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Abstract

This paper proposes a new approach for mission design of a spacecraft with a time-

variable mass and subjected to a continuous propulsive thrust in the radial direction.

Two different mission scenarios are discussed according to whether the thrust remains

constant along the whole mission or its modulus varies inversely proportional to the

distance between the spacecraft and the primary body. In the first case a graphical

solution is discussed for evaluating the spacecraft performance during an escape mission

scenario. In the second case a closed-form solution, which makes use of the trigonometric

integral functions, is found for describing the spacecraft trajectory in a polar reference

frame. Some examples are discussed where the methodology is applied to a spacecraft

with an electric thruster or a mini-magnetospheric propulsion system.
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Nomenclature

a = propulsive acceleration

E = specific mechanical energy

g = standard gravity

h = specific angular momentum

Isp = specific impulse

m = spacecraft mass

O = primary body center-of-mass

r = radial distance

T = propulsive thrust (with T , ‖T ‖)

T (O; r, θ) = polar reference frame

u = radial component of spacecraft velocity

v = circumferential component of spacecraft velocity

ve = effective exhaust velocity

γ = Euler’s constant

θ = polar angle

µ = gravitational parameter

ρ = auxiliary variable

Subscripts

0 = initial, parking orbit

esc = escape

⊕ = Earth

� = Sun
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Superscripts

· = time derivative

∼ = dimensionless

′ = derivative w.r.t. m̃

1 Introduction

Analytical solutions of trajectories for low-thrust-propulsion spacecraft are

known in a few cases only. One of these is offered by the classical problem of

a spacecraft, with constant mass, subjected to a radial thrust. Starting from

the pioneering work of Tsien [1], some interesting results of this problem have

been reported for a constant modulus of the propulsive acceleration [2,3,4].

Other results are available for a radial propulsive acceleration whose modulus

varies as the inverse square distance from the primary body [5,6,7].

The assumption of constant mass is, in practice, somewhat restrictive and

is well suited for propellantless spacecraft such as solar sail [7] or electric

solar wind sail [8]. In most cases, however, the propulsive acceleration is a

function of the current value of the spacecraft mass, which varies with time

as the propellant is used. The analysis of this time-dependent situation has

been tackled in the literature a few times, with the noteworthy exception

of the special case in which the propulsion system is modulated in such a

way to balance the mass variation of the spacecraft and obtain a propulsive

acceleration either constant or proportional to the local gravity, see Boltz [5].
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The main contribution of this paper is to fill this deficiency by means of new

results in graphical or semi-analytical form. In fact, the availability of accurate

approximations of exact solutions is important for the preliminary design of

orbit transfers and for providing initial guesses for trajectory optimization

purposes [9].

The radial acceleration problem is characterized by the existence of a simple

and meaningful constant of motion, that is, the conservation of the angular

momentum per unit mass, which also provides an important analogy with the

Keplerian model. On the other hand, the presence of a time dependent mass

in the equations of motion introduces a significant complication in the study

of spacecraft trajectory. In fact, the resulting differential equation of motion

is no longer autonomous and, as such, a first integral of motion for the radial

velocity is difficult to be found [4].

This paper proposes a new methodology that guarantees a simple and quick

solution for the radial acceleration problem for a spacecraft whose total mass

decreases with time. In particular, two mission cases are discussed, according

to whether the thrust modulus is constant or it varies with the inverse square

distance from the primary. In the first case a graphical approach is discussed

to find the spacecraft performance during an escape mission from the grav-

itational attraction of the primary. In the second case the polar equation of

spacecraft trajectory is found, in an analytical form, using the trigonometric

integral functions. These results are shown to be able to model the dynamics

of a spacecraft with an electric or a Mini-Magnetospheric Plasma Propulsion

system (M2P2) [10,11].
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1.1 Mathematical Preliminaries

Consider a spacecraft, with mass m0, which initially moves in a circular, Ke-

plerian, parking orbit of radius r0 around a primary body of gravitational

parameter µ. Assume that the spacecraft primary propulsion system, when

switched on, provides an outward, continuous, radial thrust. Since the thrust

vector T is aligned, at each time, with the primary-spacecraft direction, the

angular momentum h of the osculating orbit is a constant of motion and its

modulus h, during the powered flight, can be simply expressed as

h = h0 ,
√
µ r0 (1)

where h0 is the angular momentum along the initial orbit. Note that Eq. (1)

holds independent of the way the thrust modulus varies with time.

