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Abstract. Let A be an abelian variety defined over a global field F of positive characteristic
p and let F/F be a ZN

p -extension, unramified outside a finite set of places of F . Assuming
that all ramified places are totally ramified, we define a pro-characteristic ideal associated
to the Pontrjagin dual of the p-primary Selmer group of A. To do this we first show the
relation between the characteristic ideals of duals of Selmer groups for a Zd

p-extension Fd/F

and for any Zd−1
p -extension contained in Fd , and then use a limit process. Finally, we give

an application to an Iwasawa Main Conjecture for the non-noetherian commutative Iwasawa
algebra Zp[[Gal(F/F )]] in the case A is a constant abelian variety.

1. Introduction

Let F be a global function field of characteristic p and F/F a ZN
p -extension unramified

outside a finite set of places, whose Galois group we denote by Γ. We take an abelian variety
A defined over F and let SA be a finite set of places of F containing exactly the primes of
bad reduction for A and those which ramify in F/F . For any extension v of some place of F
to the algebraic closure F and for any finite extension E/F , we denote by Ev the completion
of E with respect to v and, if L/F is infinite, we put Lv := ∪Ev, where the union is taken
over all finite subextensions of L. We define the p-part of the Selmer group of A over E as

Sel(E) := SelA(E)p := Ker

{
H1
fl(XE , A[p∞]) −→

∏
v

H1
fl(XEv , A)[p∞]

}
(where H1

fl denotes flat cohomology, XE := Spec(E) and the map is the product of the natural

restrictions at all places v of E). For infinite algebraic extensions we define the Selmer groups
by taking direct limits on all the finite subextensions. For any algebraic extension K/F , let
S(K) denote the Pontrjagin dual of Sel(K) (other Pontrjagin duals will be indicated by the
symbol ∨ ).

For any infinite p-adic Lie extension L/F , let Λ(L) := Zp[[Gal(L/F )]] be the associated

Iwasawa algebra: we recall that, if Gal(L/F ) ' Zdp , then Λ(L) ' Zp[[t1, .., td]] is a Krull
domain. It is well known that S(L) is a Λ(L)-module and its structure has been described
in several recent papers (see, e.g., [14] for Gal(L/F ) ' Zdp and [5] for the non abelian case).
When S(L) is a finitely generated module over a noetherian abelian Iwasawa algebra, it is
possible to associate to S(L) a characteristic ideal which is a key ingredient in Iwasawa Main
Conjectures. We are interested in the definition of the analogue of a characteristic ideal in
Λ(F) for S(F) (a similar result providing a pro-characteristic ideal for the Iwasawa module
of class groups is described in [4]).

If R is a noetherian Krull domain and M a finitely generated torsion R-module, the struc-
ture theorem for M provides an exact sequence

(1.1) 0 −→ P −→M −→
n⊕
i=1

R/peii R −→ Q −→ 0
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where the pi’s are height 1 prime ideals of R and P and Q are pseudo-null R-modules (i.e.,
torsion modules with annihilator of height at least 2). With this sequence one defines the
characteristic ideal of M as

ChR(M) :=

n∏
i=1

peii

(if M is not torsion, we put ChR(M) = 0, moreover note that M is pseudo-null if and only if
ChR(M) = (1) ). In commutative Iwasawa theory characteristic ideals provide the algebraic
counterpart for the p-adic L-functions associated to Iwasawa modules (such as duals of Selmer
groups).

We fix a Zp-basis {γi}i∈N for Γ := Gal(F/F ) and, for any d > 0, we let Fd ⊂ F be
the fixed field of {γi}i>d . Then we have Λ(F) = lim

←
Λ(Fd) and S(F) = lim

←
S(Fd). Note

that the filtration {Fd} of F is uniquely determined once the γi have been fixed, but we allow
complete freedom in their initial choice. Put ti := γi−1: the subring Zp[[t1, . . . , td]] of Λ(F) is
isomorphic to Λ(Fd) and, by a slight abuse of notation, the two shall be identified in this paper.
In particular, for any d > 1 we have Λ(Fd) = Λ(Fd−1)[[td]] . Let πdd−1 : Λ(Fd) → Λ(Fd−1) be

the canonical projection, denote its kernel by Idd−1 = (td) and put Γdd−1 := Gal(Fd/Fd−1).
Our goal is to define an ideal attached to S(F) in the non-noetherian Iwasawa algebra

Λ(F): we will do this via a limit of the characteristic ideals ChΛ(Fd)(S(Fd)). Thus we need

to study the relation between πdd−1

(
ChΛ(Fd)(S(Fd))

