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Abstract

Let K be a number field and E1, . . . , En be elliptic curves over K, pairwise non-isogenous
over K and without complex multiplication over K. We study the image G∞ of the adelic
representation of Gal

(
K/K

)
naturally attached to E1 × · · · × En. The main result is an

explicit bound for the index of G∞ in
{

(x1, . . . , xn) ∈ GL2(Ẑ)n
∣∣ detxi = detxj ∀i, j

}
.

1 Introduction

In this work we prove an explicit, adelic surjectivity result for the Galois representation attached
to a product of pairwise non-isogenous, non-CM elliptic curves, extending the result of [2]. Our
main theorem is as follows:

Theorem 1.1. Let E1, . . . , En, n ≥ 2, be elliptic curves defined over a number field K, pairwise
not isogenous over K. Suppose that EndK(Ei) = Z for i = 1, . . . , n, and denote by G∞ the image
of Gal

(
K/K

)
inside

n∏
i=1

∏
`

Aut(T`(Ei)) ∼= GL2(Ẑ)n.

Set γ := 1013, δ := exp exp exp(12), and let H = max {1, log[K : Q],maxi h(Ei)}, where h(Ei)
denotes the stable Faltings height of Ei. The group G∞ has index at most

δn(n−1) ·
(
[K : Q] ·H2

)γn(n−1)
in

∆ :=
{

(x1, . . . , xn) ∈ GL2(Ẑ)n
∣∣ detxi = detxj ∀i, j

}
.

Remark 1.2. Note that the compatibility of the Weil pairing with the action of Galois forces
G∞ to be contained in ∆. Also note that we shall prove slightly more precise statements (see
lemma 7.3 and theorem 7.5 below), which immediately imply theorem 1.1 by proposition 2.7 and
elementary estimates.

It should be noted that it has been known since the work of Serre and Masser-Wüstholz (cf.
[5], Main Theorem and Proposition 1) that the isogeny theorem (section 2 below) gives an effective
bound `0 on the largest prime ` for which the image of the representation

Gal
(
K/K

)
→ Aut(T`(E1 × · · · × En))

does not contain SL2(Z`)n. As it was in [2], the main difficulty in proving theorem 1.1 lies in
controlling the image of the representation modulo powers of primes smaller than `0.

∗davide.lombardo@math.u-psud.fr
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The proof of theorem 1.1 is somewhat technical, so before fiddling with the details we describe
the main ideas behind it. The general framework is the same as that of the proof of the non-
effective open image theorem for such a product (cf. for example [9, Theorem 3.5]), with the
added difficulties that naturally arise when trying to actually compute the index. In particular,
when writing ‘of finite index’ or ‘open’ in the sketch that follows we tacitly imply that the index
in question is explicitly computable in terms of the data. Whenever the need arises to actually
quantify indices, it will be useful to work with the following ‘standard’ open subgroups:

Definition 1.3. For a prime ` and a positive integer s we let B`(s) be the open subgroup of
SL2(Z`) given by {

x ∈ SL2(Z`)
∣∣ x ≡ Id (mod `s)

}
.

We also set B`(0) = SL2(Z`), and for non-negative integers k1, . . . , kn we denote by B`(k1, . . . , kn)
the open subgroup

∏n
j=1 B`(ki) of SL2(Z`)n.

Let us now describe the proof method proper. It is not hard to see that it is enough to study the
intersection G∞ ∩SL2(Z`)n, because the determinant of elements in G∞ can be easily understood
in terms of the cyclotomic character. A short argument then shows that it suffices to consider
products E1×E2 involving only two factors: this is done by proving that a subgroup of SL2(Z`)n
whose projection on any pair of factors is of finite index is itself of finite (and explicitly bounded)
index. This step will be carried out in section 3 below, and should be thought of as the ‘integral’
version of [10, Lemma on p. 790].

With this result at hand we are thus reduced to dealing with subgroups G of SL2(Z`)×SL2(Z`)
whose projections on either factor are of finite index in SL2(Z`). Note that the fact that this index
is finite is the open image theorem for a single elliptic curve, which was proved by Serre in [12] and
made explicit in [2]. We wish to show that G is of (explicitly bounded) finite index in SL2(Z`)2,
that is, we want to produce a t such that G contains B`(t, t): this comes down to proving that

the two kernels Ki = ker
(
G

πi−→ SL2(Z`)
)

, when identified with subgroups of SL2(Z`), are of

(explicitly bounded) finite index. By symmetry, we just need to deal with K1.
In section 4 we linearize the problem by reducing it to the study of certain Z`-Lie algebras:

we give the statements of two technical results whose proof, being rather lengthy, is deferred to
the companion paper [3]; while the results themselves are more complicated, the methods used to
show them do not differ much from those of [2].

A simple lemma, again given in section 4, further reduces the problem of finding an integer
t such that B`(t) is contained in K1 to the (easier) question of finding a t such that K1(`t), the
reduction modulo `t of K1, is nontrivial. We exploit here the fact that π2(G) (the projection of
G on the second factor SL2(Z`)) acts by conjugation on K1, the latter being a normal subgroup
of G: we prove that a group whose reduction modulo `t is nontrivial and that is stable under
conjugation by a finite-index subgroup of SL2(Z`) must itself be of finite index in SL2(Z`). This
reduction step is made simpler by the fact that we can work with Lie algebras instead of treating
the corresponding groups directly (which might be quite complicated).

Next we ask what happens if we suppose that the smallest integer t such thatK1(`t) is nontrivial
is in fact very large. The conclusion is that the Lie algebra of G looks ‘very much like’ the graph of
a Lie algebra morphism sl2(Z`)→ sl2(Z`), namely it induces an actual Lie algebra morphism when
regarded modulo `N for a very large N (depending on t). Following for example the approach
of Ribet (cf. the theorems on p. 795 of [10]), we would like to know that all such morphisms are
‘inner’, that is, they are given by conjugation by a certain matrix: it turns out that this is also
true in our context, even though the result is a little less straightforward to state (cf. section 5).

In section 6 we then deal with the case of two elliptic curves, applying the aforementioned
results to deduce an open image theorem for each prime `. It is then an easy matter to deduce,
as we do in section 7, the desired adelic result for any finite product.

Acknowledgments. The present work forms part of the author’s PhD thesis, and I thank my
advisor N. Ratazzi for his constant support during its writing. I would also like to thank the
anonymous referee for his helpful comments.
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2 Preliminaries on isogeny bounds

The main tool that makes all the effective estimates possible is the isogeny theorem of Masser and
Wüstholz [6] [7], which we employ in the explicit version proved in [1]. We need some notation:
we let α(g) = 210g3 and define, for any abelian variety A/K of dimension g,

b(A/K) = b([K : Q], g, h(A)) =
(

(14g)64g
2

[K : Q] max (h(A), log[K : Q], 1)
2
)α(g)

.

Theorem 2.1. ([1, Théorème 1.4]) Let K be a number field and A,A∗ be two abelian K-varieties
of dimension g. If A,A∗ are isogenous over K, then there exists a K-isogeny A∗ → A whose
degree is bounded by b([K : Q],dim(A), h(A)).

Remark 2.2. As the notation suggests, the three arguments of b will always be the degree of a
number field K, the dimension g of an abelian variety A/K and its stable Faltings height h(A).

We shall need a slight refinement of this bound. Following Masser [4], we introduce the following
definition:

Definition 2.3. Let A/K be an abelian variety. We say that A is a TM-product (“trivial multi-
plication”) over K if A is isomorphic (over K) to Ae11 ×· · ·×Aenn , where A1, . . . , An are K-simple
abelian varieties, mutually non-isogenous (over K) and with trivial endomorphism ring (over K).

Adapting arguments given by Masser in [4], it is easy to prove

Theorem 2.4. ([2, Theorem 2.4]) Suppose that A/K is a TM-product over K. Let b ∈ R be
a constant with the following property: for every K-abelian variety A∗ isogenous to A over K
there exists an isogeny ψ : A∗ → A with degψ ≤ b. Then there exists an integer b0 ≤ b with the
following property: for every K-abelian variety A∗ isogenous to A over K there exists an isogeny
ψ0 : A∗ → A with degψ0

∣∣ b0.

