum Reynolds number based on its diameter, ranges
between 5 x 10?2 and 4 x 10% depending on the flow case. An experimental sensitivity map
for the considered passive control is obtained by recording the vortex shedding frequency
with the control cylinder placed on a 15 x 11 rectangular grid extending 1h from the
wake centreline in the wall-normal direction and 2k downstream of the trailing edge of
the plate in the streamwise direction. The resulting map is reported in figure 10(b) for
case U2.5Dp0 and commented in section 5.4.

3. Theoretical tools

In this section we describe the theoretical tools proposed in order to predict the con-
trol map providing the variation of the vortex shedding frequency consequent to the
local introduction of a small control rod. The proposed tools are based on the triple
decomposition of the flow variables. In particular, given the velocity flow field U(x,t),
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Figure 4: Flow case U2.5Dp0: experimentally resolved Reynolds stresses (first column), contri-
bution given by the phase-averaged velocity field (second column) and by the residual
velocity fluctuations (third column).

we decompose it in a mean part U(x), in a time-periodic part @(x,t) = a(x,t +T) (T
being the period), and in a residual part, u'(x,t):

U=U(x)+u(x,t)+u'(x,1), (3.1)

where = and * indicate the operators of time and phase averages, respectively. The same
decomposition applies for all the other flow variables. The basic assumption for using the
triple decomposition consists in assuming that the considered flow has a nearly-periodic
energetically dominant component, so that we can isolate that component through a
phase average. For the flow at issue this characteristic is demonstrated by the energy
spectra reported in figure 2. Moreover, for the objectives of the present work, the re-
quirements on the flow for using the triple decomposition are even milder. Indeed, here
we use the equations governing the linearized dynamics of a time-periodic flow component
only to inspect the stability properties of the mean flow field and to check the possible
existence of a periodic-in-time flow component on top of the mean flow field.

Following the derivation in Viola et al. (2014), manipulating the Navier-Stokes equa-
tions for incompressible Newtonian flows and using the triple decomposition, it is possible
to derive the equations for both the mean velocity field and the time-periodic velocity. In
particular, the mean flow field is governed by the following set of equations in normalised
form:

v-U=0, (3.2)
— - 1 .
U-vU+V-|[aa+u o +VT9—R—V2U=O. (3.3)

—_ — e

(a) (®)
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The terms (a) and (b) in eq. (3.3) need to be measured or modelled in order to close the
set of equations, as discussed below. All quantities are scaled using the plate thickness h
and the velocity U,, on which the flow Reynolds number is based (Re = Uy, h /v, v being
the kinematic viscosity of the fluid).

The equations governing the dynamics of the time-periodic component of the flow in
non-dimensional form are given by:

V=0, (3.4)
z—?+ﬁ-Vﬁ+ﬁ'Vﬁ:

1 -
—-Vp+ o VA=V (G- aa) - V- (W0 - W) (3:5)
e
—_—
(0
As for the mean flow, terms (c) in eq. (3.5) need to be modelled so as to close the set of
equations.

In the present work we have chosen to close the above equations following the Boussi-
nesq approximation via an eddy viscosity model. Following the derivation detailed in Vi-
ola et al. (2014), which is based on the properties of the time-average and phase-average
operators, it is possible to model term (b) in eq. (3.3) is modelled as follows:

2 __ _
—u'u’ + gm ~1(x) (VU +VTU) , (3.6)

where @ is the turbulent kinetic energy, I is the 3 x 3 identity matrix and v4(x) is the
non-dimensional distribution of turbulent eddy viscosity, which is a scalar field that needs
to be assigned for the closure of the equations. If the term %@I is included in the mean
pressure p, as it is standard in this type of turbulence closure, we arrive to the following
set of equations for the mean flow:

v-U=0, (3.7)

T T T 1 T T T T = ~

U-vU+Vp- §V2U -V [n(x)(VU+v'O)]+v-(aa)=0. (3.8)
Following the derivation in Viola et al. (2014) it is possible to show that the linearised
dynamics of the time-periodic flow field can be closed with the same distribution of eddy

viscosity used for the mean flow field, v4(x), and the resulting equations can be written
as follows (see also Rukes et al. 2016):

V=0, (3.9)
MU.va+a vU=
ot
=-Vp+V- (};e+yt(x))(vﬁ+vTﬁ)‘| ) (3.10)
—_—

Reeq

In deriving egs. (3.9) and (3.10) it is assumed that the eddy viscosity is independent of
the mean flow field.

In Viola et al. (2014) an eddy viscosity model and a mixing length model, both assumed
to vary only in the streamwise direction, are used to close the equations, leading in this
last case to a set of equations slightly different from egs. (3.9) and (3.10). In the present
work the more general case of an eddy-viscosity which varies generically in space is
considered. This closure, that is more general then the one proposed in Viola et al. (2014),
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also leads to a more complex optimisation problem when tuning the eddy viscosity, as
shown in the following. Lastly, the presence of the field v; permits to define a variable
local Reynolds number, Re.q(x) = Re/(1+ Revy(x)) which takes into account both the
molecular (Re) and the turbulent (v;) contributions in eq. (3.10).

3.1. A model for the mean flow field

In the present work the mean flow field and its phase-average (with respect to vortex
shedding) is always available from the experiments through dedicated PIV measure-
ments. Relying on the available experimental information we want to derive a mathe-
matical model for the mean flow field. The model proposed here is based on the governing
egs. (3.7)-(3.8) and makes use of all the information available from experiments.