)
and ChΛ(Fd−1)(S(Fd−1)). A general

technique to deal with this type of descent and ensure that the limit does not depend on the
filtration has been described in [4, Theorem 2.13]. That theorem is based on a generalization
of some results of [11, Section 3] (which directly apply to our algebras Λ(Fd), even without
the generalization to Krull domains provided in [4]) and can be applied to the Λ(F)-module
S(F). In our setting [4, Theorem 2.13] reads as follows

Theorem 1.1. If, for every d� 1,

1. the td-torsion submodule of S(Fd) is a pseudo-null Λ(Fd−1)-module, i.e.,

ChΛ(Fd−1)(S(Fd)td) = ChΛ(Fd−1)(S(Fd)Γd
d−1) = (1) ;

2. ChΛ(Fd−1)(S(Fd)/td) = ChΛ(Fd−1)(S(Fd)/Idd−1) ⊆ ChΛ(Fd−1)(S(Fd−1)),

then the ideals ChΛ(Fd)(S(Fd)) form a projective system (with respect to the maps πdd−1).

In Section 2 we show that if S(Fe) is Λ(Fe)-torsion, then S(Fd) is Λ(Fd)-torsion for all
d > e and use [4, Proposition 2.10] to provide a general relation

(1.2) ChΛ(Fd−1)(S(Fd)Γd
d−1) · πdd−1(ChΛ(Fd)(S(Fd))) = ChΛ(Fd−1)(S(Fd−1)) · Jd

(see (2.9) where the extra factor Jd is more explicit). Then we move to the totally ramified
setting, i.e., extensions in which all ramified primes are assumed to be totally ramified (an
example are the extensions obtained from F by adding the an-torsion points of a normalized
rank 1 Drinfeld module over F ). In this setting, using some techniques and results of K.-S.
Tan ([15]), we check the hypotheses of Theorem 1.1 using equation (1.2), and obtain (see
Corollary 3.8 and Definition 3.9)

Theorem 1.2. Assume all ramified primes in F/F are totally ramified. Then, for d� 0,

πdd−1(ChΛ(Fd)(S(Fd))) = ChΛ(Fd−1)(S(Fd−1))

and the pro-characteristic ideal

C̃hΛ(F)(S(F)) := lim
←−
d

ChΛ(Fd)(S(Fd)) ⊆ Λ(F)

is well defined.
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As an application, we use a deep result of Lai - Longhi - Tan - Trihan [9] to prove an
Iwasawa Main Conjecture for constant abelian varieties in our non-noetherian setting (see
Theorem 3.10).

2. General Zp-descent for Selmer groups

To be able to define characteristic ideals we need the following

Theorem 2.1. (Tan) Assume that A has good ordinary or split multiplicative reduction at
all ramified places of the finite set SA. Then, for any d and any Zdp-extension L/F contained
in F , the group S(L) is a finitely generated Λ(L)-module.

Proof. In this form the theorem is due to Tan ([14, Theorem 5]). See also [3, Section 2] and
the references there. �

If there is a place v ramified in L/F and of supersingular reduction for A, then the module
S(L) is not finitely generated over Λ(L) by [15, Proposition 1.1 and Theorem 3.10]. In
order to obtain a nontrivial relation between the characteristic ideals, we need no ramified
supersingular primes and something more than just Theorem 2.1, so we make the following

Assumptions 2.2.
1. All places ramified in F/F are of ordinary reduction.
2. There exists an e > 0 such that S(Fe) is a torsion Λ(Fe)-module.

Remarks 2.3.
1. Hypothesis 2 is satisfied in many cases: for example when Fe contains the arithmetic

Zp-extension of F (proof in [15, Theorem 2], extending [12, Theorem 1.7]) or when
Sel(F ) is finite and A has good ordinary reduction at all places which ramify in Fe/F
(easy consequence of [14, Theorem 4]).

2. Our goal is an equation relating πdd−1(ChΛ(Fd)S(Fd)) and the characteristic ideal of
S(Fd−1). If the above assumption 2 is not satisfied for any e, then all characteristic
ideals are 0 and there is nothing to prove.

In this section we also assume that none of the ramified prime has trivial decomposition
group in Gal(F1/F ). In Section 3 we shall work in extensions in which ramified places
are totally ramified, so this assumption will be automatically verified. Anyway this is not
restrictive in general because of the following

Lemma 2.4. If d > 2, one can always find a Zp-subextension F1/F of Fd/F in which none
of the ramified places splits completely.

Proof. See [4, Lemma 3.1] �

Consider the diagram

(2.1) Sel(Fd−1) �
� //

add−1
��

H1
fl(Xd−1, A[p∞]) // //

bdd−1
��

G(Xd−1)

��
cdd−1
��

Sel(Fd)Γd
d−1
� � // H1

fl(Xd, A[p∞])Γd
d−1 // G(Xd)Γd

d−1

where Xd := Spec(Fd), the vertical maps are induced by (global) restrictions and G(Xd) is the
image of the product of the (local) restriction maps

H1
fl(Xd, A[p∞]) −→

∏
w

H1
fl(Xd,w, A)[p∞] ,

with w running over all places of Fd where Xd,w := Spec(Fd,w) with Fd,w the completion of
Fd at w.
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Lemma 2.5. Assume that no ramified place is totally split in F1/F . For any d > 2, the
Pontrjagin dual of Ker cdd−1 is a finitely generated torsion Λ(Fd−1)-module.