Definition 2.5. We will denote by b0(A/K) the minimal b0 with the property of the above theorem;
in particular we have b0(A/K) ≤ b(A/K).

Suppose now that, in addition to A/K being a TM-product over K, its simple factors Ai
are absolutely simple and pairwise non-isogenous over K. Then for any field extension K ′ of K
the hypotheses of the previous theorem hold for AK′ , so it makes sense to consider the quantity
b0(A/K ′) as K ′ ranges through all the finite extensions of K of degree bounded by d. Since
b0(A/K ′) ≤ b(d[K : Q], h(A),dim(A)) stays bounded, the number lcm[K′:K]≤d b0(A/K ′) is finite,
and we give it a name:

Definition 2.6. Let A/K be an abelian variety such that A is a TM-product over K, with simple
factors that are absolutely simple and pairwise non-isogenous over K. We set

b0(A/K; d) = lcm[K′:K]≤d b0(A/K ′).

A slight modification of the arguments of [4, Theorem D], combined with theorem 2.1, gives

Proposition 2.7. ([2, Proposition 2.6]) Let A/K be a g-dimensional abelian variety that is iso-
morphic over K to a product Ae11 × · · · × Aenn , where A1, . . . , An are simple over K, mutually
non-isogenous over K, and have trivial endomorphism ring over K. Then we have

b0(A/K; d) ≤ b(A/K; d) := 4exp(1)·(d(1+log d)2)α(g)

b([K : Q],dim(A), h(A))1+α(g) log(d(1+log d)2).
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3 An integral Goursat-Ribet lemma for SL2(Z`)
As anticipated, a (necessary and) sufficient condition for a closed subgroup of SL2(Z`)n to be open
is that all its projections on pairs of factors SL2(Z`)2 are themselves open. This is precisely the
content of lemma 3.2 below. Before stating it, we remark that – throughout the whole paper – the
prime 2 plays a rather special role, and special care is needed to treat it. We then find it useful
to introduce the following convention:

Notation 3.1. In order to give uniform statements that hold for every prime we put v = 0 or 1
according to whether the prime ` we are working with is odd or equals 2, that is we set

v = v`(2) =

{
0, if ` is odd

1, otherwise.

Lemma 3.2. ([3, Lemma 2.9]) Let n be a positive integer, G a closed subgroup of
∏n
i=1 SL2(Z`),

and πi the projection from G on the i-th factor. Suppose that, for every i 6= j, the group
(πi × πj) (G) contains B`(sij , sij) for a certain non-negative integer sij (with sij ≥ 2 if ` = 2

and sij ≥ 1 if ` = 3): then G contains
∏n
i=1 B`

(∑
j 6=i sij + (n− 2)v

)
.

Corollary 3.3. Let G be a closed subgroup of
∏n
i=1 SL2(Ẑ) with n ≥ 2. Suppose that for every

pair of indices i 6= j there exists a subgroup S(i,j) of SL2(Ẑ)2 with the following properties:

• the projection of G on the direct factor SL2(Ẑ)×SL2(Ẑ) corresponding to the pair of indices
(i, j) contains S(i,j);

• S(i,j) decomposes as a direct product
∏
` prime S

(i,j)
` ⊆

∏
` SL2(Z`)2;

• for every prime ` the group S
(i,j)
` is of the form B`(f (i,j)` , f

(i,j)
` ), where f

(i,j)
` is a non-negative

integer, with f
(i,j)
2 ≥ 2 if ` = 2 and f

(i,j)
3 ≥ 1 if ` = 3.

• for almost every `, the group S
(i,j)
` is all of SL2(Z`)× SL2(Z`) (so f

(i,j)
` = 0);

Denote by c(i,j) the index of S(i,j) in SL2(Ẑ) × SL2(Ẑ) and c = max
i 6=j

c(i,j). The index of G in∏n
i=1 SL2(Ẑ) is strictly less than 23n(n−2)ζ(2)n(n−1)cn(n−1)/2.

Proof. Let ` > 3 be a prime. If S
(i,j)
` = SL2(Z`)2 for all (i, j), then the previous lemma (with

sij = 0 for every pair of indices (i, j)) shows that
∏n
k=1 SL2(Z`) is contained in G. Suppose on the

other hand that either ` ≤ 3 or for at least one pair (i, j) we have S
(i,j)
` 6= SL2(Z`)×SL2(Z`). The

previous lemma tells us that the projection of G on the direct factor
∏n
i=1 SL2(Z`) of

∏n
i=1 SL2(Ẑ)

contains

B`

∑
j 6=1

f
(1,j)
` + (n− 2)v, · · · ,

∑
j 6=n

f
(n,j)
` + (n− 2)v

 =
∏
i

B`

∑
j 6=i

f
(i,j)
` + (n− 2)v

 .

Notice that the index of B`(s) in SL2(Z`), for s ≥ 1, is (`2 − 1)`1+3(s−1) < `3s, so the index of the
above product in

∏n
i=1 SL2(Z`) is bounded by

n∏
i=1

(
`3

∑
j 6=i f

(i,j)
` +3(n−2)v

)
= 23n(n−2)v

n∏
i=1

∏
j 6=i

`3f
(i,j)
` .

Let P = {2, 3} ∪
{
`
∣∣ ∃(i, j) : S

(i,j)
` 6= SL2(Z`)× SL2(Z`)

}
. By what we have just seen,[

n∏
k=1

SL2(Ẑ) : G

]
≤ 23n(n−2)

∏
`∈P

n∏
i=1

∏
j 6=i

`3f
(i,j)
` .
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On the other hand, note that the index of S
(i,j)
` in SL2(Z`)×SL2(Z`) is at least `6f

(i,j)
` ·

(
`2−1
`2

)2
(with equality if f

(i,j)
` ≥ 1), so the above product is bounded by

23n(n−2)
∏
`∈P

∏
i<j

{[
SL2(Z`)2 : S

(i,j)
`

]
·
(

`2

`2 − 1

)2
}

< 23n(n−2)
∏
`

(
`2

`2 − 1

)n(n−1)
·
∏
i<j

∏
`∈P

[
SL2(Z`)2 : S

(i,j)
`

]
≤ 23n(n−2)ζ(2)n(n−1)

∏
i<j

c(i,j)

≤ 23n(n−2)ζ(2)n(n−1)cn(n−1)/2.

4 Lie subalgebras of sl2(Z`)n and some Pink-type results

Let us briefly recall the construction (essentially due to Pink) of the Z`-Lie algebra associated
with a subgroup of GL2(Z`)n:

Definition 4.1. (cf. [8]) Let ` be a prime. Define maps Θn as follows:

Θn : GL2(Z`)n →
⊕n

i=1 sl2(Z`)
(g1, . . . , gn) 7→

(
g1 − 1

2 tr(g1), . . . , gn − 1
2 tr(gn)

)
.

If G is a closed subgroup of GL2(Z`)n (resp. of B2(1, . . . , 1) in case ` = 2), define L(G) ⊆ sl2(Z`)n
to be the Z`-span of Θn(G). We call L(G) the Lie algebra of G.

The importance of this construction lies in the fact that it allows us to linearize the problem
of showing that certain subgroups of GL2(Z`)n contain an explicit open neighbourhood of the
identity: indeed, we have the following two results, for whose proof we refer the reader to [3].

Theorem 4.2. ([3, Theorem 3.1]) Let ` > 2 be a prime number and G be a closed subgroup of
GL2(Z`) × GL2(Z`). Let G1, G2 be the two projections of G on the two factors GL2(Z`), and let
m1,m2 be positive integers such that Gi contains B`(mi) for i = 1, 2. Suppose furthermore that
for every (g1, g2) ∈ G we have det(g1) = det(g2). At least one of the following holds:

• G contains B`(20 max{m1,m2}, 20 max{m1,m2})

• there exists a subgroup H of G, of index dividing 29 · 32, with the following properties:

1. if L(H) contains `ksl2(Z`)⊕ `ksl2(Z`) for a certain integer k, then T contains B`(p, p),
where

p = 2k + max {2k, 8m1, 8m2} .