As a consequence of the radial thrust assumption, the spacecraft motion can

be suitably described within a two-dimensional reference frame whose funda-

mental plane coincides with the (fixed) plane of the osculating orbit. To this

end, introduce a polar reference frame T (O; r, θ) with origin in the center-of-

mass O of the primary body. The spacecraft equations of motion are (see also

Fig. 1):

ṙ = u (2)

θ̇ =

√
µ r0
r2

(3)

u̇ = − µ
r2

+
µ r0
r3

+
T

m
(4)

where u is the radial component of the spacecraft velocity, T , ‖T ‖ is the

propulsive thrust modulus, θ is the polar angle measured anticlockwise from
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the primary body-spacecraft position at the beginning of the powered phase

of flight, and m is the spacecraft instantaneous mass. From Eq. (1), the cir-

start

parking orbit

primary

body

0

r

thruster on

T

r

�
spacecraft

Figure 1. Reference frame and problem’s parameters.

cumferential component of the spacecraft velocity is simply given by

v =
h0
r
≡
√
µ r0
r

(5)

The last term in Eq. (4) represents the modulus of the propulsive acceleration

a , T/m, whose value depends on the way the thrust and the spacecraft

mass vary with time. Two special cases, of great practical interest, will be

considered with the aim of modeling the behavior of a spacecraft equipped with

an electric thruster. In particular, the electric power given to the propulsion

system will be assumed to be either constant or varying with the inverse

square distance r from the primary. Moreover, it will be shown that, under
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mild additional assumptions, the proposed model can be used also for the

analysis of an interplanetary mission for a spacecraft equipped with a M2P2.

2 Constant propulsive thrust and constant propellant mass flow

rate

Assume first that the thrust modulus T remains constant and that the space-

craft mass decreases linearly with time. The mass variation is therefore de-

scribed by

ṁ = −T
ve

(6)

where ve is a given constant parameter, with the dimensions of a velocity,

whose value depends on the characteristics of the propulsion system. Note

that Eq. (6) models the behavior of an electric propulsion system when the

electric power does not vary with time. This happens, for example, for a nuclear

electric power system. In this case ve corresponds to the effective exhaust

velocity, which is directly related to the thruster specific impulse [12]. The

same relationship (6) can be applied to a solar electric propulsion system

when the spacecraft moves around a celestial body whose distance from the

Sun does not change significantly during the propelled mission phase.

Notably Eq. (6) can also be used to describe the working of an M2P2-based

space vehicle that uses a nuclear power source [7,13]. According to Winglee [10,11],

in an M2P2 thruster the propellant is transformed into plasma by means of

a suitable source of electric power, thus creating an artificial magnetosphere

around the spacecraft. Such a magnetosphere, by interacting with the solar

wind, produces a propulsive thrust when the spacecraft operates in the deep

space (that is, when it is far enough from possible planetary magnetospheres).
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The resulting acceleration is essentially radially directed with respect to the

Sun, even if experimental tests have shown the feasibility of generating an

off-axis thrust of a few degrees [13], thus guaranteeing a (reduced) maneuver

capability to the spacecraft.

Returning to Eq. (6), for an M2P2 thruster the term ve represents a constant

parameter, different from the effective exhaust velocity of an electric thruster.

This parameter defines the propellant mass flow necessary to obtain a given

propulsive thrust. For example, according to Refs. [10,13,14], an M2P2 thruster

is potentially able to provide a thrust modulus T = 1 N using a mass flow rate

of about |ṁ| = 0.5 kg/day. This value corresponds to an equivalent effective

exhaust velocity of ve = 172.8 km/s.