In particular the only unknown term in egs. (3.7)-(3.8) is the eddy viscosity field v;(x),
which cannot be obtained experimentally since the time resolution of the PIV measure-
ments inevitably acts as a filter on the flow variables which prevents obtaining fully
resolved Reynolds stresses. For this reason v;(x) is a free field on which it is possible
to act so as to change the output of egs. (3.7)-(3.8). Consequently, v;(x) is estimated

so as to minimise the differences between the target mean flow field coming from the

(T)

—(T — —(T
experiments, U °, and the simulated one, U. The target flow U( ) can be the raw

—(E —(R
experimental mean field, U( ), or a regularised field, U( ), as explained later. The con-
sidered objective function to be minimised in the resulting optimization problem is the

following one:
2
Izlf(ﬁ(T)—ﬁ) ao . (3.11)
2 Ja

The cost function I must be minimised considering that U is the solution of egs. (3.7)-
(3.8) and this constraint is taken into account by a classical lagrangian approach, i.e.
defining an augmented functional as follows:

J=1- [ (¢v-0)ds

- 1 - (3.12)
—fQV-[U-VUwLV]?—asz—V-[ut(x)(VU+VTU)]+V~(

ﬁﬁ)]dSL

where V and ¢ are lagrangian multipliers.

By applying standard variational methods to eq. (3.12) it is possible to derive the
adjoint equations for the Lagrange multipliers (V,q) and the associated boundary con-
ditions. In particular, the equations for (V,q) are written as follows:

v-V=0, (3.13)
vU-V-U-VV-vg+

—v.[z(Rle+ut)(W+2VTV)]—(U(T)—U):0. (3.14)

As we will see in the following sections, two types of boundary conditions are used for the
mean flow equations. One type is a Dirichlet type (boundary I'p), such that the mean
velocity U is forced to assume a prescribed value. The other type, on T, is a stress-
free condition, and it can be written as follows: pn - (4 +1¢)[n- (VU + v'U)] = 0.
On the boundary I'p it can be shown that the natural boundary conditions for V are
homogeneous Dirichlet conditions, i.e. V = 0. On I', we have the following conditions:
gqn - (é +1/t) [n-(VV+vIV)]= —(ﬁ~n)V.

Once the lagrangian multipliers (V,g) are found, the variation 07 of the cost function
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I in eq. (3.11) with respect to a generic variation in the spatial distribution of v4(x),
ov(x), is given as follows:

TT TYT T
M:_[Q[Q(VU;V U)(VV+2V V)]Mdg“

+/FO [2V~((VU+QVTU)on)6Vt]dF. (3.15)

The optimal distribution of 1, can thus be obtained using a gradient-based method
based on eq. (3.15). At each step of the gradient method, v is varied moving towards
the steepest descent for I and the length of the step in the direction of the gradient is
found by searching numerically for the optimality condition in the direction specified by
the gradient, which is computed by eq. (3.15).

It is important to underline that the distribution of v; obtained by the procedure
described above is aimed at modelling the unresolved small-scales Reynolds stresses which
is the most important contribution needed in eq. (3.8) so as to reproduce accurately the
reference mean flow. However, since the field v; is the result of an optimisation process, it
also compensates for all the elements which prevents egs. (3.7)-(3.8) to reproduce exactly
the experimental mean flow even if the exact unresolved stresses were introduced directly
in the equations. These elements can be, for instance, the experimental uncertainty or the
errors due to the numerical discretization of the equations, including domain truncation.

Since the mean experimental flow fields are affected by noise, which may amplify as
they are differentiated in space, they have been usually regularised before being employed
as target flows in the calibration of the mean flow model. The regularisation applied
here is a variational form of the Tichonov regularisation smoothing first-order spatial
derivatives, as proposed for instance in Wang (2011) for inverse electrocardiographic ap-
plications. If not explicitly stated, regularised fields are always used here instead of raw
experimental data. Moreover, again if not explicitely commented, we have also imposed
that the regularised mean velocity fields are divergence-free. In principle, since we are
measuring the flow in the symmetry plane and, moreover, the considered flow should
approximate a nominally plane wake, it is expected the experimental mean flow to be
2D and, thus, divergence-free in the measurement plane. This may not be the case due
to measurement and differentiation errors. For this reason, even if tests reported later
prove that this is not an important aspect, we decided to add the divergence-free con-
straint to the regularised fields. Lastly, even if the target flow was not divergence-free,
the tuned model flow is so by definition (see Equation (3.7)) and, thus, the projection

of the reference flow on a divergence-free subspace has not a significant influence on the

—(E

resulting tuned flow model. This aspect is also investigated later. Indicating with U( %
—(R

the PIV measurements and with U( ) the regularised field, the regularisation problem

S . (R .. . .
consists in searching for U~ which minimise I given as follows:

2 2
1o :lf(ﬁ(R)—ﬁ(E)) d9+ﬁf(vﬁ‘3):vﬁ(m)d9+
2 JQ 2 Ja

—/ q(V-ﬁ(R))dQ ,
Q

where )\, is an arbitrary penalisation constant which regulates the amount of regulari-
sation of the procedure and ¢ is a lagrangian multiplier. Here the value of A\, has been
selected heuristically.

(3.16)
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3.2. Stability analysis of the mean flow field

The stability problem, which is related to the existence of a periodic flow component, is
governed by the linearised eqgs. (3.9) and (3.10).

