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Abstract—This paper describes a hardware-in-the-loop (HiL)
simulation platform specifically designed to test state estimators
for Li-ion batteries in electric vehicle applications. Two promising
estimators, the Mix algorithm combined with the moving window
least squares and the dual extended Kalman filter, are imple-
mented in hardware on a field-programmable gate array (FPGA)
and evaluated using the developed HiL platform. The simulation
results show the effectiveness of using FPGAs for hardware
acceleration of battery state estimators and the importance of
their assessment under different operating conditions, i.e., driving
schedules, which can be simulated by the HiL platform.

I. INTRODUCTION

In the last few years, plug-in hybrid electric vehicles
(PHEVs) and electric vehicles (EVs) have gained popularity
due to the ever more stringent emission standards and the
increasing consumer awareness of environmental issues. The
energy storage system (ESS) is a key component of these
vehicles and the enabler of the transition towards e-mobility.
Li-ion battery technology is considered the most suitable
choice for implementing the on-board ESS (i.e., the traction
battery), because of its high power and energy densities and
long lifetime. An effective battery management system (BMS)
is used to ensure a safe and reliable operation of a Li-
ion battery, by monitoring and controlling its charging and
discharging processes. This requires the knowledge of the
internal state of each battery cell, which is usually expressed
by means of the state of charge (SOC) and the state of
health (SOH) variables. SOC indicates the remaining amount
of charge stored in the battery and SOH is an index of the
battery performance degradation compared to the fresh status,
which accounts for the capacity fading and the increase of the
internal resistance [1].

These variables cannot directly be acquired and need to be
inferred from the voltage, current and temperature measure-
ment. The most straightforward method for SOC estimation is
the integration of the battery current over time and is named
Coulomb Counting (CC). It may provide an accurate SOC
estimate assuming that the initial SOC value is known and
the current is acquired with a high precision sensor. However,
unavoidable errors in the current measurement cause the CC
estimate to become unreliable over time. This problem can
be tackled by also using the voltage information in a model-
based algorithm, such as the popular extended Kalman filter
(EKF) [2] and the Mix algorithm [3], among many others. The
main open issue is reaching the desired estimation accuracy

with a complexity suitable for real-time implementation in the
BMS hardware. A model is used to predict the cell voltage in
these techniques. The predicted cell voltage is compared with
the measured one and the resulting error is used to correct
the estimate of the model state variables. The SOC estimation
accuracy thus depends on the model capability to reproduce
the cell behaviour reliably. An equivalent circuit model (ECM)
is often adopted, because it offers a good trade-off between
complexity and accuracy. The ECM parameters change with
the cell operating conditions (i.e., SOC and temperature) and
ageing. An effective approach to track these variations in a
BMS is to identify the ECM parameters online. This leads to
a joint state and parameter estimation problem.

Although a great deal of research has been conducted on
developing new algorithms, just a few works focus on the
algorithm assessment under realistic operating conditions [4]–
[6]. They exploit the concept of hardware-in-the-loop (HiL)
simulation framework, in which the BMS or just the battery
state estimator is tested in a simulation environment that
reproduces the conditions under which the battery will operate.
In more detail, cell level HiL testing platforms, which includes
a real cell to which an application-specific current profile is
applied under controlled conditions, are described in [4], [5].
In particular, the performance of the battery estimators are
assessed with a current profile based on the electric power
measured on an EV diving the Federal Test Procedure (FTP)
driving schedule in [4] and a current profile representative of
a smartphone use in [5]. A mathematical model of the traction
battery is used in [6]. The simulation results are only limited
to constant current charge/discharge cycles.

The aim of this work is to provide an HiL simulation
platform that allows a battery state estimator to be tested
under a wide range of operating conditions representative of
the EV usage. The developed platform is used to evaluate
two battery state algorithms, the Adaptive Mix Algorithm
(AMA) and Dual EKF (DEKF), which have proved to be a
promising solution for SOC and parameters co-estimation [7],
[8]. The AMA and DEKF estimators have been implemented
on a Altera MAX® 10 field-programmable gate array (FPGA),
which targets low-cost applications and includes non-volatile
memory and integrated ADCs. This allows us to assess also
the computational complexity of these algorithms and their
suitability to be executed in real time on a hardware platform
attractive for industrial BMS implementation.



Fig. 1. Block diagram of the developed hardware-in-the-loop simulation
platform.