2. let (h1, h2) be any element of H and let [h1], [h2] be the images of h1, h2 in GL2(F`). If
both [h1] and [h2] are multiples of the identity, then they are equal;

3. for any (h1, h2) in H, the determinant of h1 is a square in Z×` (hence the same is true
for the determinant of h2).

Remark 4.3. The last property of the group H is not stated explicitly in [3], but it is clear from
the construction (see [3, Proof of theorem 3.1 assuming theorem 3.2]).

Theorem 4.4. ([3, Theorem 4.1]) Let G be a closed subgroup of GL2(Z2) × GL2(Z2) whose
projection modulo 4 is trivial. Denote by G1, G2 the two projections of G on the factors GL2(Z2),
and let n1 ≥ 4, n2 ≥ 4 be integers such that Gi contains B2(ni). Suppose furthermore that for
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every (g1, g2) ∈ G we have det(g1) = det(g2) ≡ 1 (mod 8). If L(G) contains 2ksl2(Z2)⊕2ksl2(Z2)
for a certain k ≥ 2, then G contains

B2(12(k + 11n2 + 5n1 + 12) + 1, 12(k + 11n1 + 5n2 + 12) + 1).

Finally, we shall need the following simple lemma regarding conjugation-stable subalgebras of
sl2(Z`):

Lemma 4.5. ([3, Lemma 2.4]) Let t be a non-negative integer. Let W ⊆ sl2(Z`) be a Lie
subalgebra that does not reduce to zero modulo `t+1. Suppose that W is stable under conjugation
by B`(s) for some non-negative integer s, where s ≥ 2 if ` = 2 and s ≥ 1 if ` = 3 or 5. Then W
contains the open set `t+4s+4vsl2(Z`).

5 The automorphisms of sl2(Z`) are inner

In this section we obtain a description of the automorphisms of sl2(Z`) which shows that – in a
suitable sense – they are all inner. In order to establish the required result we first need a few
simple preliminaries, starting with the following well-known version of Hensel’s lemma:

Lemma 5.1. Let p(x) ∈ Z`[x] be a monic polynomial and let α be an element of Z`. Suppose that
v`(p(α)) > 2v`(p

′(α)): then p(x) admits a root ᾱ ∈ Z` such that v`(α− ᾱ) ≥ v`(p(α))− v`(p′(α)).

Here is the main tool we will use to produce approximate roots of polynomials:

Lemma 5.2. Let ` be a prime number, n ≥ 1,m ≥ 1, g ∈ End (Zm` ) and pg(t) the characteristic
polynomial of g. Let λ ∈ Z` and w ∈ Zm` be such that gw ≡ λw (mod `n). If w is nonzero modulo
`β+1, then pg(λ) ≡ 0 (mod `n−β).

Proof. Denote by (g − λ Id)∗ the adjugate matrix of (g − λ Id), that is the operator such that
(g− λ Id)∗(g− λ Id) = det(g− λ Id) · Id. Multiplying the congruence (g− λ Id)w ≡ 0 (mod `n) on
the left by (g−λ Id)∗ we obtain det(g−λ Id)·Idw ≡ 0 (mod `n), and by considering the coordinate
of w of smallest valuation we deduce pg(λ) = det(g − λ Id) ≡ 0 (mod `n−β) as claimed.

The properties of the adjoint representation of sl2 (or an immediate computation) also show:

Lemma 5.3. Let g ∈ sl2(Z`). The linear operator adg := [g, ·] from sl2(Z`) to itself has eigenvalues
0,±2µ, where ±µ are the eigenvalues of g, so its characteristic polynomial padg (t) is equal to
t(t2 − 4µ2).

Combining the previous results we obtain the following lemma, which will be very useful for
our purposes:

Lemma 5.4. Let g be an element of sl2(Z`), w be a vector in Z2
` , and β be the minimal valuation

of the coefficients of w. Suppose gw ≡ λw (mod `n). Then either g has an eigenvalue ν such that
v`(ν − λ) ≥ v`(λ) + 3 or else β is at least n− 2(2 + v`(λ)).

Proof. Let ±µ be the eigenvalues of g. From lemma 5.2 we deduce that v`(pg(λ)) ≥ n − β;
notice further that pg(t) = t2 − µ2, so p′g(t) = 2t. Suppose that β < n − 2(2 + v`(λ)): then
n− β > 2(2 + v`(λ)) > 2v`(p

′
g(λ)), and by Hensel’s lemma pg(t) has a root ν such that

v`(ν − λ) ≥ v`(pg(λ))− v`(p′g(λ)) ≥ n− β − v − v`(λ) ≥ v`(λ) + 3.

We now come to the central result of this section, which as anticipated is essentially a descrip-
tion of the Lie algebra automorphisms of (the finite quotients of) sl2(Z`).
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Proposition 5.5. Let L1 be a subalgebra of sl2(Z`) and n ≥ 1, s ≥ 0 be integers. Suppose that L1

contains `ssl2(Z`) and that ϕ : L1 → sl2(Z`) is a linear map such that

[ϕ(a), ϕ(b)] ≡ ϕ([a, b]) (mod `n) ∀a, b ∈ `ssl2(Z`).

Define

x = ϕ

(
`s ·
(

0 1
0 0

))
, y = ϕ

(
`s ·
(

0 0
1 0

))
, h = ϕ

(
`s ·
(

1 0
0 −1

))
and let α be the minimal integer such that x, y are both nonzero modulo `α+1. Suppose that
n ≥ α + 10s + 5v + 6. There exists a matrix M ∈ M2 (Z`), at least one of whose coefficients is

nonzero modulo `, such that for every w ∈ (Z`)2 and every g1 ∈ L1 we have

M(g1 · w) ≡ ϕ(g1) ·M(w) (mod `n−α−6s−4v−6).

Furthermore, det(M) does not vanish modulo `4s+v, and for every g1 in L1 we have

tr
(
ϕ(g1)2

)
≡ tr

(
g21
)

(mod `n−α−10s−5v−6)

and

ϕ(g1) ≡Mg1M
−1 (mod `n−α−10s−5v−6), M−1ϕ(g1)M ≡ g1 (mod `n−α−10s−5v−6)

Remark 5.6. A moment’s thought (considering the limiting cases when s or α become very
large) will reveal that it is indeed necessary for all three parameters n, s, and α to appear in
the conclusion of the proposition. The question of whether the dependence on these parameters
is optimal, on the other hand, is far more complicated, and there is almost certainly room for
improvement.

Here again let us say a few words about the method of proof before fiddling with the technical
details. To simplify matters, consider the algebra L = sl2(Q`). Proving that every automorphism
of L is inner basically boils down to showing that the only 2-dimensional representation of sl2(Q`)
is the standard one, a result which is usually proved through the ‘highest weight vector’ machinery:
one shows that it is possible to choose an eigenvector v for h that is killed by x, and then describes
its full orbit under the action of x, y, h. More precisely, one shows that yv is an eigenvector for h,
that xyv is proportional to v, and that y2v = 0.

The proof that follows mimics this very argument by producing a vector v+, by definition an
eigenvector for h, which plays the role of the highest weight vector, and subsequently finding its
orbit under the action of h, x, y. The main difficulty lies in the initial step, where we need to prove
that the eigenvalues of h lie in Z` and are of a certain form. Once this is done, most of the proof
looks very much like the one for sl2(Q`), with the additional complication that we have to keep
track of valuations along the way.

Notation. For the remainder of this section, in order to make notation lighter, when a is a
positive integer we write x = y +O(a) for x ≡ y (mod `a).