The associated boundary conditions are of the same type of those imposed to the base
flow equations but they are homogeneous. Considering the boundary conditions used in
the present work, which are either boundaries where the velocity field is specified, I'p (i.e.
inflow boundaries or solid walls) or stress-free boundaries, I'o (i.e. outflow boundaries),
we have the following conditions:

u=0, On T'p (3.17a)
pn-Re_i[n-(Va+v'a)] =0, OnTo (3.17b)

A modal form for the periodic flow component is assumed:
u(x,t) =u(x)exp(ot) , (3.18a)
p(x,t) = p(x)exp (at) , (3.18b)

When the modal form for the flow perturbation is introduced in egs. (3.9)-(3.10), the
following stability equations are found:

cu+U-va+a-vU-V- va+via)|=0, (3.19a)

vV-a=0, (3.19b)

with the same homogeneous boundary conditions specified for (u, p) in egs. (3.17). Equa-
tions (3.19), together with the boundary conditions, form an eigenvalue problem. Any
solution (1, p), associated to the eigenvalue o = A +iw, is a global mode with time growth
rate equal to A (A > 0 indicates an unstable mode) and angular frequency w. Note that
the associated frequency is given by f = w/(27), and is given directly in non-dimensional
form as a Strouhal number based on the same velocity and length reference quantities
used to normalise the NS equations.

3.3. Passive control of vortex shedding instability

The objective of this section is to estimate the effect of placing a small control rod in the
flow on the eigenvalue identified by the stability analysis of the mean flow that is related
to the vortex shedding instability. This is carried out using an adjoint-based sensitivity
analysis analogous to that proposed in Marquet et al. (2008).

As a device for passive control we consider a cylinder of diameter d* positioned on a
generic point (xg,yo). The cylinder diameter is assumed to be small enough so that its
action on the flow can be described by a linearised approach. Moreover, it is not directly
simulated, but its effect is modelled by introducing the force that it exerts on the flow
explicitly in the NS equations. This force is assumed to be a pure drag force, which
depends on the local flow conditions. Consequently the control cylinder, when invested
by a flow velocity U, is assumed to exert a localised drag force of the following form:

SF (x0) = - [%ch* U] U]é(x ~x0) (3.20)

where §(x — xg) is the Dirac function centred on the position of the control cylinder,
xp. The notation 6F is used in eq. (3.20) so as to emphasise that this force is a small
perturbation of the uncontrolled configuration. As concerns the drag coefficient, this can
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be generally assumed to be a function of the flow Reynolds number, i.e. Cp(Regs). In
this paper we have assumed a constant value equal to Cp ~ 1.2, which is representative
of the drag of the control cylinder in the considered flow, as it will be illustrated in the
following. For quantitative indications on the drag coefficient of circular cylinders, we
refer to the ESDU database (ESDU 1986). Note that eq. (3.20) is a quasi-static model,
in the sense that the unsteady load JF is proportional to the local time-varying velocity
field U through a constant drag coefficient Cp, which in this case is an averaged drag
coefficient. The use of a quasi-static model for similar cases is common in the literature
(see e.g. the review in Camarri 2015, and its bibliography) and is loosely justified by the
scale separation existing between the flow to be controlled and the control cylinder.

In the framework of the triple decomposition of the flow variables, assuming further
that turbulent fluctuations can be neglected in the estimation of the force esperienced by
the control cylinder, we consider the drag force given by Equation (3.20) linearised with
respect to @ (see the decomposition in eq. (3.1)), which is consistent with the assumptions
made for the stability Equations (3.19):

§F ~ —0a (| U U) §(x - x0) —dax [|U|ﬁ+ (”E| .ﬁ) U] 5(x-xg) , (3.21)
[ =5V
‘Hp

in which dov = $d*Cp(Reqs ).

By inspecting Equation (3.21) it is possible to notice that the force 6F is composed by
two contributions: §Hpr, which depends on U and is independent of @, and §Hg, which
depends linearly on u. Consequently, the term dHyp acts as a forcing on the mean flow
Equations (3.7)-(3.8) and the term §Hy acts directly as a structural perturbation of the
stability Equations (3.19). Thus, the control cylinder affects the stability characteristics
of the mean flow in two ways: via a modification of the meanflow itself caused by the
term dHps and via a modification of the stability equations caused by the term dHg. The
resulting global effect on a particular eigenvalue o can be estimated in a linear framework
by an adjoint based sensitivity analysis.

Let us focus on a particular global mode o, (11, p) of the uncontrolled mean flow field
(U, p). As the control is applied, both the mode and the mean flow field are perturbed
resulting in ¢, (0", p") and (ﬁ", p’"), respectively. The coupled governing equations for
the perturbed mean flow and stability problem write as follows:

— — 1
V~(U" U”)+Vp"_v'|:R

€eq

(vﬁ” + VTU")] +v-(@n)=6Hum, (3.22a)

1/

v-U =0. (3.22b)

O_//ﬁl/ + ﬁ/l . v]/:1// + ﬁ,, . vﬁ” _ v ) |: vﬁ" + vTﬁ,/)] + Vf)” — 6HF ; (3220)

Re.q(x) (

v-a"=0, (3.22d)
Here we are interested in estimating the perturbation do of the eigenvalue o induced by

control, i.e. ¢’ = o+ §o. Using an adjoint-based sensitivity analysis it is possible to show
that (see Marquet et al. 2008, for details):

50:S(x0):fﬂ[(ﬁ+)*-6HM] dQ+fQ[(ﬁ+)*-6HF] 0 (3.23)

where U’ and a* are the adjoint mean flow and eigenmode, respectively, €2 is the flow
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domain and ()* stands for complex conjugate quantities. Equation (3.23) is very conve-
nient from a computational viewpoint because it is linear with respect to the parameter
da and provides an answer for a generic position of the control cylinder (xo) without
the need to perform integration since both dHpy and dHp, defined in eq. (3.21), are
proportional to §(x —xg). Thus, once the diameter of the control cylinder is fixed, Equa-
tion (3.23) provides directly a control map S(x) which gives the shift do of the identified
eigenvalue versus a generic placement of the control cylinder in the flow domain.The use
of Equation (3.23) requires the estimation of the vector fields U’ and 0. The field U
is solution of the following system of equations:

vU.U -U.-vU +Vvp -V- [R (vﬁ+ + VTU+)] =Vgo (3.24q)
€eq
v-U =0. (3.24b)
where Vo is given by:
Voo =-u* - (va)? +a* - vat, (3.25)