For the following dynamical analysis, the equations of motions (2)–(4) and

(6) can be conveniently transformed in a dimensionless form using the initial

spacecraft mass m0 as the reference unit of mass, the parking orbit radius r0 as

the unit of distance, and selecting the unit of time in such a way that the grav-

itational parameter µ is unitary. More precisely, introduce the dimensionless

(with a tilde superscript) quantities:

r̃ ,
r

r0
, ũ ,

u√
µ/r0

, m̃ ,
m

m0

, ã0 ,
a0
µ/r20

, ṽe ,
ve√
µ/r0

(7)

where a0 corresponds to the spacecraft propulsive acceleration when the thruster

is switched on, that is, when the spacecraft distance from the primary is r0 and

its mass is m0. In this case a0 = T/m0, where T is constant by assumption.

Using the dimensionless mass m̃ in place of time t as the independent variable

of the problem, the following nonlinear second order differential equation is
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obtained combining Eqs. (2), (4) and (6)

r̃′′ =
ṽ2e/ã

2
0

r̃2

(
1

r̃
− 1

)
+
ṽ2e/ã0
m̃

(8)

where the prime symbol indicates a derivative with respect to m̃. The previous

differential equation is completed by two boundary conditions regarding the

spacecraft position and velocity along the parking orbit, viz.

r̃|m̃=1 = 1 , r̃′|m̃=1 = 0 (9)

In fact, the radial component of spacecraft velocity u , ṙ can be written as

u

r0
= −T/m0

ve
r̃′ (10)

from which r̃′ = 0 on the parking orbit.

Even though no closed-form solution can be retrieved for Eq. (8), the use of m̃

as the independent variable of the problem makes this equation particularly

suitable for obtaining, via numerical simulations, the conditions under which

an escape condition from the gravitational field of the primary may occur.

Such a noteworthy mission scenario is the subject of the next section.

2.1 Escape conditions

An interesting question is to establish whether or not a spacecraft is able

to escape from the gravitational field of the primary. To solve this problem,

it is useful to first obtain an expression of the specific mechanical energy of

the osculating orbit E . From Eqs. (7) and (10), the dimensionless mechanical

energy is

Ẽ ,
E

µ/r0
=

1

2

(
ã0 r̃

′

ṽe

)2

+
1

2 r̃2
− 1

r̃
(11)
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Note that Ẽ = −1/2 along the initial orbit. For a given pair ã0 and ṽe,

that is, for a suitable combination of propulsion system characteristics and

spacecraft mass (the latter being implicitly defined through ã0), the equa-

tion of motion (8) can be numerically backward integrated within the interval

m̃ ∈ [1, 0), using the boundary conditions (9), until the escape condition Ẽ = 0

is met. The corresponding dimensionless escape distance r̃esc and spacecraft

mass m̃esc can also be calculated. Clearly, the functions r̃esc = r̃esc(ã0, ṽe) and

m̃esc = m̃esc(ã0, ṽe) describe three-dimensional surfaces that can be conve-

niently displayed through contour lines.

Before discussing the simulation results, a brief remark is useful. In the classical

case of constant radial acceleration, that is, when T/m is constant for the

whole mission length, an escape condition may occur only if T/m > µ/(8 r20),

see Ref. [1]. Under such an assumption, it is known [3] that the escape distance

satisfies the inequality resc < 5 r0. If, in addition, the spacecraft trajectory may

tolerate the presence of coasting phases, that is, the thruster may be freely

switched off or on during the flight, the required thrust to attain an escape

condition can be further decreased at the expense of an increase in mission

time. The trade-off between thrust level and mission length is analyzed in

Ref. [15].

