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Abstract—An effective management of the onboard energy
storage system is a key point for the development of electric
vehicles. This requires the accurate estimation of the battery
state over time and in a wide range of operating conditions. The
battery state is usually expressed as state-of-charge and state-of-
health. Its estimation demands an accurate model to represent
the static and dynamic behaviour of the battery. Developing
such a model requires the online identification of the battery
parameters. This paper aims at comparing the performance of
two popular system identification techniques, i.e., the Extended
Kalman Filter and the classic Least Squares method. A significant
contribution of this work is the definition of a benchmark which
is representative of the real use of the battery in an electric
vehicle. Simulation results show the peculiarities of both methods
and their effectiveness.

I. INTRODUCTION

Electric and Plug-in Hybrid Electric Vehicles (EVs/PHEVs)
are one of the most promising technologies to achieve a
more sustainable utilisation of energy resources from both
economic and environmental points of view. In conjunction
with renewable resources, they provide a viable solution
to dramatically reduce greenhouse gas emissions. A crucial
component of EVs and PHEVs is the energy storage system,
which has a huge impact on their cost and performance. On
the one hand, Li-ion battery technology, and particularly the
Li-Polymer (Li-Po) variant, provides specific and volumetric
energy and power densities, charge/discharge efficiency, and
lifetime suitable for the implementation of the energy storage
system in EVs and PHEVs. On the other hand, a Li-ion
cell is very sensitive to overcharge and deep discharge, as
well as to be operated outside its safe temperature range.
Should these conditions happen, the cell may be permanently
damaged. Consequently, an electronic system, called Battery
Management System (BMS), is usually employed to protect
the battery by measuring the voltage, the temperature, and
the current of each cell of the battery. These data feed the
algorithms executed by the BMS to evaluate the residual
energy stored in the battery and the available power to the load.
This information is of paramount importance for an effective
management of the battery in the vehicle. It also optimises the
battery lifetime, which should be comparable to the life of the
vehicle [1].

The main state variables of the battery are the so-called
State-of-Charge (SoC) and State-of-Health (SoH). SoC is
commonly defined as the ratio of the remaining charge to

the cell nominal capacity, where the remaining charge is the
residual charge that can be drawn from the cell at room
temperature and at a sufficiently low ampere-hour rate [2].
Capacity degradation and internal resistance increase are two
indicators of SoH , which are used to predict the Remaining
Useful Life (RUL) and End of Life (EOL) of the battery.
SoC cannot directly be measured according to its definition
without losing the remaining capacity of the cell. Thus, many
approaches have been proposed to estimate it [2]–[5].

Coulomb counting, the integration of the battery current
over time, is the simplest and most commonly used technique.
As it is an open-loop technique based on integration, errors
in current measurement due to noise and quantisation accu-
mulate. Thus, large SoC errors can result, calling either for
a recalibration or a compensation at regular intervals. This
can hardly be feasible in EVs and PHEVs, where the full
discharge or charge conditions rarely occur. This also means
that the initial value of the integral to calculate SoC may be
unknown.

Another simple method to estimate SoC is to use its
relationship with the open circuit voltage VOC. However, in Li-
Po batteries VOC dependence on SoC is quite little in a wide
range of SoC, so that a good estimate is only obtained with an
accurate measurement of VOC. This is possible with the battery
in steady state, a condition reached only after a long time
(often several minutes or even hours) with no load current.
Thus, this approach is unsuitable for real-time SoC estimation,
when the battery is continuously charged or discharged at
high currents. Cell-impedance measurements might help in
resetting or adjusting SoC estimates from integration-based
methods. However, contradictory results arise from various
studies undertaken to identify the impedance variation of
cells/batteries with SoC [6], [7], so that the usefulness of this
technique is still unresolved [2]. Alternative approaches, such
as artificial neural networks and fuzzy logic principles, based
on a black-box battery model that describes the nonlinear re-
lationship between the SoC and measurable battery variables,
can produce good SoC estimates with the drawback of heavy
computational burden and poor real-time performance [5].