Equations (3.24) are supplemented with homogeneous boundary conditions at the inlet
and on the solid wall and the following condition on the outflow boundary:

p’n-— Reg; [n- (VﬁJr + VTﬁ+)] = —(ﬁ~n)ﬁ+ +(0*-n)a" .
The adjoint eigenmode {c*, (", p*)} is the solution of the following eigenvalue prob-
lem:

a*ﬁ+—U~vﬁ++VU-ﬁ*—v-[ (Vﬁ*+vTﬂl*)]+Vﬁ+ =0, (3.26a)

Req(x)

v-u' =0, (3.260)
As concerns the boundary conditions, " = 0 on the same boundaries on which @ = 0. At
the outflow we have: p*n— Re_/[n- (Va* +v7a")] = (U-n)a*. Moreover, the velocity
field G* is normalised such that:

[y a) an-1. (3.27)

4. Numerical tools

All the systems of PDEs proposed in this work and solved numerically, i.e. the mean
flow model in egs. (3.7)-(3.8), egs. (3.13)-(3.14) for the lagrangian multiplier V, the
Tichonov regularisation, the direct and adjoint stability problems in egs. (3.19) and
egs. (3.26), and the adjoint mean flow problem in eqgs. (3.24). They all are discretised
in space by a second-order finite-element formulation employing Taylor-Hood triangu-
lar Lagrangian elements, in which velocity and pressure are represented with P2 and
P1 elements, respectively. The finite-element formulation have been developed using
FreeFem++ software (see www.freefem.org), which employs triangular grids and per-
mits mesh adaptivity. Mesh adaptivity is particularly useful here because it permits a
proper discretisation of high-gradient regions of the mean flow field and of the resulting
stability modes at reasonable computational costs.

The computational domain used, which is common for all PDEs, coincides with the
PIV window used in the experiments. Considering the frame of reference in figure 1,
for the case with freestream velocity equal to 2.5 m/s the PIV window extends in the
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range 0.03h <z < 3.4h and -1.3h < y < 1.3h, while for 20 m/s it extends in the range
0.03h <x <34h and -1.9h <y < 1.9h. Note that the window comprises only the rear
face of the body and its size is sufficient to include the mean recirculation region of the
wake. Although its size is small if compared to the wake characteristic evolution length,
it can be shown following Camarri et al. (2013) that it includes the instability core which
is confined in the recirculation region, and this grants the possibility to apply stability
analysis to the resulting mean flow field.

The nonlinear problem for the mean flow, eqs. (3.7)-(3.8), is solved numerically by a
standard Newton method. All the remaining linear PDEs are solved by a direct sparse LU
factorisation method. The eigenvalue problems in egs. (3.19) and egs. (3.26) are solved
using the Implicitly Restarted Arnoldi Method implemented in the Arpack library, and a
shift-invert strategy in the complex plane is used to accelerate convergence to the desired
eigenvalue.

The calibration of the mean flow model implies the identification of the eddy viscosity
field v; which is optimal in the sense that it minimises the difference in the norm be-
tween the predicted and the experimental mean velocity fields. This optimum problem
is solved numerically using a gradient method, where the gradient of the cost function
I in eq. (3.11) with respect to a generic variation dv4(x) is estimated by eq. (3.15). The
inital guess for v4(x) is computed by minimising, in a least square sense, the residuals of
the model RANS eqs. (3.7)-(3.8) when they are applied to the experimental mean flow
field. The problem of finding v4(x) is ill-posed and it is regularised by applying, at each
descent step of the gradient method, a Tichonov regularisation to the field v;(x) of the
same type of the one applied to the mean velocity field. That kind of regularisation acts
as a smoothing of the spatial fluctuations of v4. Lastly, the optimal v; is obtained by forc-
ing the simulated mean flow field to be equal to the experimental one on all boundaries
except at the outflow one, where null-stress conditions are applied.

5. Results
5.1. Tuning of the mean flow model

The mean flow model has been tuned here for two cases without suction from the wall:
a case with laminar boundary layers at the separation point from the body, U2.5Dp0
(Uss = 2.5m/s), and a case with turbulent boundary layers, U20Dp0 (Us = 20m/s).

In both cases, the reference experimental mean flow fields have been regularised by
Tichonov regularisation and by forcing the divergence-free constraint as detailed in Sec-
tion (3.1). The constant A, in eq. (3.16) has been heuristically fixed to A2 = 1073. A
sensitivity analysis by varying this parameter has been carried out showing that results
in terms of distribution of the resulting v; and of the minimum value of the functional
T (see eq. 3.11) are in very good approximation independent of the choice of A, around
the value fixed heuristically. This result is not detailed here for the sake of brevity.

An example of the effects of the regularisation of the mean flow field for the case
U20Dp0 is shown in figure 5. In particular, figures 5(a-b) show the velocity components
of the mean flow field derived by the PIV measurements directly. Figures 5(c-d) show
the equivalent fields when the flow field is regularised using A2 = 107 and without
imposing the constraint that the resulting regularised flow field is divergence free at
discrete level. Finally, figures 5(e-f) show the result when it is also forced that the resulting
regularised flow field is divergence free. In this last case, as evident from the comparison
with figures 5(a-b), the regularisation has a stronger effect on the resulting velocity fields.
Nevertheless, differences with respect to the original velocity field are of limited amount
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Figure 5: Mean velocity field for the case U20Dp0 (Us = 20m/s, no suction from the body):
mean horizontal and vertical velocity of the original PIV measurements (a-b), of the
regularised field ()\f = 1073) without imposing the constraint of being divergence-free
at discrete level (c-d) and also imposing the divergence-free constraint (e-f).

and, in any case, their effects on the results of the stability analysis has been investigated
in the following.