Proof. Denote by adh the linear endomorphism of sl2(Z`) ∼= Z3
` given by taking the commutator

with h. It is clear that

adh(x) = [h, x] ≡ ϕ
[
`s ·
(

1 0
0 −1

)
, `s ·

(
0 1
0 0

)]
≡ ϕ

(
2`s · `s ·

(
0 1
0 0

))
≡ 2`sx (mod `n),

so x is an (approximate) eigenvector of adh associated with the (approximate) eigenvalue 2`s.
Lemma 5.2 yields

padh(2`s) ≡ 0 (mod `n−α).
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If we let ±µ denote the eigenvalues of h, then p′adh(t) = (t2− 4µ2) + 2t2, and evaluating at 2`s

we find

p′adh(2`s) = 4(`2s − µ2) + 8`2s =
padh(2`s)

2`s
+ 8`2s.

To estimate the `-adic valuation of this last expression observe that

v`

(
padh(2`s)

2`s

)
= v` (padh(2`s))− v`(2)− s ≥ n− α− v − s > 3v + 2s = v`(8`

2s),

so v`
(
p′adh(2`s)

)
= v`

(
8`2s

)
= 3v + 2s. By Hensel’s lemma (lemma 5.1), padh(t) admits a root

λ ∈ Z` such that

v`(λ− 2`s) ≥ v`(padh(2`s))− v`(p′adh(2`s)) ≥ n− α− 2s− 3v > 2s+ 1.

Note that λ cannot be zero, because v`(0− 2`s) = v+ s is strictly smaller than v`(λ− 2`s). It
follows that λ is one of the other two roots of padh(t), namely ±2µ, and hence

±µ = ±1

2
(2`s +O(n− α− 2s− 3v)) = ±`s(1 +O(n− α− 3s− 4v)).

To sum up, the two eigenvalues of h belong to Z` and are of the form ±`s +O(n− α− 2s− 4v),
and in particular of the form ±`s+O(s+4). Let µ+ be the one of the form `s+O(n−α−2s−4v)
and v+ ∈ Z2

` be a corresponding eigenvector, normalized in such a way that at least one of the
two coordinates is an `-adic unit. Set furthermore v− = yv+.

As anticipated, our next objective is to describe the action of x, y, h on v±. We expect v+ to
be annihilated by x and v− to be an eigenvector for h that is annihilated by y: of course this is
not going to be exactly true at all orders, but only up to a certain error term that depends on n,
α and s. Let β be the minimal valuation of the coordinates of xv+: this is a number we want to
show to be large.

The idea is that if xv+ were not very close to zero, then it would be an eigenvector of h
associated with an eigenvalue that h does not possess. Note that

h(xv+) ≡ [h, x]v+ + xhv+ ≡ (2`s + µ+)xv+ (mod `n),

so by lemma 5.4 either h has an eigenvalue ξ such that v`(ξ−(µ++2`s)) ≥ 3+v`(µ++2`s) ≥ s+3
or β ≥ n − 2(2 + v`(µ+ + 2`s)). Note that we cannot be in the first case: indeed h would
have an eigenvalue of the form 3`s + O(s + 3), but we have already seen that the eigenvalues
of h are ±`s + O(s + 4), contradiction. Hence we are in the second situation, and furthermore
v`(µ+ + 2`s) ≤ s+ 1: hence β ≥ n− 2(2 + v`(µ+ + 2`s)) ≥ n− 2s− 6, and by definition of β this
means xv+ ≡ 0 (mod `n−2(s+3)). Next we compute

hv− = hyv+

= [h, y]v+ + yhv+

= −2`s · yv+ + y(µ+v+) +O(n)

= (µ+ − 2`s)v− +O(n)

= (−`s +O(n− α− 2s− 4v))v− +O(n)

= −`sv− +O(n− α− 2s− 4v),

(1)

xv− = xyv+

= [x, y]v+ + yxv+

= `shv+ +O(n− 2(s+ 3))

= `sµ+v+ +O(n− 2(s+ 3))

= `s (`s +O(n− α− 2s− 4v)) v+ +O(n− 2(s+ 3))

= `2sv+ +O(n− α− 2(s+ 3));

(2)
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this settles the question of the action of h and x on v−. We are left with showing that v− is
(approximately) killed by y. Again, we do this by showing that yv− – unless it is very close to 0
– yields an eigenvector of h associated with an eigenvalue that h does not possess:

h · yv− = [h, y]v− + yhv−

= −2`s · yv− + y ((−`s) +O(n− α− 2s− 4v)) v− +O(n)

= −3`syv− +O(n− α− 2s− 4v),

so that yv− is an (approximate) eigenvector of h, associated with the (approximate) eigenvalue
−3`s. Let γ be minimal among the valuations of the coefficients of yv−. Apply lemma 5.4: either
γ ≥ n− α− 2s− 4v − 2(2 + v`(−3`s)) ≥ n− α− 4s− 4v − 6 or h has an eigenvalue ν satisfying
v`(ν+3`s) ≥ v`(−3`s)+3 ≥ s+3. This second possibility contradicts what we have already proven
on the eigenvalues of h, hence γ ≥ n−α−4s−4v−6, that is to say yv− = O(n−α−4s−4v−6).

Putting all together, we have proved that up to an error of order `n−α−4s−4v−6 we have

xv+ = 0, yv+ = v−, hv+ = `sv+, xv− = `2sv+, yv− = 0, hv− = −`sv−.

Write x (resp. y, h) for `s
(

0 1
0 0

)
(resp. `s

(
0 0
1 0

)
, `s
(

1 0
0 −1

)
) and consider the matrix M̃

whose columns are given by `sv+ and v−. The above relations may be stated more compactly as

M̃x = xM̃, M̃y = yM̃, M̃h = hM̃ (3)

modulo `n−α−4s−4v−6. Let δ be minimal among the valuations of the coefficients of M̃ : by
construction, at least one of the coordinates of v+ is an `-adic unit, so δ ≤ s. Set M = `−δM̃ .
Dividing equations (3) by `δ we see that M satisfies analogous equations up to error terms of order
n− α− 5s− 4v − 6, and by construction at least one of the coefficients of M is an `-adic unit.

Let g be any element of L1. The matrix `sg belongs to `ssl2(Z`), so it is a linear combination
of x, y, h with coefficients in Z`. Write `sg = λ1x+ λ2y + λ3h. We have

`sMg = M(`sg)

= M(λ1x+ λ2y + λ3h)

= (λ1x+ λ2y + λ3h)M +O(n− α− 5s− 4v − 6)

= ϕ(`sg)M +O(n− α− 5s− 4v − 6)

= `sϕ(g)M +O(n− α− 5s− 4v − 6),

so that dividing by `s we deduce Mg = ϕ(g)M +O(n− α− 6s− 4v − 6) for every g ∈ L1, which
is the first statement in the proposition.

Let us now turn to the statement concerning the determinant. We can assume that v+ is nor-

malized so that v+ =

(
1
c

)
. We also write v− =

(
b
d

)
. It is clear that v`(detM) ≤ v`(det M̃), and

that det M̃ = `s det

(
1 b
c d

)
, so let us consider D := v`

(
det

(
1 b
c d

))
. Suppose by contradiction

D > 3s+ v; by definition of the determinant we have d = bc+O(D), which implies

v− =

(
b
d

)
=

(
b

bc+O(D)

)
= bv+ +O(D).

Applying h to both sides of this equality and using equation (1) we get

µ−v− +O(n− α− 2s− 4v) = hv− = h(bv+ +O(D)) = bµ+v+ +O(D).

Comparing the first coordinate of these vectors we deduce

bµ− = bµ+ +O(min {D,n− α− 2s− 4v}),
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hence
µ− = µ+ +O(min {D − v`(b), n− α− 2s− 4v − v`(b)}). (4)

Note that since d = bc+O(D) we have v`(d) ≥ min {v`(b), D}. Moreover, we see by equation
(2) that xv− = `2sv+ +O(n−α− 2(s+ 3)), and since the right hand side does not vanish modulo

`2s+1 (since n − α − 2(s + 3) > 2s + 1 and `2sv+ =

(
`2s

`2sc

)
) we must in particular have v− 6≡ 0

(mod `2s+1). Hence min {v`(b), v`(d)} ≤ 2s. Let us show that we also have v`(b) ≤ 2s. Suppose
that v`(b) ≥ 2s+ 1: then

v`(d) ≥ min {v`(b), D} ≥ min {2s+ 1, 3s+ v + 1} ≥ 2s+ 1,

which implies min {v`(b), v`(d)} ≥ 2s+ 1 and contradicts what we just proved.
Therefore v`(b) ≤ 2s, hence equation (4) implies µ− = µ+ + O (D − 2s): notice that if the

minimum in (4) were attained for n−α−2s−4v−v`(b) ≥ 3s+2 we would have `s = −`s+O(3s+2),
a clear contradiction. On the other hand, we know that µ± = ±`s+O(s+4), so the above equation
implies 2`s + O(s+ 4) = O(D − 2s). Hence we have proved v`(2`

s) ≥ D − 2s, i.e. D ≤ 3s+ v, a
contradiction. It follows, as claimed, that v`(detM) ≤ v`(det M̃) = s+D ≤ 4s+ v.