The situation discussed in this section is substantially different from the classi-

cal case of constant thrust modulus. In fact, the propellant mass consumption

described by Eq. (6) implies a continuous increase of the local propulsive ac-

celeration a = a0/m̃. Therefore, an escape condition is possible, at least in

mathematical terms, for any value of propulsive thrust modulus. In practice,

however, the escape condition could correspond to an unacceptably small value
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of m̃. For this reason it is important to numerically analyze the influence of the

pair (ã0, ṽe) on mission performance during an escape trajectory, which can be

quantified in terms of values of m̃esc and r̃esc calculated at escape conditions.

A parametric study has been performed by varying the initial propulsive ac-

celeration and the effective exhaust velocity in the range ã0 ∈ [0.01, 1] and

ṽe ∈ [1, 10], and integrating Eq. (8) with a variable order Adams-Bashforth-

Moulton solver scheme [16] with absolute and relative errors of 10−12. The

resulting contour curves are illustrated in Figs. 2 and 3. In particular Fig. 2

shows the dimensionless spacecraft mass m̃esc and Fig. 3 represents the dimen-

sionless distance r̃esc when the mechanical energy Ẽ is zero. Recalling from

Eq. (6) that the spacecraft mass decreases linearly with time, the information

taken from Fig. 2 are sufficient to estimate, for a given pair (ã0, ṽe), the time

tesc required to reach an escape condition. In fact, from Eqs. (7), one obtains

tesc =

√√√√r30
µ

ṽe
ã0

(1− m̃esc) (12)

where m̃esc can be estimated in graphical form using Fig. 2. To summarize,

Figs. 2 and 3 provide an overall view to the escape problem of a spacecraft

with radial thrust of constant modulus. As such these figures represent an

extension of the classical results by Tsien [1], in which the spacecraft total

mass was assumed to remain constant during the flight.

A few comments are necessary about the “wave-like” behaviour in both the

central and the lower part of Fig. 2 for the contour lines of m̃esc = m̃esc(ã0, ṽe).

This phenomenon is especially marked for small values of the initial propulsive

acceleration ã0. In particular, a “wave-like” line appears when ã0 < 0.12. The

reason may be explained as follows. From an analysis of the numerical simula-

tions, it turns out that in correspondence of pairs (ã0, ṽe) that define a point
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Figure 2. Escape dimensionless mass m̃esc for a constant value of both propulsive

thrust modulus and propellant mass flow rate.

close to one of these “waves”, the escape trajectory is characterized by legs in

which u < 0. In other terms, these trajectories are constituted by a sequence

of three or more arcs in which a phase of departure from the primary body

(when u > 0) is followed by an approach phase (u < 0). Clearly the number
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Figure 3. Escape dimensionless radius r̃esc for a constant value of both propulsive

thrust modulus and propellant mass flow rate.

of arcs is always odd, and both the first and the last one correspond to a

departure phase. This sequence of departure and approach arcs is highlighted

in Fig. 4, which shows the time variation of the dimensionless distance when

ã0 = 0.1 and ṽe = 6, while the corresponding escape trajectory is illustrated
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in Fig. 5.

0 5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

4

4.5

t/
√

r3
0/μ

r̃
escape

start

0u �

0u �

Figure 4. Time variation of the dimensionless radius when ã0 = 0.1 and ṽe = 6.

This behavior is consistent with the results obtained from Prussing and Cov-

erstone [2] and can be explained in terms of mechanical energy. In fact, for

small values of ã0 the spacecraft is initially trapped into the so called poten-

tial well [2]. If the propulsion acceleration remains constant, as in the classical

case, an escape from the potential well cannot take place, and the spacecraft

is constrained to orbit around the primary and to track a trajectory whose

shape has been analytically studied in Ref. [4]. In the case of propellant mass

that decreases linearly with time, as is assumed in this paper, the propulsive

acceleration tends to increase monotonically and the spacecraft can therefore

eventually escape from the potential well and meet the escape conditions. This

is confirmed by Figs. 4 and 5, which show how an escape occurs for a spacecraft

14



r
0

2r
0

3r
0

4r
0

5r
0

30

210

60

240

90

270

120

300

150

330

180 0

escape

start

0u �

0u �

Figure 5. Escape trajectory when ã0 = 0.1 and ṽe = 6.

whose initial dimensionless acceleration is less than 1/8.