Proof. For any place v of F we fix an extension to F , which by a slight abuse of notation we
still denote by v, so that the set of places of Fd above v will be the Galois orbit Gal(Fd/F ) ·v.
For any field L let PL be the set of places of L. We have an obvious injection

(2.2) Ker cdd−1 ↪→
∏

u∈PFd−1

Ker

H1
fl(Xd−1,u, A)[p∞] −→

∏
w|u

H1
fl(Xd,w, A)[p∞]


(the map is the product of the natural restrictions rw ). By the Hochschild-Serre spectral
sequence, we get

(2.3) Ker rw ' H1(Γdd−1,w, A(Fd,w))[p∞]

where Γdd−1,w is the decomposition group of w in Γdd−1 . Those kernels really depend only on the

place u of Fd−1 lying below w (for any w1 , w2 dividing u we obviously have Ker rw1 ' Ker rw2 ).
Hence for any v of F and any u ∈ PFd−1

dividing it, we fix a w(u) of Fd over u and define

Hv(Fd) :=
∏

u∈Gal(Fd−1/F )·v

H1(Γdd−1,w(u), A(Fd,w(u)))[p
∞] .

Equation (2.2) now reads as

(2.4) Ker cdd−1 ↪→
∏
v∈PF

Hv(Fd) .

Obviously Hv(Fd) = 0 for all primes which totally split in Fd/Fd−1 and, from now on, we
only consider places such that Γdd−1,w(u) 6= 0.

Let Λ(Fi,v) := Zp[[Gal(Fi,v/Fv)]] be the Iwasawa algebra associated to the decomposition
group of v in Gal(Fi/F ) and note that each Ker rw is a Λ(Fd−1,v)-module. Moreover, we get
an action of Gal(Fd−1/F ) on Hv(Fd) by permutation of the primes u ∈ Gal(Fd−1/F ) · v and
an isomorphism

(2.5) Hv(Fd) ' Λ(Fd−1)⊗Λ(Fd−1,v) H
1(Γdd−1,w(u), A(Fd,w(u)))[p

∞]

(see also [15, Lemma 3.2], note that H1(Γdd−1,w(u), A(Fd,w(u)))[p
∞] is finitely generated over

Λ(Fd−1,v) ).
First assume that the place v is unramified in Fd/F (hence inert in Fd/Fd−1 ). Then

Fd−1,v = Fv 6= Fd,v and one has, by [10, Proposition I.3.8],

H1(Γdd−1,w(u), A(Fd,w(u))) ' H1(Γdd−1,w(u), π0(A0,v)) ,

where A0,v is the closed fiber of the Néron model of A over Fv and π0(A0,v) is its set of

connected components. It follows that H1(Γdd−1,w(u), A(Fd,w(u)))[p
∞] is trivial when v does

not lie above SA and that it is finite of order bounded by (the p-part of) |π0(A0,v)| for the
unramified places of bad reduction. Hence (2.4) reduces to

(2.6) Ker cdd−1
� � //

⊕
v∈S′A(d)

Hv(Fd)

(where S′A(d) is the set of primes in SA which are not totally split in Fd/Fd−1 ) and, by (2.5),
Hv(Fd)∨ is a finitely generated torsion Λ(Fd−1)-module for unramified v.

For the ramified case the exact sequence

A(Fd,w(u))[p]
� � // A(Fd,w(u))

p // // pA(Fd,w(u))
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yields a surjection

H1(Γdd−1,w(u), A(Fd,w(u))[p]) // // H1(Γdd−1,w(u), A(Fd,w(u)))[p] .

The first module is obviously finite, so H1(Γdd−1,w(u), A(Fd,w(u)))[p] is finite as well: this

implies that H1(Γdd−1,w(u), A(Fd,w(u)))[p
∞]∨ has finite Zp-rank. As a finitely generated Zp-

module, H1(Γdd−1,w(u), A(Fd,w(u)))[p
∞]∨ must be Zp[[Γd−1,v]]-torsion for any d > 2 (because

of our choice of F1/F ) and (2.5) shows once again that Hv(Fd)∨ is finitely generated and
torsion over Λ(Fd−1). �

Remark 2.6. One can go deeper in the details and compute those kernels according to the
reduction of A at v and the behavior of v in Fd/F . We will do this in Section 3 but only for
the particular case of a totally ramified extension (with the statement of a Main Conjecture
as a final goal). See [15] for a more general analysis.