Next we prove the statement concerning traces. Let g be any element of L1. Setting, for the sake
of simplicity, N = n−α−6s−4v−6, we have Mg = ϕ(g)M+O(N), so (multiplying on the left by
the adjugate M∗ of M) we deduce det(M)g = M∗ϕ(g)M+O(N). Didiving through by det(M) we
have g = M−1ϕ(g)M+O(N−(4s+v)); note that this equality would a priori only hold in sl2(Q`),
but since both g and the error term are `-integral we necessarily also have M−1ϕ(g)M ∈ sl2(Z`).
Squaring and taking traces then yields tr

(
g2
)

= tr
[(
M−1ϕ(g)M

)2]
+O(N − (4s+ v)), i.e.

tr
(
g2
)

= tr
(
ϕ(g)2

)
+O(N − (4s+ v))

as claimed. Finally, essentially the same argument shows the last two statements: we can multiply
the congruence Mg1 ≡ ϕ(g1)M (mod `N ) on the right (resp. left) by M∗ and divide by detM to
get

Mg1M
−1 ≡ ϕ(g1) (mod `N−4s−v), g1 ≡M−1ϕ(g1)M (mod `N−4s−v).

6 Products of two curves

6.1 Notation and preliminaries

Let E1, E2 be two elliptic curves over K, let ` be a prime number, and write G` for the image
of Gal

(
K/K

)
inside AutT`(E1) × AutT`(E2) ∼= GL2(Z`)2. To study the Galois representation

attached to E1 × E2 we are going to pass to a suitable extension of K over which the study of
the Lie algebra of G` is sufficient to yield information on G` itself. Before doing this, however, we
need to dispense with some necessary preliminaries. Let G`,1, G`,2 be the two projections of G`
onto the two factors GL2(Z`), and m1, m2 be integers such that B`(mi) is contained in G`,i for
i = 1, 2. We want to apply theorem 4.2, so for the whole section (with the exception of proposition
6.12) we make the following

Assumption 6.1. If ` is odd, G` does not contain B` (20 max{m1,m2}, 20 max{m1,m2}).

Under this assumption, we define K` to be the extension of K associated with the following
closed subgroups of G`: {

ker
(
G2 → GL2(Z/8Z)2

)
, if ` = 2

H`, if ` 6= 2,
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where H` is the group given by an application of theorem 4.2 under our assumption. Note that
the degree [K2 : K] is at most 32216, that is to say the order of{

(x, y) ∈ GL2(Z/8Z)2
∣∣ detx = det y

}
,

whereas [K` : K] is uniformly bounded by 29 · 32 for ` 6= 2. Note that H` is by construction the
image of Gal

(
K`/K`

)
in AutT`(E1)×AutT`(E2) ∼= GL2(Z`)2.

Definition 6.2. We write H`,1, H`,2 for the projections of H` on the two factors GL2(Z`). Fur-
thermore, we let n1, n2 be integers such that H`,1, H`,2 respectively contain B`(n1),B`(n2). Notice
that if ` = 2 we have n1, n2 ≥ 2; on the other hand, for ` = 3 or 5 we explicitly demand that
n1, n2 ≥ 1.

Remark 6.3. Note that if m1,m2 > 0 we can take n1 = m1, n2 = m2 unless ` ≤ 3: indeed for
primes ` ≥ 5 the index of H` in G` is not divisible by `, so for any positive value of n the (pro-`)
group B`(n) is contained in H`,i if and only if it is contained in G`,i. Furthermore, it is clear by
definition that we can always assume without loss of generality m1 ≤ n1,m2 ≤ n2, because the
groups H`,i are subgroups the corresponding groups G`,i.

Definition 6.4. We let L ⊆ sl2(Z`)⊕2 (resp. L1, L2 ⊆ sl2(Z`)) be the Lie algebra of H` (resp. of
H`,1, of H`,2). We choose a basis of L of the form (a1, b1), (a2, b2), (a3, b3), (0, y1), (0, y2), (0, y3).
Such a basis clearly exists.

By our assumption H`,1 ⊇ B`(n1) we have L1 ⊇ `n1sl2(Z`). Notice that (0, y1), (0, y2), (0, y3)
span a Lie-subalgebra: indeed [(0, yi), (0, yj)] = (0, [yi, yj ]) must be a linear combination with
Z`-coefficients of the basis elements; however, since a1, a2, a3 are linearly independent over Z`,
we deduce that this commutator is a linear combination of (0, y1), (0, y2), (0, y3), so that these
three elements do indeed span a Lie algebra, which we call L0. Note that L0 can equivalently be
described as the kernel of the projection from L ⊆ sl2(Z`) ⊕ sl2(Z`) to the first copy of sl2(Z`).
We shall interchangeably consider L0 as a subalgebra of sl2(Z`) ⊕ sl2(Z`) or as a subalgebra of
sl2(Z`), identifying L0 to its projection on the second copy of sl2(Z`).

Lemma 6.5. L0 ⊆ sl2(Z`) is stable under conjugation by B`(n2).

Proof. For the proof, consider L0 as a subalgebra of sl2(Z`) ⊕ sl2(Z`). Take any element l ∈ L0:
it is the limit of a sequence ln =

∑n
i=1 λn,iΘ(gn,i) for certain gn,i ∈ H` and λn,i ∈ Z`. For any

g ∈ B`(n2) there exists h ∈ H`,1 such that (h, g) is in H`. We have

(h, g)−1ln(h, g) =

n∑
i=1

λn,i(h, g)−1Θ(gn,i)(h, g) =

n∑
i=1

λn,i(h, g)−1
(
gn,i −

tr(gn,i)

2
Id

)
(h, g)

=

n∑
i=1

λn,i

(
(h, g)−1gn,i(h, g)− tr((h, g)−1gn,i(h, g))

2
Id

)

=

n∑
i=1

λn,iΘ((h, g)−1gn,i(h, g)) ∈ 〈Θ(H`)〉,

so the sequence
(
(h, g)−1ln(h, g)

)
n≥0 is in L, and by continuity of conjugation converges to the

element (h, g)−1l(h, g) of L. If we write l = (l(1), l(2)) = (0, l(2)) we have

(h, g)−1l(h, g) = (h, g)−1(0, l(2))(h, g) = (0, g−1l(2)g) ∈ L,

and since L0 is exactly the sub-algebra given by the elements whose first coordinate vanishes the
claim is proved.

Corollary 6.6. Fix an integer t, and suppose that at least one among y1, y2, y3 is nonzero modulo
`t+1: then L0 contains `t+4n2+4vsl2(Z`).
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Proof. Apply lemma 4.5 with s = n2 (the hypotheses of this lemma are satisfied thanks to our
assumptions on n1, n2, cf. definition 6.2).

Our task is therefore to bound the values of t for which the yi all vanish modulo `t; doing this
will allow us to prove proposition 6.12 below, which is the crucial ingredient in proving theorem
1.1. The desired bound on t will be established in §6.2; in the present section we content ourselves
with showing two basic lemmas in linear algebra (over Z`) which will be useful later. Notice that –
since we are only looking for an upper bound on t – there is no loss of generality in assuming that
yi ≡ 0 (mod `n2+1) for i = 1, 2, 3, for otherwise we are already done. Thus we can assume that
we are given an integer t ≥ n2 + 1 such that yi ≡ 0 (mod `t) for i = 1, 2, 3: we shall endeavour to
show an upper bound on the value of t. As a first modest step in this direction we have:

Lemma 6.7. Suppose y1, y2, y3 all vanish modulo `t, where t ≥ n2 + 1. The Z`-submodule of
sl2(Z`) generated by b1, b2, b3 contains `n2sl2(Z`).