2.2 Case Study

A numerical example is now discussed to highlight the effectiveness of the pro-

posed mathematical model. Consider a spacecraft with an electric propulsion

system having a specific impulse Isp = 3000 s. The spacecraft is initially placed

in a geostationary orbit, characterized by µ = µ⊕ , 3.986 × 105 km3/s2 and

r0 ' 42164 km. In this case ve = g Isp ' 29420 m/s, where g , 9.806 m/s2 is

the standard gravity, and from the last of Eqs. (7), ṽe ' 9.57. Assume that

the escape condition is obtained with a propellant mass fraction of 30%, that

is, with a dimensionless mass m̃esc = 0.7. From Fig. 2 the required value of

initial acceleration would be ã0 ' 0.12, which corresponds to an initial ac-

celeration modulus T/m0 ' 26.9 mm/s2, see the third of Eqs. (7). For an
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initial spacecraft mass m0 = 500 kg the required propulsive thrust would be

T ' 13.5 N, an enormous value, well beyond the technical capabilities of an

electric thruster [12]. Even though such a large thrust requirement could be

partially reduced by increasing the propellant mass fraction, Fig. 2 confirms

that a radial thrust strategy is rather inefficient to attain an escape condition

as long as the thruster is switched on during the whole mission (that is, no

coasting phases are allowed). Of course a different thrust strategy, such as a

circumferential thrust, could be more efficient in terms of propellant consump-

tion, even if it would require a higher thrust steering capability.

The situation is much different if a Solar System escape mission is performed

using an M2P2-based spacecraft. Note that in this case the radial thrust strat-

egy is justified by the reduced steering capability of this kind of thruster. Also,

the radial model well approximates the real spacecraft behavior [13]. Accord-

ing to the previous discussion, a reasonable value of the equivalent effective

exhaust velocity for an M2P2 thruster is ve = 172.8 km/s. Assume, for exam-

ple, an initial heliocentric parking orbit with radius r0 = 1 au, which amounts

to escaping from Earth with zero hyperbolic excess velocity with respect to

the planet. In this case ṽe ' 5.8, since µ = µ� , 132712439935.5 km3/s2.

Assuming, again, that the escape condition is met with a propellant mass

fraction of 30%, from Fig. 2 the required dimensionless acceleration is about

ã0 = 0.125. Because µ/r20 ' 5.93 mm/s2 along the parking orbit, the initial

propulsive acceleration is a0 ' 0.74 mm/s2. For an initial spacecraft mass of

m0 = 1000 kg, the required propulsive thrust is T ' 0.74 N, a value that, ac-

cording to Winglee, is regarded to be technically feasible [10,11,14]. From Fig. 3

the escape conditions are met for a dimensionless distance slightly greater than

4, which means resc = r̃esc r0 ' 4.2 au , a value smaller than the mean Sun-
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Jupiter distance. This is confirmed by Fig. 6, which shows the results obtained

from the numerical integration of equations of motion (2)–(4) and (6). The

heliocentric trajectory tracked by the spacecraft is illustrated in Fig. 7. Note

that the escape condition indeed takes place at a distance 4.2 r0 after about

14 time units (in fact, from Eq. (12) t̃esc ' 13.92).
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Figure 6. Numerical simulations for a Solar System escape mission using an

M2P2-based spacecraft with m̃esc = 0.7 (constant thrust modulus).
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3 Thrust and mass flow rate that change with distance

In this second mission scenario the thrust modulus T and the propellant mass

flow rate ṁ are both proportional to the inverse square distance from the

primary. This situation is representative of an interplanetary mission for a

spacecraft equipped with a solar electric propulsion system [17,18], or with

an M2P2 thruster whose power generation system is based on photovoltaic

panels. In fact, within a first order approximation model, the electric power

from the photovoltaic panels in the interplanetary space scales as 1/r2, where

r is the distance from the Sun [19,20,21].