As an example of the calibration of the mean flow model, for case U20Dp0 we show in
figure 6 both the target flow field (figures (a)-(b)) and the simulated one (figures (c)-(d))
through the mean flow model. As can be deduced by their comparison, the mean flow
model leads to flow fields which are difficult to be distinguished from the original ones.
The main differences can be evidenced near the outflow boundary of the computational
domain. Such differences, which do not affect stability results since they are far from
the core of the instability (see e.g. Camarri et al. 2013), are related to the use of stress-
free boundary conditions on I'o. This aspect can be further improved by including the
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Figure 6: Mean velocity field for the case U20Dp0 (U = 20m/s, no suction from the body):
regularised PIV U and V fields (a-b) and equivalent fields simulated by the calibrated
mean flow model (c-d).

reference data in the applied boundary conditions for that boundary but this option has
not been tested here. From a quantitative viewpoint, the difference in norm between the
experimental and the simulated mean velocity fields for this case is equal to I ~ 2.8-107%,
which can be considered a very small value.

Similar considerations can be done for the case U2.5Dp0, whose results are reported
in figure 7. In this case the final value of the functional I is I ~ 3.1-107%, which is of the
same order of magnitude of the previous case.

As concerns the distribution of v; obtained by the calibration of the mean flow model,
we have reported in figure 8 the field of the equivalent Reynolds number Re.,(x) obtained
for the two cases mentioned above. It can be noticed that the level of turbulent eddy
viscosity obtained for the case U2.5Dp0, in which laminar boundary layers detach from
the body, is correctly lower than that of U20Dp0, in which the boundary layers detaching
from the body are already turbulent. In both cases the turbulent eddy viscosity increases
in the streamwise direction, and consequently the value of Re., decreases reaching the
minimum values on the outflow boundary. We think that in that region the obtained
value of v; can be affected by domain truncation.

5.2. Estimation of the vortex shedding frequency from the mean flow field

As a first step we have applied stability analysis to the mean flow fields obtained by PIV
considering only the molecular viscosity in the stability analysis, i.e. neglecting turbulence
effects (Ree, = Re). Concerning grid convergence of the results, all the reported cases
are fully converged and for each one it has been verified that by doubling the number of
degrees of freedom (dofs) the predicted Strouhal number of the vortex shedding instability
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Figure 7: Mean velocity field for the case U2.5Dp0 (Us = 2.5m/s, no suction from the body):
regularised PIV U and V fields (a-b) and equivalent fields simulated by the calibrated
mean flow model (c-d).
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Figure 8: Fields of Re.q(x) obtained by tuning the mean flow model for the case U2.5Dp0 (a)
and U20Dp0 (b).

changes only at the 4" decimal digit. Concerning the boundary conditions, in all cases
homogeneous Dirichlet boundary conditions are imposed for the stability modes at the
inflow of the domain, and stress-free conditions are applied at the outlet boundary.
Results of the stability analyses described above are reported in table 1 for the flow
configurations with free-stream velocity equal to 2.5 m/s. All the identified modes are
nearly unstable and in all cases only one couple of complex conjugate unstable modes has
been identified, thus there was no ambiguity in identifying the stability mode associated
with vortex shedding. In case 2 homogeneous Dirichlet boundary conditions are applied to
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Table 1: Result obtained from the linear stability analysis of the mean flow field of the wake,
compared with experimental values, for cases in which the boundary layers detaching
from the body are laminar. In case 1 stress-free boundary conditions are applied
on the lateral boundaries, while homogeneous Dirichlet conditions are applied on the
same boundary in case 2 and 3. Case 3 differs from case 2 because stability analysis
is carried out on regularized PIV mean flow field. Case 4 is similar to case 3, but the
tuned eddy viscosity v+ is included in the stability analysis.

| Case 1 | Case 2 | Case 3 | Case 4 |

Re I' Stesp| St Dev [%]| St Dev [%]| St Dev [%]| St Dev [%]

6.7x10° 0.0 0.231]0.242 4.8 0.259 12.2 |0.250 8.3 0.233 1.3
6.7x10° 1.6 0.247 |0.242 2.2 0.251 1.6 0.244 1.2 -

6.7x10° 2.6 0.263|0.260 1.0 0.269 2.4 0.262 0.3 - -
6.7x10° 3.5 0.271[0.269 0.8 0.277 2.3 0.271 0.1 - -
6.7x10° 4.3 0.283]0.277 0.8 0.285 2.1 0.280 0.3 - -
6.7x10° 5.7 0.283|0.283 0.2 0.290 2.4 0.291 2.8 - -
6.7x10° 9.4 0.291 |0.291 0.0 0.297 2.2 0.305 4.9 - -
6.7x10° 13.6 0.288 |0.286 0.8 0.291 1.0 0.304 5.5 - -

the stability eigenmodes on the lateral boundaries (i.e. in the y direction), as suggested in
Camarri et al. (2013) and raw PIV flow fields are used. Comparison with the experiments
shows that, except for a peak of about 12% at I = 0.0 the error in the prediction of the
Strouhal number of vortex shedding is less than 2.5%. The accuracy in the prediction
of St of about 15% is in line with what is known in the literature about this kind of
problems, as widely discussed in the review Camarri (2015) and in the related references
(see also Emerson et al. 2016).

Sensitivity of the results to the boundary conditions applied on the lateral boundaries
can be appreciated comparing case 2 with case 1, which was obtained by applying stress-
free conditions on the lateral boundaries. Differences in the predictions between case 1
and case 2 are very limited and they decrease as suction is applied from the body, which
reduces the size of the recirculation bubble and, thus, the size of the core of the instabil-
ity and, in turn, this makes the computational domain progressively more appropriate
decreasing the sensitivity of the results to domain truncation in the lateral direction.
In all cases it was checked that the computational domain contains appropriately the
instability core as it is defined as in Giannetti & Luchini (2007).