A very effective approach is offered by the use of state
estimation methods based on a state-space battery model.
Model-based techniques, such as Kalman Filters (KFs) [8],
[9] and Mix algorithm [3], [10], bring the advantages of
being closed-loop and are suitable for real-time estimation. A
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Fig. 1. Schematic block diagram of model-based state-of-charge estimation
algorithms.

general view of the basic working principle of these methods
is shown in Fig. 1, where the presence of the feedback loop
is highlighted. In fact, the output of the Cell model (estimated
cell voltage) is compared to the Real cell voltage measured at
its terminals (measured cell voltage) and the resulting error is
amplified (by the gain block) and fed to the Cell model, where
is used to improve the estimation of the model state variables.
SoC is then estimated as one of the state variables. It is
worth noting that the effectiveness of these techniques strongly
depends on how accurately the model describes the underlying
cell behaviour. However, the complexity of the usable model
is limited by the computational resources typically available
on a BMS processor.

An electrical equivalent model seems to be the most suit-
able. It is relatively simple to compute and accurate enough to
predict the cell behaviour at the terminal level [11]. Electro-
chemical models are capable of accurately reproducing the cell
behaviour, at the expense of a higher computational complex-
ity. If compared to a purely mathematical model, an electrical
one preserves some significant electrical characteristics of the
cell, such as its capacity and internal series resistance, which
provides an indication of SoH [4], [12]. This is important
in EVs and PHEVs, where the battery is a key safety-critical
component [13].

The parameters of the cell equivalent electrical model need
to be tuned to the specific cell being modelled and to its actual
operating conditions (cell SoC and temperature) to achieve the
desired accuracy. This problem can effectively be tackled by
the online identification of the model parameters.

The aim of this work is to compare two popular approaches
for parameter identification. The first is the Bayesian estima-
tion with the Extended KF (EKF) [8], [9], i.e., an extension of
KF to the non linear case, where the parameters are considered
as additional state variables, and estimated along with SoC
in a dual way (Dual EKF). The second approach is the
Moving Window Least Squares (MWLS) method applied to
the AutoRegressive with eXogenous input (ARX) structure of
the equivalent electrical model [14], [15].

II. ELECTRICAL EQUIVALENT MODEL

The general representation of a cell equivalent electrical
model is shown in Fig. 2 and consists of two parts. The left-

Fig. 2. Electrical equivalent model.

hand side models the charge Q stored in a linear capacitor,
which represents the battery capability to accumulate energy.
The numerical value of its capacitance Cn is equal to the
nominal cell capacity Qn (expressed in Coulomb) divided by
1 V. SoC can thus be obtained by Q/Qn and its numerical
value is the voltage on the capacitor. On the right-hand side,
the cell terminal voltage vT is obtained by the sum of three
terms: VOC, a purely resistive voltage R0iL (where iL is the
cell terminal current, active sign convention), and the sum of
one or more relaxation voltages vRCi (with time constants
τi = RiCi). The time-domain state space model of the cell
model, for a generic number NRC of RC groups, is the
following: 

˙SoC = − iL
Qn

v̇RCi = − vRCi

RiCi
+
iL
Ci

vT = VOC −R0iL −
NRC∑
i=1

vRCi

(1)

Two RC groups (full model) are sufficient to accurately
simulate the transient effects in Li-Po cells [11], [16], [17]
and good results can also be achieved by only one RC group
(reduced model), especially for fast transients. The reduced
model is used in this paper as the Cell model of Fig. 1
and its parameters are estimated by both MWLS and EKF
identification techniques. The estimates achieved are compared
with the Real cell parameters.

The Real cell parameters correspond to the full model (i.e.,
two RC group model including parameter dependence on
state and operating conditions) and have been extracted from
experimental offline tests [18] carried out on a 1.5 A h Li-Po
cell (SLPB723870H manufactured by Kokam), as described in
[16]. These parameters have been measured at different cell
temperatures (i.e. 10 ◦C, 25 ◦C and 35 ◦C) and current levels
(i.e., C/2 and C during charge and C/2, C and 5C during
discharge, where C indicates the current that discharges the
cell in 1 h). They are available in a three-dimensional look-
up table (LUT) indexed by the cell SoC, temperature, and
current. The VOC − SoC relationship is also expressed by a
LUT with different values for each temperature.