The following proposition provides a crucial step towards equation (1.2) (in particular it
also takes care of hypothesis 2 of Theorem 1.1).

Proposition 2.7. Assume that no ramified place is totally split in F1/F . Let e be as in
Assumption 2.2.2. For any d > e, the module S(Fd)/Idd−1 is a finitely generated torsion
Λ(Fd−1)-module and S(Fd) is a finitely generated torsion Λ(Fd)-module. Moreover, if d >
max{2, e},

ChΛ(Fd−1)(S(Fd)/Idd−1) = ChΛ(Fd−1)(S(Fd−1)) · ChΛ(Fd−1)((Coker add−1)∨) .

Proof. It suffices to prove the first statement for d = e+1, then a standard argument (detailed,
e.g., in [8, page 207]) shows that S(Fe+1) is Λ(Fe+1)-torsion and we can iterate the process.
From diagram (2.1) one gets a sequence

(2.7) (Coker ae+1
e )∨ �

� // (Sel(Fe+1)Γe+1
e )∨ −→ S(Fe) // // (Ker ae+1

e )∨ .

By the Hochschild-Serre spectral sequence, it follows

Coker be+1
e
� � // H2(Γe+1

e , A[p∞](Fe+1)) = 0

(because Γe+1
e has p-cohomological dimension 1). Therefore there is a surjective map

Ker ce+1
e

// // Coker ae+1
e

and, by Lemma 2.5, (Coker ae+1
e )∨ is Λ(Fe)-torsion. Hence Assumption 2.2.2 and sequence

(2.7) yield that

(Sel(Fe+1)Γe+1
e )∨ ' S(Fe+1)/Ie+1

e

is Λ(Fe)-torsion. To conclude note that (for any d) the duals of

Ker add−1 ↪→ Ker bdd−1 ' H1(Γdd−1, A[p∞](Fd)) ' A[p∞](Fd)/Idd−1

are finitely generated Zp-modules (hence pseudo-null over Λ(Fd−1) for any d > 3). Taking
characteristic ideals in the sequence (2.7), for large enough d, one finds

ChΛ(Fd−1)(S(Fd)/Idd−1) = ChΛ(Fd−1)(S(Fd−1)) · ChΛ(Fd−1)((Coker add−1)∨) .

�

Remark 2.8. In [12, Theorem 1.7], the authors prove that S(F (p)) is a finitely generated

torsion Zp[[Gal(F (p)/F )]]-module (where F (p) is the arithmetic Zp-extension of F ). The first
part of the proof above provides a more direct approach to the generalization of this result
given in [15, Theorem 2].
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Whenever S(Fd) is a finitely generated torsion Λ(Fd)-module, [4, Proposition 2.10] yields

(2.8) ChΛ(Fd−1)(S(Fd)Γd
d−1) · πdd−1(ChΛ(Fd)(S(Fd))) = ChΛ(Fd−1)(S(Fd)/Idd−1) .

If d > max{2, e}, equation (2.8) turns into

(2.9) ChΛ(Fd−1)(S(Fd)Γd
d−1) · πdd−1(ChΛ(Fd)(S(Fd))) = ChΛ(Fd−1)(S(Fd−1)) · Jd ,

where Jd := ChΛ(Fd−1)((Coker add−1)∨).

Therefore, whenever we can prove that S(Fd)Γd
d−1 is a pseudo-null Λ(Fd−1)-module (i.e.,

hypothesis 1 of Theorem 1.1), we immediately get

(2.10) πdd−1(ChΛ(Fd)(S(Fd))) ⊆ ChΛ(Fd−1)(S(Fd−1))

and Theorem 1.1 will provide the definition of the pro-characteristic ideal for S(F) in Λ(F)
we were looking for.

3. Zp-descent for totally ramified extensions

The main examples we have in mind are extensions satisfying the following

Assumption 3.1. The (finitely many) ramified places of F/F are totally ramified.

In what follows an extension satisfying this assumption will be called a totally ramified exten-
sion. A prototypical example is the a-cyclotomic extension of Fq(T ) generated by the a-torsion
of the Carlitz module (a an ideal of Fq[T ], see, e.g., [13, Chapter 12]). As usual in Iwasawa
theory over number fields, most of the proofs will work (or can be adapted) simply assuming
that ramified primes are totally ramified in F/Fe for some e > 0, but, in the function field
setting, one would need some extra hypothesis on the behaviour of these places in Fe/F (as
we have seen with Lemma 2.4, note that in totally ramified extensions any Zp-subextension
can play the role of F1 ).
A relevant example for the last case is the composition of a a-cyclotomic extension and of
the arithmetic Zp-extension of Fq(T ) (with the second one playing the role of F1 ). Note that
Assumption 2.2.2 is verified in this case with e = 1, thanks to [12, Theorem 1.7], hence our
next results hold for all these extensions as well.