This paper is organized as follows. The next Section de-
scribes the HiL simulation platform, including the battery and
the electric propulsion models. Section III presents the AMA
and DEKF algorithms, while their FPGA implementation is
discussed in Section IV. The simulation results are discussed
in Section V and finally some conclusions are drawn in
Section VI.

II. HARDWARE-IN-THE-LOOP SIMULATION PLATFORM

In the framework of this paper, the developed HiL sim-
ulation platform aims at testing a battery state estimator
implemented in an FPGA device in a simulation environment
that reproduces its usage in an EV. The traction battery and
the electric propulsion system are represented by mathematical
models, implemented in a MATLAB/Simulink® application,
as shown in Fig. 1. The latter is executed on a PC with a
100ms integration time step, which is suitable for capturing
the system dynamics of interest. The model outputs consist of
the battery current I and the cell voltages Vi. They form the
input of the battery state estimator, which in turn computes
the SOC estimation as well as the ECM parameter vector p.

The traction battery, simulated by the MATLAB/Simulink®

application, and the battery state estimator, implemented in
a MAX® 10 FPGA, interact by using digital signals only.
Consequently, the interface between the HiL model and the
hardware can be implemented as a digital communication layer
mapped over the JTAG link, without the need of reproducing
the power interface of the battery, as instead required for
validating other BMS functions as cell balancing [9]. A brief
description of the electric propulsion system (EV model) and
the traction battery models are reported below.

A. EV Model

The EV model computes the electric power at the battery’s
terminals, so that the vehicle speed follows a driving sched-
ule. The latter can be selected among 11 standard driving
cycles. The Urban Dynamometer Driving Schedule (UDDS),
the Highway Fuel Economy Test (HWFET) and the Federal
Test Procedure (FTP) are defined by the U.S. Environmental
Protection Agency [10]. The New European Driving Cycle

TABLE I
DRIVING SCHEDULES DETAILS

Driving Duration Distance Average speed
schedule (min) (km) (km/h)

UDDS 23 12.0 31.5
HWFET 13 16.5 77.5
FTP 31 17.8 34.1
EUDC 7 6.5 58.6
NEDC 20 8.3 25.4
ECE R15 3 0.9 16.5
WLTP class 3 30 23.2 46.5
ArtUrban 17 4.9 17.6
ArtRoad 18 17.3 57.4
ArtMw130 18 28.7 96.8
ArtMw150 18 29.5 99.5

(NEDC), the Extra-Urban Driving Cycle (EUDC) and the Eco-
nomic Commission for Europe urban driving cycle (ECE R15)
are maintained by the United Nations Economic Commission
for Europe (UNECE) [11]. The Common Artemis Driving
Cycles consist of the Urban cycle (ArtUrban), the Rural
road cycle (ArtRoad) and the Motorway cycles (ArtMw130
and ArtMw150, with a maximum speed of 130 and 150
km/h, respectively). The Worldwide harmonized Light vehicles
Test Procedures (WLTP) Class 3 are developed following the
guidelines of UNECE World Forum for Harmonization of
Vehicle Regulations. The duration, distance and average speed
of each cycle are reported in Table I. The various driving
schedules differ a lot in the average speed and, thus, in the
electric power required from the traction battery.

A dynamic model has been implemented to simulate the
behaviour of an EV on a zero grade road, as in [7]. The
mechanical power Pm is calculated as the sum of three
contributions: one linked to the acceleration, one to the air
resistance and the other to the rolling resistance (1).
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In this equation, F is the traction force, v is the speed, M is the
kerb weight, S is the frontal area, CX is the drag coefficient,
↵R is the rolling resistance, ⇢air is the air density and g is the
gravity acceleration.

The electric power Pe is obtained from Pm by using the
equation (2), in which ⌘wheel is the efficiency from the battery
to the wheels and ⌘reg is the efficiency in the opposite
direction, i.e., during the regenerative braking.
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In order to obtain the battery current, the electric power
is divided by the sum of the cell voltages calculated by the
battery model, as shown in Fig. 1.