It is clear that the previous lemma follows immediately from the following more general state-
ment:

Lemma 6.8. Let b1, . . . , bk and y1, . . . , yk be elements of Zk` , and let n be a non-negative integer.
Suppose that y1, . . . , yk are all zero modulo `n+1, and that the submodule of Zk` generated by
b1, . . . , bk, y1, . . . , yk contains `nZk` . Then the submodule of Zk` generated by b1, . . . , bk contains
`nZk` . Let furthermore e1, . . . , ek be the standard basis of Zk` : there exists a T ∈ EndZ`(Zk` ) such
that Tbi = `nei for i = 1, . . . , k.

Proof. Let B, Y be the k× k matrices that have the bi (resp. the yj) as columns. The hypothesis

implies that there exist two matrices B̃, Ỹ such that `n Id = BB̃+Y Ỹ . Notice that by assumption

Y is zero modulo `n+1, so we can rewrite this equation as `n
(

Id−` Y

`n+1
Ỹ

)
= BB̃, where

Y

`n+1
has

`-integral coefficients. Observe that
(

Id−` Y
`n+1 Ỹ

)
, being congruent to the identity modulo `, is

invertible in EndZ`
(
Zk`
)
; it follows that `n Id = BB̃

(
Id−` Y

`n+1 Ỹ
)−1

, which gives a representation

of the vectors `nei as Z`-linear combinations of b1, . . . , bk. Finally, since left- and right- inverses

of matrices agree, we also have `n Id = B̃
(

Id−` Y
`n+1 Ỹ

)−1
B, so for the second statement we can

take T := B̃
(

Id−` Y
`n+1 Ỹ

)−1
.

We shall also need the following consequence of lemmas 6.7 and 6.8.

Lemma 6.9. Let λ1, λ2, λ3 ∈ Z` and let n be a non-negative integer. Suppose that

λ1b1 + λ2b2 + λ3b3 ≡ 0 (mod `n2+n) : (5)

then λ1, λ2, λ3 are all zero modulo `n.

Proof. Let e1 =

(
0 1
0 0

)
, e2 =

(
1 0
0 −1

)
, e3 =

(
0 0
1 0

)
. By the previous lemma, there is a

T ∈ EndZ`(sl2(Z`)) such that Tbi = `n2ei for i = 1, 2, 3. Applying T to both sides of (5) we find
`n2 (λ1e1 + λ2e2 + λ3e3) ≡ 0 (mod `n2+n): this implies that λ1, λ2, λ3 are all zero modulo `n.

6.2 An explicit open image theorem for G`

Let us now return to our elliptic curves E1, E2. We continue with the notation from the previous
section. Notice that a1, a2, a3 are Z`-linearly independent, hence there exists a unique Z`-linear
map ϕ : L1 → L2 such that ϕ(ai) = bi for i = 1, 2, 3.
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For two indices j, k write [aj , ak] =
∑3
i=1 µ

(j,k)
i ai for certain structure constants µ

(j,k)
i ∈ Z`.

Recall furthermore that t is a positive integer no less than n2 + 1 and such that y1, y2, y3 are all

zero modulo `t. Since L is a Lie algebra, there exist scalars ν
(j,k)
i such that

[(aj , bj), (ak, bk)] =

3∑
i=1

µ
(j,k)
i (ai, bi) +

3∑
i=1

ν
(j,k)
i (0, yi),

and reducing the second coordinate of this equation modulo `t gives

[ϕ(aj), ϕ(ak)] = [bj , bk] ≡
3∑
i=1

µ
(j,k)
i bi ≡

3∑
i=1

µ
(j,k)
i ϕ(ai)

≡ ϕ

(
3∑
i=1

µ
(j,k)
i ai

)
≡ ϕ ([aj , ak]) (mod `t).

We want to apply proposition 5.5 to ϕ. We claim that, in the notation of that proposition, we
can take α ≤ n2 + n1. By lemma 6.9, a linear combination λ1b1 + λ2b2 + λ3b3 can vanish modulo
`n1+n2+1 only if λ1, λ2, λ3 all vanish modulo `n1+1.

Since the Z`-module generated by a1, a2, a3 contains `n1sl2(Z`) we can choose scalars λ1, λ2, λ3 ∈

Z` such that `n1

(
0 1
0 0

)
= λ1a1 + λ2a2 + λ3a3, and at least one among λ1, λ2, λ3 is nonzero

modulo `n1+1. It follows by lemma 6.9 that

ϕ

(
`n1

(
0 1
0 0

))
= ϕ (λ1a1 + λ2a2 + λ3a3) =

3∑
i=1

λibi

is nonzero modulo `n1+n2+1 as claimed, and a perfectly analogous argument applies to the image

of `n1

(
0 0
1 0

)
. We also claim that by construction of ϕ and by our assumption on t we have

(l1, l2) ∈ L(H`)⇒ l2 ≡ ϕ(l1) (mod `t).

To see this, recall first that every element (l1, l2) ∈ L(H`) is a linear combination of the (ai, bi)

(for i = 1, 2, 3) and of the (0, yj) (for j = 1, 2, 3). Writing (l1, l2) =
∑3
i=1 σi(ai, bi)+

∑3
j=1 τj(0, yj)

for some scalars σi, τj ∈ Z`, and using the fact that yj ≡ 0 (mod `t) for j = 1, 2, 3, we find

l1 =
∑3
i=1 σiai and

l2 =

3∑
i=1

σibi +

3∑
j=1

τjyj ≡
3∑
i=1

σiϕ(ai) ≡ ϕ

(
3∑
i=1

σiai

)
≡ ϕ(l1) (mod `t).

Set T = t− 11n1 − n2 − 5v − 6. By proposition 5.5, there is a matrix M ∈M2(Z`) such that:

1. for all (l1, l2) ∈ L(H`) we have l2 ≡M · l1 ·M−1 (mod `T ) and M−1 · l2 ·M ≡ l1 (mod `T );

2. at least one of the coefficients of M is an `-adic unit;

furthermore, the map ϕ satisfies

3. tr(l1
2) ≡ tr(ϕ(l1)2) ≡ tr(l2

2) (mod `T ) ∀(l1, l2) ∈ L(H`).

Take any element (g1, g2) ∈ H`. We know that the determinant of g1 (which is equal to the
determinant of g2) is a square in Z×` : for ` 6= 2 this is property (3) in theorem 4.2, while for ` = 2
it follows from the fact that elements congruent to 1 (mod 8) admit a square root in Z×2 . We can
therefore choose a square root of det g1 in Z×` and write

(g1, g2) =
√

det g1(g′1, g
′
2) (6)
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for a certain (g′1, g
′
2) ∈ SL2(Z`). Set (l1, l2) = Θ2(g′1, g

′
2), and notice that (l1, l2) differs from

Θ2(g1, g2) by an invertible scalar factor, so it lies again in L(H`). By definition of Θ2, there exists
a pair (λ1, λ2) ∈ Z2

` such that

(g′1, g
′
2) = (λ1, λ2) · Id + (l1, l2) , (7)

and we wish to show that λ1 is congruent to λ2 modulo a large power of `:

Proposition 6.10. We have λ1 ≡ λ2 (mod `T−2v) and g2 ≡Mg1M
−1 (mod `T−2v).

Proof. Notice first that the second statement follows immediately from the first, combined with
equations (6) and (7) and the fact that for all (l1, l2) ∈ L(H`) we have l2 ≡ Ml1M

−1 (mod `T )
by the properties of M . Hence we just need to prove the first congruence.

We begin by discussing the case of odd `. Squaring equation (7) we obtain(
(g′1)

2
, (g′2)

2
)

= (λ1
2 · Id +l1

2 + 2λ1l1, λ2
2 · Id +l2

2 + 2λ2l2).