Let v ∈ SA be unramified in F/F , then it is either totally split or it is inert in just one
Zp-extension Fd(v)/Fd(v)−1 and totally split in all the others. Since |SA| is finite we can fix
an index d0 such that all unramified places of SA are totally split in F/Fd0 .

Theorem 3.2. Assume F/F is a totally ramified extension, then, for any d > max{d0, 2},
we have

ChΛ(Fd−1)((Coker add−1)∨) = (1) .

Proof. The proof of Proposition 2.7 shows that the Λ(Fd−1)-modules (Coker add−1)∨ and

(Ker cdd−1)∨ are pseudo-isomorphic for d > 3. Moreover, by the proof of Lemma 2.5 (recall, in

particular, equation (2.6) ), we know that (Ker cdd−1)∨ is a quotient of
⊕

v∈S′A(d)

Hv(Fd)∨ . Hence

we only consider the contributions of the places of SA which are not totally split in F/F . By
equation (2.5), we have (for a fixed w dividing v)

(3.1) ChΛ(Fd−1)(Hv(Fd)∨) = Λ(Fd−1)⊗Λ(Fd−1,v) ChΛ(Fd−1,v)(H
1(Γdd−1,w, A(Fd,w))[p∞]∨) .

We also saw that, for a ramified prime v, Hv(Fd)∨ (which is H1(Γdd−1,w, A(Fd,w))[p∞]∨, be-

cause v is totally ramified) is finitely generated over Zp, hence pseudo-null over Λ(Fd−1,v) =
Λ(Fd−1) for d > 3.
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We are left with the unramified (not totally split) primes in SA . Assume v is inert in an
extension Fr/Fr−1 (r 6 d0 by definition), then

Λ(Fr−1,v) ' Zp and Λ(Fd,v) ' Zp[[tr]] for any d > r .

Since (again by Lemma 2.5) H1(Γrr−1,w, A(Fr,w))[p∞] is finite and H1(Γdd−1,w, A(Fd,w))[p∞] =
0 for any d > r, we have

ChΛ(Fr−1,v)(H
1(Γrr−1,w, A(Fr,w))[p∞]∨) = (pν(v))

for some ν(v) depending on |π0(A0,v)|, and

ChΛ(Fd−1,v)(H
1(Γdd−1,w, A(Fd,w))[p∞]∨) = (1) for any d > d0 + 1 > r + 1 .

These local informations and (3.1) yield the theorem. �

Now we deal with the other extra term of equation (2.9), i.e., ChΛ(Fd−1)(S(Fd)Γd
d−1). Note

first that, taking duals

(S(Fd)Γd
d−1)∨ ' S(Fd)∨/(γd − 1) = Sel(Fd)/(γd − 1) ,

so we work on the last module.
From now on we put γ := γd and we shall need the following two lemmas: the first is [15,
Proposition 4.4] (we provide the proof for completeness), while the second generalizes [15,
Proposition 4.2].

Lemma 3.3. We have

H1
fl(Xd, A[p∞]) = (γ − 1)H1

fl(Xd, A[p∞]) .

Proof. Since

H1
fl(Xd, A[p∞]) = lim

−→
K⊂Fd , [K:F ]<∞

lim
−→
m

H1
fl(XK , A[pm]) ,

an element α ∈ H1
fl(Xd, A[p∞]) belongs to some H1

fl(XK , A[pm]). Now let γp
s(K)

be the largest

power of γ which acts trivially on K, and define a Zp-extension K∞ with Gal(K∞/K) =

〈γps(K)〉 and layers Kn . Take t > m, consider the restrictions

H1
fl(XK , A[pm])→ H1

fl(XKt , A[pm])→ H1
fl(XK∞ , A[pm])

and denote by xt the image of x. Now xt is fixed by Gal(Kt/K) and pmxt = 0, so xt is in the

kernel of the norm NKt
K , i.e., xt belongs to the (Galois) cohomology group

H1(Kt/K,H
1
fl(XK∞ , A[pm]) ↪→ H1(K∞/K,H

1
fl(XK∞ , A[pm]) .

Let Ker2
m be the kernel of the restriction map H2

fl(XK , A[pm]) → H2
fl(XK∞ , A[pm]), then,

from the Hochschild-Serre spectral sequence, we have

(3.2) Ker2
m → H1(K∞/K,H

1
fl(XK∞ , A[pm])→ H3(K∞/K,A(K∞)[pm]) = 0

(because the p-cohomological dimension of Zp is 1). To get rid of Ker2
m note that, by [7,

Lemma 3.3], H2
fl(XK , A) = 0. Hence, the cohomology sequence arising from

A[pm] �
� // A

pm // // A ,
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yields an isomorphism H2
fl(XK , A[pm]) ' H1

fl(XK , A)/pm . Consider the commutative dia-

gram (with m2 > m1 )

H1
fl(XK , A)/pm1

∼ //

pm2−m1

��

H2
fl(XK , A[pm1 ])

��
H1
fl(XK , A)/pm2

∼ // H2
fl(XK , A[pm2 ]) .