Concerning the regularisation of the reference PIV flow fields, this is applied only in
case 3, while in cases 1 and 2 raw PIV fields are used. Thus, the effect of regularisation
on the results of the stability analysis can be appreciated by comparing cases 2 and 3, the
maximum relative variation in terms of predicted Strouhal number being of about 4.4%
for the case with the highest suction. Thus the effect of regularisation can be considered
acceptably small. Moreover, this result indicates that the regularisation is not required
for the stability analysis alone, as already observed in Camarri et al. (2013).

The same tests documented in table 1 have been repeated for all the flow configurations
that have been considered in the experiments. As an other example, we report here in
table 2 the case with the highest free-stream velocity, 20m/s. As can be deduced from the
table, for this case the errors with respect to the experiments are significantly higher if
compared to the case in table 1. In particular they range between 9% and 16%, and this
is expected to be an effect of turbulence which is completely neglected in the analysis.
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Table 2: Result obtained from the linear stability analysis of the mean flow field of the wake,
compared with experimental values, for cases in which the boundary layers detaching
from the body are turbulent. In case 1 stress-free boundary conditions are applied
on the lateral boundaries, while homogeneous Dirichlet conditions are applied on the
same boundary in case 2 and 3. Case 3 differs from case 2 because stability analysis
is carried out on regularised PIV mean flow field. Case 4 is similar to case 3, but the
tuned eddy viscosity v+ is included in the stability analysis.

| Case 1 | Case 2 | Case 3 | Case 4 |

Re I' Stesp| St Dev [%]| St Dev [%]| St Dev [%]| St Dev [%]

5.3x10* 0.00 0.183]0.200 9.3 0.202 104 [0.198 8.2 0.184  0.55
5.3x10* 0.20 0.184 |0.202 9.8 0.202 9.8 0.199 8.1 - -
5.3x10* 0.33 0.185]0.204 10.3 [0.204 10.3 |0.201 8.6 - -
5.3x10* 0.44 0.185(0.210 13.5 [0.210 13.5 [0.206 11.4 - -
5.3x10* 0.54 0.190(0.210 10.5 [0.210 10.5 |0.209 10 - -
5.3x10* 0.72 0.190|0.212 11.6 [0.212 11.6 |0.210 10.5 - -
53x10* 1.2 0198 |0.226 14.1 [0.226 14.1 |0.210 6.1 - -
53x10* 1.7 0.212]0.245 156 [0.245 15.6 |0.221 4.2 0.218 2.8

In the case reported in table 2 the PIV window is larger than that for the case reported
in table 1 and the core of the instability is located at a larger distance from the lateral
boundaries of the PIV window. This explains why the results are more insensitive to the
boundary conditions applied on the lateral boundaries, as can be deduced by comparing
cases 1 and 2 in table 2. Concerning the effects of the regularisation of the baseflow,
variations of the predicted Strohual numbers between cases 2 and 3 are within 1.5% for
I’ < 5.7 and they increase to about 10% for I > 9.4. However, the same comments made
on this point for the results in table 1 hold for this case as well.

Finally, the performance and characteristics of the stability results for all other free-
stream velocities considered in the experiments and not reported here for the sake of
brevity are intermediate between the two cases discussed here and quantified in table 1
and table 2.

Results obtained including the eddy viscosity field derived by the mean flow model in
the stability analysis are reported with the label ‘Case 4’ in table 1 and table 2, and they
are obtained imposing homogeneous Dirichlet boundary conditions to the eigenmodes
on the lateral boundaries. As shown by a direct comparison with the experiments, the
inclusion of field v¢(x) leads to an impressive improvement in the prediction of the
vortex shedding frequency, both in the cases with laminar and turbulent boundary layers
detaching from the body. In the second configuration the improvement in the predicted
value is particularly significant, leading to an error lower than 1%, as shown in table 2.
As concerns the growth factors, when v; is included in the stability analysis the modes
associated with vortex shedding are again unambiguously identified and they are slightly
stable, conversely to the case without eddy viscosity in which the modes are slightly
unstable. In order to provide a rough indication of the values of growth factors, despite
the fact that these values are sensitive to the different numerical parameters and are not
interesting for the analysis carried out here, we have A ~ 0.1 without eddy viscosity and
A~ —0.1 when eddy viscosity is included in the analysis.

In order to highlight the sensitivity of the stability results to the different parameters
involved in the tuning of the mean flow model, and thus in the derivation of the field
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Table 3: Predictions of the vortex shedding frequency for case U20Dp0: different cases, from 4
to 4d, are discussed in details in the text. Reference case, case 4, is also reported in

table 2
Reference
Case 4 Case 4a Case 4b Case 4c Case 4d |
St ‘ St Dev| St Dev| St Dev| St Dev
(-] (-1 [%]| [-1 [%]] [-]1 [%]] [-] [%]

0.1844 |0.1843 -0.03]0.1846 0.16]0.1875 1.74]0.1865 1.19

v¢(x), we refer to table 3, which is related to the flow configuration U20Dp0. In partic-
ular, case 4a differs from case 4 for the number of degrees of freedom involved in both
the mean flow tuning and in the stability analysis, which passes from about 26000 for
each velocity component in case 4 to 60000 in case 4a, thus increasing by a factor 2.3.
Comparing the results it is possible to note that the variation in the predicted value of
the Strouhal number is negligible, thus indicating that the calculation can be considered
at grid convergence. In case 4b the parameter A2 of the regularisation is decreased by
a factor 10, i.e. A2 = 107, Also in this case the variation in terms of St is negligible,
indicating an independence of the results with respect to this parameter. In case 4c the
constraint that the regularised flow field is divergence free is eliminated. As a result, the
global effect on the predicted value of St is still very small, of the order of 1.7%. Finally,
case 4d differs from case 4 in the sense that the stability analysis is carried out on the
original PIV flow field without any regularisation, while regularisation is applied only
to tune the mean flow model and, thus, to derive v;(x). The resulting effect on St is
approximately equal to 1.2%, thus negligible.