The left hand side is simply
1

det g1

(
g1

2, g2
2
)
, an element of H` up to scalar factors. The image of

this matrix through Θ2 is then an element of L(H`), so applying Θ2 to the right hand side of the
previous equation we get (

Θ1(l1
2) + 2λ1l1,Θ1(l2

2) + 2λ2l2
)
∈ L(H`), (8)

which by the properties of M implies Θ1(l2
2) + 2λ2l2 ≡ M

(
Θ1(l1

2) + 2λ1l1
)
M−1 (mod `T ), or

equivalently

l2
2 −

tr
(
l2

2
)

2
Id +2λ2l2 ≡M

(
l1

2 −
tr
(
l1

2
)

2
Id +2λ1l1

)
M−1 (mod `T ). (9)

Since we also have 1
2 tr

(
l1

2
)
≡ 1

2 tr
(
l2

2
)

(mod `T ) (recall that ` is odd, so we can safely divide

by 2) and l2
2 ≡Ml1

2M−1 (mod `T ) we see that (9) implies

2λ1l2 ≡M (2λ1l1)M−1 ≡ 2λ2l2 (mod `T ).

If l2 has at least one coordinate not divisible by `, this last equation implies λ1 ≡ λ2 (mod `T ).
If not, then g′2 reduces modulo ` to a multiple of the identity (cf. equation (7)). Moreover, as
det(g′2) = 1, we have in particular

1 = det(λ2 Id +l2) = λ2
2 −

tr
(
l2

2
)

2
,

from which we find

λ2 = ±

√
1 +

tr(l2
2)

2
, (10)

where the square root can be computed via the usual series expansion
√

1 + t =
∑
j≥0

(
1/2

j

)
tj ,

which converges because l2 is trivial modulo ` (hence the same is true for 1
2 tr

(
l2

2
)
; recall that we

have assumed ` to be odd). Symmetrically we prove that either the congruence λ1 ≡ λ2 (mod `T )
holds or else l1 is trivial modulo ` and

λ1 = ±

√
1 +

tr(l1
2)

2
. (11)
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Suppose then l1, l2 to both be trivial modulo `: then tr(l1
2) and tr(l2

2) are divisible by `, hence
the square roots appearing in equations (10) and (11) can both be computed by the series expansion

recalled above. Using the congruence
tr(l1

2)

2
≡ tr(l2

2)

2
(mod `T ) we obtain

√
1 +

tr(l1
2)

2
≡√

1 +
tr(l2

2)

2
(mod `T ), hence to prove our claim λ1 ≡ λ2 (mod `T ) it suffices to show that the

signs in equations (10) and (11) are the same.

Since

√
1 +

tr(l1
2)

2
≡
√

1 +
tr(l2

2)

2
≡ 1 (mod `), in order to prove this it is enough to show

that λ1 ≡ λ2 (mod `). Observe that g′1, g
′
2 reduce to diagonal matrices diag (λi, λi) in SL2(F`),

so we have λ1 ≡ λ2 (mod `) if and only if g′1, g
′
2 (or equivalently g1, g2) have the same reduction

modulo `, and this is exactly property (2) of H` given in theorem 4.2. This establishes the claim
when ` is odd.

Consider now the case ` = 2. Then l1, l2 vanish modulo 4 by definition of H2, and the same
argument as above shows that

λi = ±

√
1 +

tr(li
2)

2
, i = 1, 2. (12)

Given that 2λi ≡ tr (g′i) ≡ 2 (mod 8) by our construction of H2, we have λ1 ≡ λ2 ≡ 1 (mod 4),
so the sign in equation (12) must be a plus both for i = 1 and i = 2. From the congruence
tr
(
l1

2
)

2
≡

tr
(
l2

2
)

2
(mod 2T−1) we then deduce

λ1 ≡

√
1 +

tr(l1
2)

2
≡

√
1 +

tr(l2
2)

2
≡ λ2 (mod 2T−2)

as claimed.

Let us take a moment to summarize what we have proved so far. We have set L0 to be the
kernel of the natural projection from L(H`), the Lie algebra of H`, to L1, the Lie algebra of
L(H`,1). We know that L0 is generated by three elements (0, y1), (0, y2), (0, y3), and we have just
proved that if y1, y2, y3 are all zero modulo `t for a certain positive integer t ≥ n2 + 1, then there
exists a matrix M ∈M2(Z`) with the following properties:

• at least one of the coefficients of M is an `-adic unit;

• for every (g1, g2) ∈ H` we have g2 ≡Mg1M
−1 (mod `T−2v).

These facts can be combined to give an upper bound on the values of t for which we can have
y1 ≡ y2 ≡ y3 ≡ 0 (mod `t):

Proposition 6.11. Set tmax :=
⌊
v`(b0(E1×E2/K`))

2

⌋
+ 11n1 + n2 + 7v+ 7. At least one of y1, y2, y3

does not vanish modulo `tmax .

Proof. If one of y1, y2, y3 is nonzero modulo `n2 we are done, so suppose once more that t ≥ n2 +1
is an integer such that y1 ≡ y2 ≡ y3 ≡ 0 (mod `t). We keep using the symbols M,T from above,
and set H := T − 2v. We shall prove that t ≤ tmax − 1.

By definition, for every w ∈ E1[`H ] we have `Hw = 0, so for every (g1, g2) ∈ H` we have

Mg1w = Mg1M
−1Mw = (g2M +O(`H))w = g2Mw.

It follows that the subgroup Γ =
{

(w,Mw)
∣∣ w ∈ E1[`H ]

}
of E1 × E2 is defined over K`: indeed

for any (g1, g2) ∈ H` and (w,Mw) ∈ Γ we have

(g1, g2) · (w,Mw) = (g1w, g2Mw) = (g1w,Mg1w) ∈ Γ.
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Thus the abelian variety A∗ = (E1 × E2) /Γ is defined over K`, and the canonical projection
E1 × E2 → A∗ is an isogeny of degree |E1[`H ]| = `2H ; on the other hand, since we are in the
situation of theorem 2.4, we also have an isogeny A∗ → E1×E2 of degree b dividing b0(E1×E2/K`)
(recall that the function b0 has been introduced in definition 2.5). The composition of these two
isogenies is an endomorphism ϕ of E1 × E2 that kills Γ. Since E1, E2 are not isogenous over K,
such an endomorphism corresponds to a pair (ϕ1, ϕ2) where ϕi is an endomorphism of Ei, and
the assumption EndK(Ei) = Z implies that each ϕi is multiplication by an integer. Moreover,
since at least one of the coefficients of M is an `-adic unit, we deduce that the projection of Γ
on E2 contains at least one point of exact order `H , so ϕ, which kills Γ, must be of the form(
`He1 0

0 `He2

)
for some e1, e2 ∈ Z. It follows that e1

2e2
2`4H = deg(ϕ) = `2Hb, hence we have

2H ≤ v`(b) ≤ v`(b0(E1 × E2/K`)) and 2t ≤ v`(b0(E1 × E2/K`)) + 2(11n1 + n2 + 7v + 6). This
inequality is not satisfied for any t ≥ tmax.

Combined with corollary 6.6, the last proposition shows that L0 contains `f1sl2(Z`), where

f1 =

⌊
v`(b0(E1 × E2/K`))

2

⌋
+ 11n1 + 5n2 + 11v + 7,

and therefore L(H`) contains 0⊕ `f1sl2(Z`). Exchanging the roles of E1 and E2 and repeating the
whole argument, we deduce that L(H) contains `fsl2(Z`)⊕ `fsl2(Z`), where now

f =

⌊
v`(b0(E1 × E2/K`))

2

⌋
+ 16 max {n1, n2}+ 11v + 7. (13)

We have all we need to prove the following proposition:

Proposition 6.12. Let E1, E2 be elliptic curves over K that are not isogenous over K and do
not admit complex multiplication over K. Let ` be a prime number.