An element of H1
fl(XK , A)/pm1 of order pr goes to zero via the vertical map on the left as

soon as m2 > m1 + r, hence the direct limit provides lim
−→
m

H1
fl(XK , A)/pm = 0 and, eventually,

lim
−→
m

Ker2
m = 0 as well. By (3.2)

0 = lim
−→
m

H1(K∞/K,H
1
fl(XK∞ , A[pm]) = H1(K∞/K,H

1
fl(XK∞ , A[p∞]) ,

which yields

H1
fl(XK∞ , A[p∞]) = (γp

s(K) − 1)H1
fl(XK∞ , A[p∞]) = (γ − 1)H1

fl(XK∞ , A[p∞]) .

We get the claim by taking the direct limit on the finite subextensions K. �

Definition 3.4. For any finite extension L/F we define the Tate module of the Selmer group
of L to be

Tp(Sel(L)) := lim
←−
n

SelA(L)pn = lim
←−
n

Ker

{
H1
fl(XL, A[pn])→

∏
v

H1
fl(XLv , A)[pn]

}
.

For any infinite extension L/F the Tate module Tp(Sel(L)) is defined via inverse limit on the
finite subextensions with respect to the corestriction maps.

Lemma 3.5. Let F/F be a totally ramified extension, then Tp(Sel(Fd)) ∼Λ(Fd) 0 for any
d > 2, where ∼Λ(Fd) means pseudo-isomorphic Λ(Fd)-modules.

Proof. We recall that F (p) is the arithmetic Zp-extension of F and we denote by F
(p)
n its

layers. Let Fn denote the layers of the Zdp-extensions Fd : note that Gal(Fn/F ) ' (Z/pn)d

and F and F (p) are disjoint. By [12, Theorem 1.7], Sel(FnF
(p)) is a finitely generated torsion

Λ(F (p))-module and this implies that the Zp-coranks of Sel(FnF
(p)
t ) are bounded (see, e.g.,

the proof of [1, Corollary 4.14]). Moreover for any s > t, the restriction maps

SelA(FnF
(p)
t )pm −→ SelA(FnF

(p)
s )pm

have finite kernels (embedded in H1(Gal(F
(p)
s /F

(p)
t ), A[pm](FnF

(p)
s )), by the analogue of di-

agram (2.1)) of order bounded by |H1(Gal(F (p)/F ), A[p∞](FnF
(p)))|, which is finite by [2,

Lemma 3.4]. Hence the inverse limit of those kernels (with respect to multiplication by pow-
ers of p) is 0 and the restriction map between Tate modules is injective.

Let t be such that the corank of Sel(FnF
(p)
t ) is maximal: then any α ∈ Tp(Sel(FnF (p)

s )) (s > t)

is represented by a torsion element modulo (the image of) Tp(Sel(FnF
(p)
t )). The diagram

Tp(Sel(FnF
(p)
t )) �

� resn,t
n,s //

ps−t

��

Tp(Sel(FnF
(p)
s ))

corn,s
n,t

��

Tp(Sel(FnF
(p)
t )) Tp(Sel(FnF

(p)
t ))
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shows that⋂
s>t

corn,sn,t

(
Tp(Sel(FnF

(p)
s ))

)
⊆

⋂
s>t

corn,sn,t

(
Tp(Sel(FnF

(p)
s ))tor

)
+ ps−tTp(Sel(FnF

(p)
t ))

=
⋂
s>t

corn,sn,t

(
Tp(Sel(FnF

(p)
s ))tor

)
.

Via the Kummer sequence one has Tp(Sel(FnF
(p)
s ))tor ⊆ A[p∞](FnF

(p)
s ) , hence

Tp(Sel(FnF
(p))) = lim

←−
s

Tp(Sel(FnF
(p)
s )) ⊆ lim

←−
s

Tp(Sel(FnF
(p)
s ))tor ⊆ lim

←−
s

A[p∞](FnF
(p)
s ) .