5.3. Analysis of the stability eigenmodes

Section 5.2 shows that the stability analysis applied to the experimental mean flow field
leads to reasonable predictions of the vortex shedding frequency and, when the eddy
viscosity is included in the analysis, the predictions are systematically improved. In this
section we further validate the results of the stability analysis and the beneficial effects of
introducing an eddy viscosity by inspecting the resulting eigenmodes, which are related
to the vortex shedding process. In order to have reference flow fields for comparing
the stability eigenmodes, in each case Proper Orthogonal Decomposition (POD) has
been applied to the instantaneous snapshots of the database. Since the flow is strongly
dominated by vortex shedding, as also discussed in section 2, in all cases POD leads to
the identification of a couple of energetically dominant modes which represent two flow
snapshots of the mean vortex shedding process which are shifted in phase by an angle
equal to 7/2 (once the mean flow has been subtracted). These two POD modes play the
same role as the real and imaginary parts of one of the two complex conjugate eigenmodes
identified by the stability analysis. Their linear combination, weighted by the cosine and
sine of a generic phase angle, results in an instantaneous flow field of the phase-averaged
vortex shedding process.

As a representative example, we have considered here the flow case U2.5Dp0. As ex-
pected, two strongly dominant eigenmodes are unambiguously identified in the POD
energy spectrum and a combination of the two for a generic phase angle of the vor-
tex shedding is obtained and plotted in figure 9(a) (z—component of velocity) and
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Figure 9: Flow configuration U2.5Dp0; velocity components (z and y) at a generic vortex
shedding phase angle of: the POD mode ((a) and (d)) and, with reference to table 1,
case 2 ((b) and (e)) and case 4 ((c) and (f)).

(d)(y—component). This field will be a reference so as to evaluate how well the stability
eigenmodes represent the features of the mean vortex shedding process.

For comparison with the stability analysis, we have considered cases 2 and 4 of table 1.
In both cases, the two complex-conjugate eigenmodes associated to vortex shedding have
been normalised so that the maximum velocity norm is equal to that of the POD reference
field. Moreover, the phase angle of the stability modes have been tuned to be equal to that
of the POD field. The flow field so obtained is reported in figure 9(b) and (e) for case 2.
As can be evinced by comparison with the POD field, the y position of the flow structures
in the az-component of the velocity, i.e. figure 9(b), which are related to the position of
the centers of the vortices shed by the body, are markedly closer to the centerline y =0
if compared to the POD field (figure 9(a)). Their spacing in the streamwise direction
is slightly shifted, as can be noticed also from figure 9(e) for the y-component of the
velocity in comparison with figure 9(b). The fact that the shed vortices in the eigenmode
are shifted with respect to the center line is in agreement with the error in the predicted
vortex shedding frequency for case 2 reported in table 1. Finally, the eigenmode for case 2,
especially figure 9(b), show regions with very large gradients associated with some minor
irregularities in the isocontours which are due to the fact that the stability analysis is
carried out using the laminar flow Reynolds number, which is quite high and equal to
6.7 -103, and they result by a lack of dissipation in the equations since turbulence is
completely neglected. When the field v;(x) is introduced in the analysis, the resulting
flow field associated to the stability eigenmodes is reported in figure 9(c) and (f). As can
be evinced, in this case the eigenmode matches reasonably well with the POD reference
field, and the x and y spacing of the wake vortical structures are now in agreement with
the experiments. As a consequence, the vortex shedding frequency is also well predicted
as shown in table 1. Finally, isocontours are regular and smooth since now the equivalent
flow Reynolds number Re., is markedly lower than 6.7- 103, as also shown in figure 8(a),
and the dissipation due to small-scales turbulence is taken into account via the eddy
viscosity model.

As a conclusion, the analysis documented in this section demonstrates that the stability
analysis of the mean flow field is able to predict not only the vortex shedding frequency
but also the spatial structure of the phase averaged flow fields, and the prediction is
markedly improved as the eddy viscosity deriving from the mean flow model is included
in the stability analysis.
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Figure 10: Control maps indicating the sensitivity of the vortex shedding frequency to the
introduction of a small control cylinder of diameter equal to 3 mm in the flow field
of configuration U2.5Dp0: (a) theoretical prediction, (b) experimental map with
the same colormap as in (a).

5.4. Estimation of the maps for passive control

In this section the mean flow model is used, together with the results of the stability
analysis, in order to derive theoretically the sensitivity of the vortex shedding frequency
to the introduction of a small control cylinder in a generic position of the flow. The
prediction is done following the theoretical method illustrated in section 3.3. In particular,
the imaginary part of S(x) defined in eq. (3.23) indicates the variation in the vortex
shedding frequency with respect to the local introduction of a small control body in the
flow. The map Im[S(x)] is plotted for the flow configuration U2.5Dp0 in figure 10(a). In
this derivation we have assumed a constant drag coefficient for the control body equal to
Cp = 1.2 and we have assumed that its diameter is equal to d*/h = 7.5-1072, in agreement
with the reference experiment. As shown in figure 10(a), sensitivity is concentrated in
the shear layers bounding the mean wake. The values in the legend indicate the direct
variation in terms of Strouhal number.