Suppose the image of Gal
(
K`/K`

)
→ Aut(T`(Ei)) contains B`(ni) for i = 1, 2 (where ni ≥ 2

for ` = 2 and ni ≥ 1 for ` = 3 or 5). Let f be given by formula (13). If ` is odd, the image
G` of Gal

(
K/K

)
→ Aut(T`(E1)) × Aut(T`(E2)) contains B`(4f, 4f); if ` = 2, the image G2 of

Gal
(
K/K

)
→ Aut(T2(E1))×Aut(T2(E2)) contains

B2(12(f + 17 max{n1, n2}+ 13) + 1, 12(f + 17 max{n1, n2}+ 13) + 1).

Proof. For ` = 2 the result follows at once from theorem 4.4. For odd `, and under assumption
6.1, the result similarly follows from property (1) of H` given in theorem 4.2 and the fact that
2f > 8 max {n1, n2}. On the other hand, if assumption 6.1 does not hold, then G` contains
B` (20 max{n1, n2}, 20 max{n1, n2}) (note that we can assume m1 ≤ n1,m2 ≤ n2 without loss of
generality, cf. remark 6.3), which is stronger than what we are claiming.

7 Conclusion

Consider again the case of two elliptic curves E1, E2 defined over K, non-isogenous over K and
such that EndK(Ei) = Z. Let P be the set of primes ` for which G` does not contain SL2(Z`)2.

Lemma 7.1. Let ` be a prime. If ` does not divide the product

30b0(E1/K; 60)b0
(
E2

1/K; 2
)
b0(E2/K; 60)b0

(
E2

2/K; 2
)
b0(E1 × E2/K; 2),

then ` is not in P.

Proof. Denote by G`(`) the modulo-` reduction of G`, that is, its image in GL2(F`)2. By [2,
Lemma 8.2] we know that if a prime ` does not divide

b0(E1/K; 60)b0
(
E2

1/K; 2
)
b0(E2/K; 60)b0

(
E2

2/K; 2
)
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then both projections of G`(`) on the two factors GL2(F`) contain SL2(F`). Under this hypothesis,
the proof of [5, Proposition 1] shows that G`(`) contains SL2(F`)2 unless `2

∣∣ b0(E1 × E2/K; 2).
Finally, when ` ≥ 5 (as is the case here, thanks to the factor 30 appearing in the product) a closed
subgroup of GL2(Z`)2 whose projection modulo ` contains SL2(F`)2 contains all of SL2(Z`)2 (this
is well-known; see for example [11, Proposition 4.2]).

Corollary 7.2. We have∏
`∈P

` ≤ 30b0(E1/K; 60)b0
(
E2

1/K; 2
)
b0(E2/K; 60)b0

(
E2

2/K; 2
)
b0(E1 × E2/K; 2).

Let ` be a prime different from 2 and 3, and for j = 1, 2 set

Dj(∞) = b0(Ej/K; 24)5b0(E2
j /K; 24).

Since `v`(Dj(∞))+1 does not divide Dj(∞), we see from [2, Theorem 7.5] that G`,j contains
B` (16v`(Dj(∞)) + 12) , hence the same is true for H`,j , cf. remark 6.3. Therefore – in the notation
of the previous section – we can take nj = nj(`) = 16v`(Dj(∞)) + 12 (this obviously satisfies the
condition n1, n2 ≥ 1 for ` = 5 – cf. definition 6.2). For ` = 3, using the fact that our group H3,j

is the group H3 of [2] we see (again by [2, Theorem 7.5]) that we can take

nj(3) = 16v3
(
b0(E/K3)5b0(E2/K3)

)
+ 12 ≤ 16v3(Dj(∞)) + 12;

similarly, for ` = 2 we can take nj(2) = 48v2
(
b0(Ej/K2)5b0(E2

j /K2)
)

+ 38. Applying proposition
6.12 with these values of nj(`) we get:

Lemma 7.3. Let ` be a prime. The group G` contains B`(f(`), f(`)), where f(`) is given by

f(`) = 2v`(b0(E1 × E2/K; 29 · 32)) + 210 max {v`(D1(∞)), v`(D2(∞))}+ 800

for odd ` and

f(2) = 6v2(b0(E1 × E2/K2)) + 19008 max
j

{
v2
(
b0(Ej/K2)5b0(E2

j /K2)
)}

+ 15421

for ` = 2.

Using the very same argument as in [2, §9], and some very crude estimates, we deduce

Proposition 7.4. Denote by G∞ the image of Gal
(
K/K

)
inside∏

`

(AutT`(E1)×AutT`(E2)) ⊂ GL2(Ẑ)2.

G∞ contains a subgroup S of the form S =
∏
` S`, where each S` coincides with SL2(Z`)2

except for the finitely many primes that are in P, for which S` = B`(f(`), f(`)). The index of S

in SL2(Ẑ) is bounded by b(E1 × E2/K; 29 · 32)10
4

.

We finally come to the adelic estimate for an arbitrary number of curves:

Theorem 7.5. Let E1, . . . , En, n ≥ 2, be elliptic curves defined over K, pairwise non-isogenous
over K. Suppose that EndK(Ei) = Z for i = 1, . . . , n and let G∞ be the image of the natural
representation

ρ∞ : Gal
(
K/K

)
→

n∏
i=1

∏
`

AutT`(Ei) ∼= GL2(Ẑ)n.

Then G∞ has index at most

8n(n−2)ζ(2)n(n−1) · [K : Q] ·max
i 6=j

b
(
Ei × Ej/K; 29 · 32

)5000n(n−1)
in

∆ =
{

(x1, . . . , xn) ∈ GL2(Ẑ)n
∣∣ detxi = detxj ∀i, j

}
.
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Proof. The Galois-equivariance of the Weil pairing implies that for every index i = 1, . . . , n an
element g ∈ Gal

(
K/K

)
acts on T`(Ei) through an automorphism of determinant χ`(g). This

immediately implies that G∞ ⊆ ∆. With a slight abuse of language, we write det for the map
∆→ Ẑ sending (x1, . . . , xn) to detx1. The exact sequence

1→ G∞ ∩ SL2(Ẑ)n → G∞
det−→ Ẑ× → Ẑ×

det(G∞)
→ 1

and the inequality

∣∣∣∣∣ Ẑ×

det(G∞)

∣∣∣∣∣ ≤ [K : Q] (cf. [2, Proposition 8.1]) show that in order to establish

the theorem it is enough to prove that the index of G∞ ∩ SL2(Ẑ)n inside SL2(Ẑ)n is bounded by

8n(n−2)ζ(2)n(n−1) ·max
i 6=j

b(Ei × Ej/K; 29 · 32)5000n(n−1).

Set G = G∞∩SL2(Ẑ). For every pair Ei, Ej of curves, we get from proposition 7.4 a subgroup
S(i,j) of

SL2(Ẑ)2 ⊆
∏
`

Aut (T`(Ei))×
∏
`

Aut (T`(Ej))

that satisfies all the requirements of corollary 3.3, and the theorem follows from this corollary
upon recalling that the index of S(i,j) in SL2(Ẑ)2 is bounded by b(Ei × Ej/K; 29 · 32)10000.

The deduction of theorem 1.1 is then immediate:

Proof. The definition of the function b(A/K; d) (cf. proposition 2.7) shows that b(Ei×Ej/K; 29·32)
is a polynomial in [K : Q] and in the quantity max {1, log[K : Q], h(Ei × Ej)}. As the sta-
ble Faltings height is additive on products we find that h(Ei × Ej) = h(Ei) + h(Ej) does not
exceed 2 max{h(Ei), h(Ej)}, and it follows that there exists a polynomial q(d,H) ∈ R[d,H]
such that maxi 6=j b(Ei × Ej ; 29 · 32) is bounded by q([K : Q], H), where H = max{1, log[K :
Q], h(E1), . . . , h(En)}. The previous theorem then yields the inequality

[∆ : G∞] ≤ Cn(n−1) · [K : Q] · q([K : Q], H)5000n(n−1),

where C = 8ζ(2), which has the required functional form. The explicit polynomial function given
in the statement can now be determined by a straightforward direct computation.
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