B. Battery Model

The battery model is able to simulate a given number of
series-connected cells. The only input is the battery current
which is the same for all the series-connected cells. At each



Fig. 2. Electric circuit model.

time step, the model generates the arrays of the cell voltages
Vi, SOC, as well as the current values of the model parameters.
The model adopted is the ECM shown in Fig. 2 with 2 RC
branches. This is a very common choice to simulate a Li-ion
battery with high accuracy in an HiL platform [9]. The left
hand side models the cell capacity Qn and evaluates the SOC
as the voltage across a linear capacitor with a capacity equal to
Qn (expressed in Coulomb) divided by 1V (this is equivalent
to the CC method). The cell voltage vM is obtained by the sum
of the open-circuit voltage VOC and a dynamic term, which
accounts for the internal ohmic resistance R0 and the double
layer (VRC1 ) and diffusion (VRC2 ) effects of the Li-ion battery
during charging and discharging (2 RC branches).

The model parameters change with manufacturing varia-
tions, ageing and operating conditions, such as temperature
and state of charge. In order to model the dependency of
the parameters on temperature and SOC, their values are
stored in 2D LUTs. The variability of the cell behaviour is
considered by setting the initial SOC, the model parameters,
the temperature and the capacity of each cell individually.

In this work, the LUTs have been populated with the values
extracted from pulsed current tests performed at different
temperatures and with different pulse amplitudes on a 1.5Ah
NMC cell [12]. The model is then generalized to simulate a
cell with the same technology but different capacity by pro-
portionally scaling the LUT values with the capacity, directly
for the resistive elements and inversely for the capacitive ones.
As an example of the model capability of reproducing the cell
voltage, Fig. 3 shows the comparison between the cell voltage
predicted by the model and the measured one, during a pulsed
current test. We note that the predicted cell voltage agrees very
well with the measured one, as the maximum and rms errors
are 132mV and 13.6mV, respectively.

The simulated traction battery consists of 96 series-
connected NMC cells with a capacity of 66.2Ah. The battery
nominal voltage is 355.2V. The EV model has been param-
eterized to resemble a commercial electric car. The model
parameters are reported in [7]. Fig. 4 shows the results of the
ArtMw150 driving cycle simulation. Together with the speed
profile, the electric power (calculated by the EV model), the
battery current and voltage (computed by the battery model)
are reported.
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III. BATTERY STATE ESTIMATORS

This Section briefly describes the AMA and DEKF battery
state estimators [8]. They are both based on the ECM shown
in Fig. 2, but only one RC branch is used. This reduces the
computational complexity, while preserving a good accuracy,
especially in applications with fast transients. The ECM pa-
rameters are identified online in both approaches to track their
variations with the operating conditions and the ageing of the
battery.

AMA is a technique based on the Mix Algorithm for
SOC estimation [3] and the Moving Window Least Squares
(MWLS) method, applied to the AutoRegressive eXogenous
(ARX) representation of the ECM for online parameter iden-
tification of the ECM [13], [14]. The Mix Algorithm acts
as an observer by comparing the model output voltage to
the measured cell voltage. The resulting error is amplified
and used to correct the estimation of the SOC state variable,
computed using the CC method. The procedure to determine
the observer gain is discussed in [15]. The ARX model
is obtained by firstly linearising the OCV-SOC non-linear
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Fig. 4. Speed, electric power, battery current and voltage during an ArtMw150
driving cycle.



relationship of the ECM around the time-varying cell operating
point and then by calculating the discrete-time relationship (3)
between the input samples u(k) and output samples y(k), i.e.,
between the current input and the cell terminal voltage output.

y(k) =� a1y(k � 1)� a2y(k � 2) + ↵0(1 + a1 + a2)

+ b0u(k) + b1u(k � 1) + b2u(k � 2)
(3)

The parameters [a1, a2, b0, b1, b2] are identified by applying
the LS method to a set of current and voltage samples in
a given time window, which is periodically shifted in time.
The ECM parameters [R0, R1, C1] are then extracted from the
coefficients of the ARX model [7].

In the DEKF technique, two cooperating Kalman Filters for
non linear systems are executed simultaneously: one for the
state and the other for the parameter estimation. The use of
the dual estimation, instead of a joint estimation (in which
only one Kalman Filter is used) reduces the state matrix
dimensions and may improve the estimation robustness [16].
The parameter evolution is described by the process equation
(4), which is used in combination with the measurement
equation (6), in order to build the first EKF. The state evolution
is instead represented by (5), which is again combined to the
measurement equation (6) to form the second EKF.

p(k + 1) = p(k) + �(k), (4)
x(k + 1) = F(x(k), iL(k), p(k)) + ⇠(k), (5)

vT(k) = G(x(k), iL(k), p(k)) +  (k). (6)

The measurement equation (6) is the same for both filters. In
the above equations, k is the discrete time, p is the parameter
vector, x = [SOC, VRC1 ] is the battery state vector. �, ⇠ and
 are the parameters, the state and the measurement noise
with zero mean and covariance matrices ⌃�, ⌃⇠ and ⌃ ,
respectively.