If we consider that a higher capacity cell can be thought of
as the parallel of smaller ones, the model parameters of a cell
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Fig. 3. Parameters of the full model related to a Li-Po cell with a 66.2A h,
as a function of SoC. The four diagrams show: open circuit voltage VOC for
various temperatures (top-left), series resistance R0 during charge for various
temperatures (top-right), series resistance R0 for charge and discharge at 1C
(bottom-left), time constants τ (bottom-right).

with capacity C ′ can be obtained from those extracted from
a cell with capacity C0 = 1.5 A h by scaling the capacitances
of the factor equal to C ′/C0 and the resistances by C0/C

′.
Consequently, each time constant τi is invariant with the cell
capacity.

As an example, Fig. 3 shows the full model parameters
of a 66.2 A h Li-Po cell, a size suitable for the battery of
an electric vehicle, calculated by scaling the 1.5 A h data.
Fig. 3 clearly shows that the VOC − SoC relationship is
almost temperature independent and, thus, this dependance
is neglected in the considered temperature range. On the
contrary, the other graphs show that the cell model parameters
are strongly dependent on the cell status and the operating
conditions. This is evident in the plots showing R0 as function
of SoC for different values of temperature and current.

Expressing this dependance as a multi-dimensional LUT, as
mentioned above, is only feasible for offline simulations, as it
requires a time-consuming experimental cell characterisation
and should also take into account the parameter variations
due to manufacturing tolerances and ageing of the cell. As
a consequence, the accurate online identification of the cell
model parameters is of paramount importance for enhancing
the performance of the SoC estimation algorithms used in an
electric vehicle.

III. COMPARISON METHODOLOGY

The model parameter identification is strongly affected by
the input stimuli, so that it is necessary a testbed representative
of the operating condition of the cell, when the battery powers
an electric vehicle.

A. Battery current benchmark
The standard driving cycles used to test passenger cars for

assessing the emission levels of the internal combustion engine

and fuel economy of the vehicle are a good starting point. The
Urban Dynamometer Driving Schedule (UDDS) [19], defined
by the U.S. Environmental Protection Agency, is one of them.
The New European Driving Cycle is used in Europe and Japan
to test passenger cars and light duty trucks. The UDDS cycle
is the speed profile shown in Fig. 4, which is usually repeated
a given number of times to perform a test.

Given the speed profile of the electric car, we can derive
the corresponding current of the battery that powers it. This
requires the development of a simulation model of the elec-
tric car. The model receives the speed profile as input and
generates the electric power at the battery as output. Since
our objective is to test different techniques for the online
identification of the battery parameters, we used a very simple
model to calculate the battery power from the vehicle speed
v over time. As shown in (2):

Pm = Fv =

(
Mv̇ +

1

2
ρairSCxv

2 + αRMg

)
v (2)

the mechanical power at the wheels Pm is evaluated from
the sum of three contributions to the total force F : one term
due to the vehicle acceleration and two friction terms due to
air resistance (aerodynamics drag) and to rolling resistance
(mainly related to tire deformation). Now, we have to turn
the mechanical power into the electric power Pe generated
by the battery. This is achieved by considering two energy
efficiencies: ηwheel, from the battery to wheels, and ηreg in
the opposite direction (i.e., during regenerative braking when
Pm < 0) .

Pe =

(
1

ηwheel

1 + sgn(Pm)

2
+ ηreg

1− sgn(Pm)

2

)
Pm (3)

The meaning and value of the symbols used in (2) and (3) are
defined in Table I. The parameter values have been extracted
from a commercial electric car, which is used here as reference
electric car.

The last step is to calculate the battery current from Pe.
To do this, we need to consider the battery of our reference
electric car. As shown in the last three rows of Table I, the
battery is built up of 96 series-connected Li-Po cells with a
nominal capacity of 66.2 A h. This results in a battery nominal
voltage of 355.2 V and in a stored energy of 23.5 kW h. Let us
assume the battery voltage constant and equal to the nominal
voltage. The battery current is thus proportional to the electric
power: iL = Pe/(NcellVn). This assumption can be justified
by noting that the battery voltage approximately varies of
10 %, when the SoC is between 20 % and 80 %, which is
the recommended operating range of a battery in an electric
vehicle. Fig. 4 shows the car speed and the battery current
in one UDDS cycle. Note the negative values of the battery
current during the vehicle deceleration, i.e., when the battery
is recharged thanks to regenerative braking.