Now using the layers FnF
(p)
n for the Zd+1

p -extension FdF (p)/F , the formula

corm,mn,n = corn,mn,n ◦ corm,mn,m

and the previous computation, one has that

Tp(Sel(FdF (p))) = lim
←−
n

Tp(Sel(FnF
(p)
n )) ⊆ lim

←−
n

A[p∞](FnF
(p)
n )

is a finitely generated Zp-module.
To conclude just note that the restriction maps

Sel(Fn)pm −→ Sel(FnF
(p)
n )pm

have kernels whose Zp-corank is bounded by the corank of H1(Gal(F (p)/F ), A[p∞](FdF (p)))
(note that, by [15, Proposition 2.11] this is often finite). Taking limits we have that

Tp(Sel(Fd)) = lim
←−
n

lim
←−
m

Sel(Fn)pm

is a finitely generated Zp-module as well, hence Λ(Fd)-pseudo-null for d > 2. �

Now we are ready to deal with the module S(Fd)Γd
d−1 .

Theorem 3.6. Assume F/F is a totally ramified extension. For any d > 3 we have

ChΛ(Fd−1)(S(Fd)Γd
d−1) = (1) .

Proof. Consider the following diagram

(3.3) Sel(Fd) �
� //

γ−1

��

H1
fl(Xd, A[p∞])

φd //

γ−1
����

H1(Xd, A) // //

γ−1

��

Coker(φd)

γ−1

��
Sel(Fd) �

� // H1
fl(Xd, A[p∞])

φd // H1(Xd, A) // // Coker(φd)

(where Hi(Xd, A) :=
∏
w

H i
fl(Xd,w, A)[p∞] and the surjectivity of the second vertical arrow

comes from the previous lemma). Inserting M(Fd) := Im(φd), we get two diagrams
(3.4)

Sel(Fd) �
� //

γ−1

��

H1
fl(Xd, A[p∞])

φd // //

γ−1
����

M(Fd)

γ−1
����

Sel(Fd) �
� // H1

fl(Xd, A[p∞])
φd // //M(Fd)

M(Fd) �
� //

γ−1
����

H1(Xd, A) // //

γ−1
��

Coker(φd)

γ−1

��
M(Fd) �

� // H1(Xd, A) // // Coker(φd) .

From the snake lemma sequence of the first one, we obtain the isomorphism

(3.5) M(Fd)Γd
d−1/Im(φ

Γd
d−1

d ) ' Sel(Fd)/(γ − 1)
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(where φ
Γd
d−1

d is the restriction of φd to H1
fl(Xd, A[p∞])Γd

d−1 ). The snake lemma sequence of

the second diagram (its “upper” row) yields an isomorphism

(3.6) H1(Xd, A)Γd
d−1/M(Fd)Γd

d−1 ' Coker(φd)Γd
d−1 .

The injection M(Fd)Γd
d−1 ↪→ H1(Xd, A)Γd

d−1 induces an exact sequence

M(Fd)Γd
d−1/Im(φ

Γd
d−1

d ) ↪→ H1(Xd, A)Γd
d−1/Im(φ

Γd
d−1

d )� H1(Xd, A)Γd
d−1/M(Fd)Γd

d−1

(with a little abuse of notation we are considering Im(φ
Γd
d−1

d ) as a submodule of H1(Xd, A)Γd
d−1

via the natural injection above) which, by (3.5) and (3.6), yields the sequence

(3.7) Sel(Fd)/(γ − 1) ↪→ Coker(φ
Γd
d−1

d )� Coker(φd)
Γd
d−1 .

Now consider the following diagram

H1(Γdd−1, A[p∞]) �
� //

φdd−1

��

H1
fl(Xd−1, A[p∞]) //

φd−1

��

H1
fl(Xd, A[p∞])Γd

d−1 //

φ
Γd
d−1

d��

0

��
H1(Γdd−1, A) �

� // H1(Xd−1, A) // H1(Xd, A)Γd
d−1 // // H2(Γdd−1, A)

where:

• the vertical maps are all induced by the product of restrictions;
• the horizontal lines are just the Hochschild-Serre sequences for global and local coho-

mology;
• the 0 in the upper right corner comes from H2(Γdd−1, A[p∞]) = 0;

• the surjectivity on the lower right corner comes from H2(Xd−1, A) = 0, which is a
direct consequence of [10, Theorem III.7.8].

This yields a sequence (from the snake lemma)

(3.8) Coker(φd−1)→ Coker(φ
Γd
d−1

d )→ H2(Γdd−1, A) =
∏
w

H2(Γdd−1,w, A(Fd,w))[p∞] .

The module Coker(φd−1). The Kummer map induces a surjection H1(Xd−1, A[p∞]) �
H1(Xd−1, A)[p∞] which fits in the diagram

H1(Xd−1, A[p∞])

����

φd−1 // H1(Xd−1, A)

H1(Xd−1, A)[p∞]

λd−1

66

(λd−1 is again a product of restrictions). This yields surjective maps Im(φd−1) � Im(λd−1)
and, eventually, Coker(λd−1)� Coker(φd−1). For any finite extension K/F we have a similar
map

λK : H1(XK , A)[p∞]→ H1(XK , A)

whose cokernel verifies
Coker(λK)∨ ' Tp(SelAt(K)p)

(by [6, Main Theorem]), where At is the dual abelian variety of A and Tp denotes the p-adic
Tate module.