IV. FPGA IMPLEMENTATION OF THE AMA AND DEKF
BATTERY ESTIMATORS

FPGAs have proven their effectiveness in many industrial
applications. They are capable of high throughput, low latency
processing through parallelism and optimized data paths. The
flexibility of user-defined circuits enables the combination of
different data types and precisions, which improves perfor-
mance and reduces cost. An FPGA is also highly scalable for
design upgrade and system expansion [17].

The AMA and DEKF battery estimators are implemented
using the Altera design flow as illustrated in Fig. 5. Hard-
ware design starts in DSP Builder where the algorithm is
described in Simulink models and synthesized to low-level
hardware description. The design is optimized for performance
and resource by applying pipelining, time-division multiplex-
ing/folding and customizing precision. In the Qsys system
integration tool, the generated hardware components, such as
the AMA module and matrix processor in Fig. 6, are connected
to other components in the system, including a Nios II 32-
bit soft processor, JTAG and memory. A complete design
is synthesized and programmed for the target FPGA using
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Fig. 5. Altera FPGA design flow.

(a) AMA (b) DEKF

Fig. 6. Block diagram of the implemented estimators.

Quartus II design software. For the DEKF implementation,
which includes application software running on Nios II, Em-
bedded Design Suite compiles the C software and runs the
compiled application on the FPGA. To support HiL simulation,
DSP Builder provides an interface to the System Console
system debugging tool. Through this interface, the Simulink
application can perform memory-mapped access to the design
running on the FPGA.

The AMA estimator is entirely built in hardware and is
provided with a memory mapped interface (Fig. 6(a)), which
can be used to integrate the module in a system on chip. This
interface consists of input and output registers, to write the
algorithm input values (i.e., cell voltage and current) and to
read the computed cell state (i.e., SOC and ECM parameters).

The DEKF is built on an architecture with a Nios II em-
bedded processor and a dedicated matrix processor, as shown
in Fig. 6(b). Nios II is a 32-bit soft-core processor which is
implemented in FPGA logic and is customizable for specific
application requirements. In this application, a floating-point
custom instruction IP component is included and supported by
the C compiler to accelerate standard floating point operations.
In simulation, Nios II uses JTAG to read from and write to the
Simulink application. The prediction phase of SOC estimation
and parameter identification are also performed on Nios II. To
improve performance, the correction phase is offloaded to the
matrix processor, which is a generic matrix processing engine
able to perform various matrix calculations using Fadeev and
matrix multiply-accumulate cores [18]. The matrix size is
programmable at run-time and a number of matrix calculations
can be scheduled in sequence.



TABLE II
ESTIMATOR RESOURCE USAGE

Resource AMA DEKF

Logic Elements 38 k/50 k (76%) 23 k/50 k (46%)
9-bit Multiplier 219/288 (76%) 39/288 (14%)
Memory bits 170 Kb/1638 Kb (10%) 230 Kb/1638 Kb (26%)

Execution time 34 µs (@100MHz) 33 µs (@100MHz)

The AMA and the DEKF hardware implementations have
been implemented in a low cost Altera MAX® 10 FPGA
(10M50DAF484C6GES device). A comparison of the FPGA
resource usage is shown in Table II. Both estimators fit in the
chosen device, but the DEKF uses fewer resources than the
AMA. They need a similar execution time to update both the
state and the parameters (the value in the table is obtained with
a clock frequency of 100MHz). Such a very short execution
time allows the same module to be used for estimating a large
number of cells in a time multiplexing fashion. The number of
cells affects the required memory inside the AMA and DEKF
modules (the memory bits figure reported in the table refers
to 12 cells).

V. SIMULATION RESULTS

The developed HiL platform has been used to assess the
performance of the hardware implementations of the AMA and
DEKF estimators. The sampling time is equal to 100ms, the
length of the moving window in the AMA is set to 90 s and the
noise covariance matrixes in the DEKF have been empirically
determined. The simulation selects one driving schedule from
Table I and repeats it until the battery becomes fully discharged
(i.e., SOC = 0). Even if the parameters, as well as SOC
initialisation and temperature, of each cell of the battery can
be set independently, the simulations described below have
been carried out with identical cells all starting from the full
charge state (i.e., SOC = 100%). Moreover, the temperature
of all the cells has been kept constant at 25 �C throughout all
the simulation. Thus, all the battery cells behave in exactly
the same way and consequently so do the estimators, which
are capable of handling up to 12 cells.