From a mathematical viewpoint, in this case the propulsive acceleration and
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the spacecraft mass variation are described as

T

m
=

a0
m̃ r̃2

, ṁ = −m0 a0
ve r̃2

(13)

where m̃ and r̃ are defined in Eq. (7).

Introduce now the dimensionless length ρ , r0/r ≡ 1/r̃, which is equal to the

reciprocal of r̃. From the second of Eqs. (13), the following relationships are

found:

u =
r0 a0
ve

ρ′ , u̇ = −r0 a
2
0

v2e
ρ′′ ρ2 (14)

where the prime symbol denotes, again, a derivative taken with respect to the

dimensionless mass m̃. Substituting the second of (13) and the second of (14)

into the equation of motion (4), one obtains:

r0 a
2
0

v2e
ρ′′ =

µ

r20
(1− ρ)− a0

m̃
(15)

Taking into account the relationships (7), an equivalent, compact, form of the

last equation is

(
ã0
ṽe

)2

ρ′′ = 1− ρ− ã0
m̃

(16)

This second order nonlinear differential equation is completed by a set of two

boundary conditions, which model the spacecraft position and velocity in the

initial parking orbit of radius r0, viz.

ρ|m̃=1 = 1 , ρ′|m̃=1 = 0 (17)

Note that the second condition, corresponding to a radial velocity equal to

zero (that is, u = 0), is a consequence of the first of Eqs. (14).

19



3.1 Analysis of spacecraft trajectory

The previous differential equation (16) along with its boundary conditions (17)

can be solved using the sine integral function Si(z) and the cosine integral

function Ci(z), defined as

Si(z) ,
∫ z

0

sin y

y
dy (18)

Ci(z) , γ + ln(z) +
∫ z

0

cos y − 1

y
dy (19)

where γ is Euler’s constant. Note that a number of computer routines are

available to calculate these integrals in a fast and accurate way, see Ref. [22].

The solution of Eq. (16) can be written as

ρ = ṽe

{
sin

(
m̃ ṽe
ã0

) [
Ci
(
ṽe
ã0

)
− Ci

(
m̃ ṽe
ã0

)]
+ cos

(
m̃ ṽe
ã0

)[
Si

(
m̃ ṽe
ã0

)
− Si

(
ṽe
ã0

)]}
+1

(20)

while the derivative ρ′, necessary for calculating the radial velocity u, is given

by

ρ′ =
ṽ2e
ã0

{
cos

(
m̃ ṽe
ã0

) [
Ci
(
ṽe
ã0

)
− Ci

(
m̃ ṽe
ã0

)]
+ sin

(
m̃ ṽe
ã0

)[
Si
(
ṽe
ã0

)
− Si

(
m̃ ṽe
ã0

)]}

(21)

Equations (20)-(21) give a closed-form, parametric description (as a function

of m̃) of the spacecraft dynamics during the propelled flight phase.

To represent the spacecraft trajectory in a polar reference frame T (O; r, θ), it

is necessary to find an expression of the distance r and the anomaly θ for a

given value of the dimensionless mass m̃ ∈ [1, 0). To this end, observe that
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the distance can be written as

r(m̃) =
r0

ṽe
{

sin
(
m̃ ṽe
ã0

) [
Ci
(
ṽe
ã0

)
− Ci

(
m̃ ṽe
ã0

)]
+ cos

(
m̃ ṽe
ã0

) [
Si
(
m̃ ṽe
ã0

)
− Si

(
ṽe
ã0

)]}
+ 1

(22)

Consider now the anomaly θ. Combining Eq. (3) and the second of Eqs. (13)

one obtains

θ′ = − ṽe
ã0

(23)

which can be simply integrated to get

θ(m̃) =
ṽe
ã0

(1− m̃) (24)

In fact, recall that ã0 and ṽe are constant and, by assumption, θ is zero at

the beginning of the propelled phase. Equation (24) states that the anomaly

varies linearly with the spacecraft mass.