Taking limits on all the finite subextensions of Fd−1 (with respect to the corestriction maps)
we find

Coker(λd−1)∨ ' Tp(SelAt(Fd−1)p) ∼Λ(Fd−1) 0 ,

by Lemma 3.5.
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The modules H2(Γdd−1,w, A(Fd,w))[p∞]. If the prime splits completely in Fd/Fd−1 , then

obviously H2(Γdd−1,w, A(Fd,w))[p∞] = 0. If the place is ramified or inert, then Γdd−1,w ' Zp .
Consider the exact sequence

A(Fd,w)[p] �
� // A(Fd,w)

p // // pA(Fd,w) ,

which yields a surjection

H2(Γdd−1,w, A(Fd,w)[p]) // // H2(Γdd−1,w, A(Fd,w))[p] .

The module on the left is trivial because cdp(Zp) = 1, hence H2(Γdd−1,w, A(Fd,w))[p] = 0 and

this yields H2(Γdd−1,w, A(Fd,w))[p∞] = 0.

The sequence (3.8) implies that Coker(φ
Γd
d−1

d ) is Λ(Fd−1) pseudo-null for d > 3 and, by (3.7),
we get Sel(Fd)/(γ − 1) is pseudo-null as well. Therefore

ChΛ(Fd−1)(S(Fd)Γd
d−1) = ChΛ(Fd−1)((Sel(Fd)/(γ − 1))∨) = (1) .

�

Remark 3.7. Assuming d > max{e+1, 3} (i.e., S(Fd−1) is torsion) and using [15, Proposition
4.2] to deal with the Tate module, in place of the more general but weaker Lemma 3.5, one

actually gets S(Fd)Γd
d−1 = 0.

A direct consequence of equation (2.9) and Theorems 3.2 and 3.6 is

Corollary 3.8. Assume F/F is a totally ramified extension, then, for any d � 0 and any
Zp-subextension Fd/Fd−1 , one has

(3.9) πdd−1(ChΛ(Fd)(S(Fd))) = ChΛ(Fd−1)(S(Fd−1)) .

The modules S(Fd) verify the hypotheses of Theorem 1.1 (because of Proposition 2.7 and
Theorem 3.6), so we can define

Definition 3.9. For a totally ramified extension F/F , the pro-characteristic ideal of S(F) is

C̃hΛ(F)(S(F)) := lim
←−
d

ChΛ(Fd)(S(Fd)) ⊆ Λ .

We remark that Definition 3.9 only depends on the extension F/F and not on the filtration
of Zdp-extension we choose inside it. Indeed with two different filtrations {Fd } and {F ′d } we
can define a third one by putting

F ′′0 := F and F ′′n = FnF ′n ∀n > 1 .

By Corollary 3.8, the limits of the characteristic ideals of the filtrations we started with
coincide with the limit on the filtration {F ′′n } (see [4, Remark 3.11] for an analogous statement
for characteristic ideals of class groups).

This pro-characteristic ideal could play a role in the Iwasawa Main Conjecture (IMC) for a
totally ramified extension of F as the algebraic counterpart of a p-adic L-function associated
to A and F (see [1, Section 5] or [3, Section 3] for similar statements but with Fitting
ideals). Anyway, at present, the problem of formulating a (conjectural) description of this
ideal in terms of a natural p-adic L-functions (i.e., a general non-noetherian Iwasawa Main
Conjecture) is still wide open. However, we can say something if A is already defined over
the constant field of F .

Theorem 3.10. [Non-noetherian IMC for constant abelian varieties] Assume A/F
is a constant abelian variety and let F/F be a totally ramified extension as above. Then there
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exists an element θA,F interpolating the classical L-function L(A,χ, 1) (where χ varies among
characters of Gal(F/F )) such that one has an equality of ideals in Λ(F)

(3.10) C̃hΛ(F)(S(F)) = (θA,F ) .

Proof. This is a simple consequence of [9, Theorem 1.3]. Namely, the element θA,L is defined
in [9, Section 7.2.1] for any abelian extension L/F unramified outside a finite set of places. It
satisfies πdd−1(θA,Fd

) = θA,Fd−1
by construction and the interpolation formula (too complicated

to report it here) is proved in [9, Theorem 7.3.1]. Since A has good reduction everywhere, our
results apply here and both sides of (3.10) are defined. Finally [9, Theorem 1.3] proves that
ChΛ(Fd)(S(Fd)) = (θA,Fd

) for all d and (3.10) follows by just taking a limit. �
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Scienze, 53/A - 43124 Parma (PR), Italy

E-mail address: andrea.bandini@unipr.it
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