As an example, Fig. 7 shows the simulation results for
the UDDS and ArtMw150 cycles, which are representative
of urban and motorway driving, respectively. The ArtMw150
electric power is on average significantly higher than the
UDDS one, leading to a much shorter driving time. The driving
range is 93.3 km for the ArtMw150 cycle and 166.4 km for
the UDDS cycle. The SOC estimated by both algorithms is in
good agreement with the reference one evaluated by the HiL
battery model, apart from the SOC range 50% down to 25%,
in which the SOC is poorly observable from the cell voltage,
as discussed in previous works [8], [15]. In this range, AMA
provides a better SOC estimation than DEKF for the UDDS
cycle, whereas the opposite behaviour can be observed for the
ArtMw150 cycle.

Fig. 7 shows also the comparison between the identified
Ohmic resistance R0 and the time constant ⌧1 = R1C1 of the
single RC branch of the ECM used in the estimator and the

TABLE III
SOC ESTIMATION ERROR

Driving AMA DEKF
Schedule Max (%) rms (%) Max (%) rms (%)

UDDS 3.3 1.3 5.7 1.9
NEDC 3.7 1.4 5.4 1.8
HWFET 6.2 2.6 5.9 2.3
FTP 3.8 1.4 6.0 2.0
EUDC 5.4 2.3 7.6 2.7
ECE R15 1.2 0.4 3.8 1.3
WLTP class 3 4.6 2.0 5.6 2.2
ArtUrban 2.5 1.1 5.1 2.0
ArtRoad 5.5 2.2 7.1 2.5
ArtMw130 9.0 4.5 5.4 2.8
ArtMw150 9.5 4.5 3.5 1.9

corresponding values used in the HiL battery model (regarding
its time constants, the fastest one is considered). It is worth
noticing that R0 is well identified by both estimators, espe-
cially during the UDDS cycle. This is an important result, as
this parameter affects the accuracy of the model and provides
a good indication of the battery ageing. The identification of
the time constant seems to be more noisy.

The maximum and rms SOC errors for all driving schedules
are reported in Table III. We note that both estimators provide
a good SOC estimation for all the driving cycles, as the
rms error is always below the 4.5% and 2.8% for AMA
and DEKF, respectively. As a comparison, the SOC errors
reported in [4] are 4.1% and 9.2% for two different Li-
ion batteries subject to a current profile based on the electric
power measured on an EV driving the FTP cycle. Finally, we
observe that the characteristics of the driving cycle and thus
of the related battery current have a remarkable impact on
the performance of the state estimator. In more detail, AMA
provides better results for urban driving schedules, whereas
DEKF is more reliable for motorway driving schedules, such
as the HWFET, the ArtMw130, and ArtMw150.

VI. CONCLUSIONS

This paper has discussed the development of a HiL platform
for testing battery state estimators under realistic operating
conditions found in EV applications. The HiL platform con-
sists of a dynamic model of an EV and an ECM of the traction
battery. It is implemented in a MATLAB/Simulink® applica-
tion, which interacts with the estimator implemented on an
Altera MAX® 10, using a highly automated design flow, which
starts from describing the algorithm in a MATLAB/Symulink®

model. Two promising model-based estimators, the AMA and
the DEKF algorithm, have been implemented and tested using
the developed HiL platform. Simulation results show that both
estimators are suitable for battery state estimation in EVs,
providing good SOC estimation accuracy and reliable iden-
tification of the ECM parameter embedded in the estimator.

This work has demonstrated that FPGAs can be an effective
solution for hardware acceleration of battery state estimators,
so that a single low cost device can be used to estimate all the
cells of a battery module (typically consisting of 12 cells) or
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Fig. 7. Behaviour of SOC and ECM parameters during an UDDS test (left-hand side) and an ArtMw150 test (right-hand side).

even all the cells in the traction battery (typically consisting
of 8 modules). Moreover, it has highlighted the importance
of assessing a battery state estimator for an EV battery under
a wide range of driving schedules, as its performance may
change with the current load profile of the battery in a
remarkable way. To the best of our knowledge, this is the
first time that this result is clearly shown.
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