B. Battery simulation

The UDDS current calculated above is used as a stimulus for
the battery of our reference electric car, in order to identify



TABLE I
PARAMETERS OF THE REFERENCE ELECTRIC CAR

Symbol Description Value
M Kerb weight 1525 kg
S Frontal area 2.27m2

Cx Drag coefficient 0.29
αR Rolling resistance 0.01
ρair Air density 1.2 kg m−3

g Gravity acceleration 9.82m s−2

ηwheel Efficiency from battery to wheel 0.7
ηreg Efficiency from wheel to battery 0.5

Ncell Number of series-connected cells 96
Cn Cell nominal capacity 66.2A h
Vn Cell nominal voltage 3.7V
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Fig. 4. Urban Dynamometer Driving Schedule.

the parameters of the battery model. As we are considering
a virtual electric car, the battery behaviour is simulated by
the full model that is capable of reproducing the Real cell
behaviour in a very faithful way. We recall here that the model
parameters of a scaled size cell were measured in a large
range of operating conditions [17], [20]. The model in (1)
has been implemented in MATLAB Simulink in the case of
NRC = 2. The cell capacity is assumed to be constant and
equal to the nominal value, while the dependence of VOC by
SoC and of R0, R1, C1, R2, C2 by SoC, iL, and temperature
is implemented by means of LUTs.

Fig. 5 shows the simulation outputs when the full model is
exerted by the UDDS current. In fact, initial SoC of the battery
is set to 80 % and the UDDS current is repeated 9 times, so
that the battery is discharged down to 20 % of SoC at the end
of the test. This is a very reasonable result that reproduces the
real battery behaviour in an accurate way. These simulation
outputs are used as inputs of the identification methods.

To further extend the analysis and investigate the accuracy
of the identification process, we also employed other three
Real cell simulations carried out with simplified models that
come from keeping the parameters constant and/or disabling
the second RC group. Thus, we end up with four different
simulations of the Real cell.
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Fig. 5. Battery behaviour in 9 repeated UDDS cycles.

IV. ONLINE PARAMETER IDENTIFICATION

The ARX and EKF methods will be used to identify the
parameters of the reduced model.

A. ARX model least-squares parameter identification

As described in [14], [15], the first step for using the ARX
structure is the linearisation of the reduced model around the
time-variant operating point of the cell. As the cell operating
point slowly varies over time, we can safely assume that the
model parameters remain constant during the identification
window. The VOC−SoC non-linear function is approximated
by a piecewise linear curve VOC = α0+α1SoC, where α0 and
α1 change with the operating point. We can now obtain the
transfer function from the battery current input to the terminal
battery voltage output of the reduced model by the Laplace-
transform of the state-space cell model (1) with NRC = 1.
The input and output variables (Y (s), U(s)) are the Laplace
transforms of the cell voltage vT and current iL, respectively.

Y (s)− α0

U(s)
=
R0s

2 +
(
α1

Qn
+ 1

C1
+ R0

R1C1

)
s+ α1

QnR1C1

(s+ 1
R1C1

)s
(4)

Applying the bilinear transform,
(
s→ 2

T
1−z−1

1+z−1

)
, where T is

the sampling time, to the continuous transfer function (4), we
obtain the discrete transfer function of the system, which is
expressed by:

Y (z−1)− α0

U(z−1)
=
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(5)

According to (5) the time-domain relationship between differ-
ent I/O samples can be written in the following form, which
is equivalent to a second order ARX model.

y(k) =− a1y(k − 1)− a2y(k − 2) + α0(1 + a1 + a2)

+ b0u(k) + b1u(k − 1) + b2u(k − 2)
(6)
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Using the MWLS technique, we can estimate the parameters
[a1, a2, b0, b1, b2]. These are a function of the parameters of
the battery. Then, it is possible to obtain the set of parameters
[R0, R1, C1], as shown in Fig. 6. We note that, from the
equations shown in Fig. 6, we obtain 1 + a1 + a2 = 0,
which means that the value of α0 does not affect neither
the estimation of the voltage output y(k) nor the model
parameters.