The polar equation of the trajectory can now be recovered by writing m̃ as a

function of θ from Eq. (24) and then substituting the obtained expression of

m̃ into Eq. (22). The result is:

r =
r0

ṽe
{

sin
(
ṽe
ã0
− θ

) [
Ci
(
ṽe
ã0

)
− Ci

(
ṽe
ã0
− θ

)]
+ cos

(
ṽe
ã0
− θ

) [
Si
(
ṽe
ã0
− θ

)
− Si

(
ṽe
ã0

)]}
+ 1

(25)

In particular, at the beginning of the transfer (that is, when θ = 0), the

previous equation returns the correct value r = r0.

3.2 Escape conditions

To calculate the escape conditions from the primary, it is first useful to find

an expression for u and v for a given value of m̃ (equivalently, from Eq. (24),

for a given anomaly θ). Combining Eqs. (5) and (14) with (20) and (21) it can
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be verified that

u =

√
µ

r0

ã0
ṽe
ρ′ , v =

√
µ

r0
ρ (26)

from which the mechanical energy can be written as

Ẽ =
1

2

(
ã0 ρ

′

ṽe

)2

+
ρ2

2
− ρ (27)

As usual, an escape condition occurs when Ẽ = 0. According to Boltz [5] and

McInnes [7] recall that for a spacecraft of constant mass, whose radial thrust

varies as the inverse square distance from the primary, an escape condition

is possible only if a0 ≥ 0.5µ/r20. The escape condition can also be met for

smaller values of the initial propulsive acceleration at the expense of a more

complex thrust strategy, that is, including coasting phases [6,23].

Unlike the case of constant mass, the results obtained when ṁ depends on r

are substantially different. First note from Eq. (27) that the escape problem

is now simply reduced to that of finding the root of a nonlinear function. The

numerical results have been summarized in Fig. 8. In particular, Fig. 8 shows

that when the spacecraft mass decreases with time, an escape condition can,

in principle, always be met. This result is similar to what has been obtained

for the previous case of constant propulsive thrust and constant propellant

mass flow rate.

4 Conclusions

A new method has been discussed for the study of the motion of a spacecraft

subjected to a continuous radial thrust. Unlike the classical problem in which

the spacecraft mass is assumed to remain constant, the proposed approach

takes into account the effect of a mass decrease due to propellant consumption.
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Figure 8. Escape dimensionless mass m̃esc for a thrust modulus that varies propor-

tional to 1/r2.

Using a suitable mathematical transformation, the spacecraft dynamics can

be fully described by means of a single nonlinear second order differential

equation in which the primary-spacecraft distance is expressed as a function

of the vehicle’s actual mass.
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Two different mission scenarios have been discussed, one where both the

propulsive thrust modulus and the propellant mass flow rate are constant

along the whole mission, the other with the thrust modulus and the mass flow

rate that vary inversely proportional to the distance between the spacecraft

and the primary body. In the first case a graphical solution is discussed for

evaluating the performance during an escape mission. For a given propellant

mass fraction at the end of mission and a given value of effective exhaust veloc-

ity, the thrust modulus required to fulfill the mission can be easily calculated

in graphical form, along with the corresponding escape distance and the total

flight time. In the second case a closed-form solution, which uses the trigono-

metric integral functions, has been found for the description of the spacecraft

dynamics during the propelled flight phase. The two mission scenarios are rep-

resentative of either an electric thruster or a mini-magnetospheric propulsion

system, and some examples have been discussed to confirm the effectiveness

of the methodology for a preliminary mission analysis.

A natural extension of this work should include the case in which the spacecraft

mass has a discontinuity during the escape trajectory. This case is represen-

tative of a mission scenario in which a part of the spacecraft (for example, a

stage of the propulsion system or a propellant tank) is jettisoned during the

transfer trajectory.
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