As described in section 2.3, a similar map has been obtained experimentally by using a
control cylinder of the same size chosen for the numerical estimation, i.e. d*/h = 7.5-1072.
Actually, due to technical constraints in the experiments, the size of this control cylinder
is large for an accurate description of its effects by using the map in figure 10(a). Indeed,
the local Reynolds number is estimated to be large enough to have vortex shedding
also from the control cylinder, at least in some of the positions that have been tested
experimentally, leading to an additional high-frequency load component that is not taken
into account in the theoretical analysis. Nevertheless, despite the many possible sources
of error, the experimental map, which is reported in figure 10(b), compares reasonably
well with the map estimated theoretically, which is obtained by taking into account only
the quasi-steady drag of the control cylinder. Actually the two maps are fairly similar
in shape and they agree in identifying the region of maximum sensitivity, which leads to
a decrease in the vortex shedding frequency in the controlled case, as indicated by the
blue region extending in the range 0.6 < y/h < 8 and 0 < x/h < 1. In the remaining spatial
regions the experiments predict a slight decrease in the vortex shedding frequency, by an
amount of about —0.02, while the theoretical map predicts an increase of about 0.015.
From the comparison between figure 10(a) and figure 10(b) the experimental and the
theoretical maps seem to differ mainly by a constant and low shift value. This aspect
could be related to a slight difference in the prediction of the absolute value of the vortex
shedding frequency in the uncontrolled case, which is subtracted to the value measured in
the controlled case in order to derive the sensitivity map. The important conclusion that
we can draw by the previous analysis is that the high sensitivity region is well identified
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Figure 11: Control map indicating the sensitivity of the vortex shedding frequency to the
introduction of a small control cylinder of diameter equal to 3mm in the flow field
of case U20Dp0

and quantified by the proposed method, and the results shown here indicate that the
method proposed has a good potential in estimating the effect of a passive control on the
basis of a database measured for the uncontrolled configuration.

For completeness, we also report in figure 11 the theoretical control map for the flow
configuration U20Dp0. In this specific case there are no experimental results for valida-
tion, thus the only possible analysis is in comparison with case U2.5Dp0. This compari-
son shows that sensitivity of case U20Dp0 has a similar distribution, i.e. localised on the
boundaries of the recirculation bubble of the mean flow, and they also compare quite
well from a quantitative viewpoint.

6. Conclusions

In this paper we propose a strategy to estimate the effect of a passive control on the
vortex shedding frequency in turbulent bluff-body wakes. In contrary with previous works
in the literature, the methodology proposed here relies entirely on the knowledge of the
mean and phase-averaged flow fields measured in the uncontrolled case. The method
is based on well-known tools and its originality consists into the formulation of an ad-
hoc model for the mean flow which is tuned on the basis of the experimental results.
The method also suggests a consistent way to introduce the effects of turbulence in
the stability analysis of the mean flow field, even if this aspect is already known in
the literature and it has been previously applied for convectively unstable flows (see for
instance Viola et al. 2014). The proposed strategy is applied to the flow past a thick
and perforated flat plate. The possibility to apply suction from the plate surface permits
to have a set of different wakes for each considered value of the flow Reynolds number.
Experiments are available for laminar as well as turbulent separating boundary layers,
thus for a wide range of flow complexity. It is also shown that the global stability of the
mean flow fields, which are measured in a PIV window which well includes the wake,
predicts a nearly marginal unstable mode with a frequency that is close to that of vortex
shedding from the body even neglecting the turbulence effects. This result extends the
work in Camarri et al. (2013) up to flow Reynolds numbers equal to 5.3 x 10*. When
laminar boundary layers detach from the body the errors in terms of predicted Strouhal
number are generally less than 3%, while the errors grow with the flow complexity up to
about 15% for cases at Re = 5.3 x 10*. When turbulence is included in the analysis, the
ad-hoc turbulence closure being a side result obtained by the tuning of the corresponding
mean flow model, the errors in the predicted value of St are drastically and systematically
reduced, especially for the turbulent case, where they become less than 3%. Finally, the
combination of the mean flow model and of the stability analysis leads to the prediction of
the effects on the vortex shedding frequency that could be obtained by introducing a small
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control cylinder in the wake. The theoretical sensitivity map, which is predicted using
the measurements available for the uncontrolled case, is compared with the equivalent
one derived experimentally. Although the control cylinder used in the experiments is
rather intrusive, the comparison shows that the region of maximum sensitivity is well
predicted, and compares reasonably well also from a quantitative viewpoint. In the areas
of low sensitivity the maps show some discrepancies, but globally the two maps, i.e. the
experimental and the theoretical one, seem to differ mainly by a constant and low shift
value. This aspect could be related to a slight difference in the prediction of the absolute
value of the vortex shedding frequency in the uncontrolled case, which is subtracted to the
value measured in the controlled case so as to derive the sensitivity map. Nevertheless,
results obtained are in our opinion more than satisfactory, considering that this analysis
entirely relies on experimental PIV flow fields taken in the uncontrolled case at high
values of the flow Reynolds number and considering the size of the control cylinder used
in the experiments.

We remark that the same control map estimated in the present paper might be obtained
by tuning a time-periodic eddy viscosity so as to fit the experimental phase-averaged flow
field and by linearising the resulting RANS equations around the limit cycle representing
the saturated vortex shedding process, following the work in Luchini et al. (2009). This
second approach, however, is definitely more complex than the one proposed here and
leads to cumbersome optimisation problems as time is also involved.

Finally, even if not considered in this work, the proposed mean flow model provides an
estimation of the pressure field in the PIV window and on the body surface. This final
output of the model could be used to estimate the pressure on the body when suction
is applied and near the separation points, i.e. where it is very challenging to measure
pressure experimentally. The validation of this additional output of the model will be
the subject of future investigations.
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