B. Bayesian estimation by Kalman filter

In the Bayesian framework, the discrete evolution of the
column vector of parameters p and the corresponding obser-
vations (terminal voltage vT) are described by the following
parameter (7) and measurement (8) equations:

p(k + 1) = p(k) + χ(k), (7)
vT(k) = G(x(k), iL(k), p(k)) + ψ(k). (8)

where k is the discrete time, x is the column vector of system
state variables (including SoC), iL is the terminal current, p
is the column vector of parameters, χ and ψ are the param-
eter and measurement noise, with zero mean and covariance
matrix Σχ and Σψ , respectively. The measurement operator G
may be linear or non-linear (non linear, in the case of (1)).
Equation (7) recasts the problem of parameters estimation in
the Bayesian framework: an identity transition operator acts on
the parameters, while the parameters dynamics is supposed to
be caused by a fictitious Gaussian noise χ. This allows us
to dynamically track the parameters, even if the model is not
sufficiently detailed (e.g., in the case that p is constant).

In the peculiar case of online estimation, where the tracking
of the battery state (in particular: SoC) is also needed, the
model (7)-(8) is further extended to allow the estimation of
the battery state and parameters in a dual way [21]. In this
case, two parallel interacting systems are assumed to be in
force; the first one is given by (7)-(8), and it runs together
with the state model:

x(k + 1) = F(x(k), iL(k), p(k)) + ξ(k), (9)

being F the state operator and ξ the state noise. The measure-
ment equation for the state evolution can be the same used
for parameters (8), even if the output variable is affected, in
principle, by another measurement noise.

Given a sequence of observations for vT, the optimal
Bayesian estimator, under mild Markovianity hypotheses, can
be recursively calculated into two successive steps [21]. For
linear Gaussian statistical models, running two interleaved KFs
yields the optimal Bayesian solution [22]. This method turns
out to be very effective also in its extended form (EKF), where
the presence of non linearities are taken into account [8], [9].
This corresponds to applying a KF to the equations, providing
they have been linearised around the actual state and parameter
estimates. Implementation details for the dual EKF applied to
battery state and parameter estimation can be found in [9] and
references therein.

V. RESULTS

The simulation framework described in Section III has been
employed to compare the performance of the two param-
eter identification methods described above. With reference
to Fig. 1, we recall that the Real cell behaviour has been
simulated four different times, under the action of the same
UDDS current profile. The Cell model to be identified is
always the reduced model.

Fig. 7 shows the results of the identification of the Cell
model parameters, i.e., R0, R1, and C1 (τ1 is reported instead
of C1). Each of the four figure rows refers to a specific
Real cell simulation, as detailed in the relevant caption. The
VOC − SoC relationship at 25 ◦C is used in all cases. When
only one RC group is active in the Real cell (cases a-
b), the Cell model coincides with the Real cell, apart from
the dependence over time of the parameters. A very good
estimation is provided by both methods. It should be observed
that EKF overestimates R0 while underestimates R1 and, after
an initial transient, captures τ1. The MWLS seems to be more
noisy, particularly when the VOC strongly varies with SoC
and thus also the model parameters do, but it is quicker to
follow the parameter variations.

It is worth noting that we obtained a very good identification
of the parameters also when the Real cell is simulated with
the full model not simplified (two RC groups along with the
dependence of the parameters on the cell state and operating
conditions). A situation that represents the real behaviour of a
battery very well. In particular, a very good estimation of the
series resistance R0 is achieved with both methods. This result
is very valuable, as R0 is the parameter that mostly affect the
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Fig. 7. Comparison of the parameter identification results related to four different Real cell simulations.

accuracy of the model and also provides an indication of the
SoH .

VI. CONCLUSIONS

The Extended Kalman Filter and the Moving Window Least
Squares method have been applied to the identification of
the battery parameters. The battery has been modelled by
an equivalent electrical model, which has a low complexity

and a few parameters to be identified, but provides a good
accuracy in simulating the battery behaviour. A battery current
benchmark relevant for an electric vehicle has been obtained
starting from a standard driving cycle (Urban Dynamometer
Driving Schedule) and used to compare the performance of the
parameter identification methods. Both methods have shown
good results in identifying the relevant battery model param-
eters. In particular, MWLS is capable of promptly following



the parameter variations, but is subject to errors when the non-
linearities of the battery model are significant. On the contrary,
EKF can be tuned to be more stable, but this results in a slower
tracking of the parameter variations. Future work will focus on
investigating the performance of parameter identification and
state-of-charge estimation in the presence of noise on battery
current and voltage measurements.
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