
Post-print version of: 

 

 

Publisher: Elsevier 

Journal paper: International Journal of Fatigue 2018, 106 208-218 

 

Title: Determination of the fatigue critical distance according to the Line and the Point Methods 

with rounded V-notched specimen 

 

Authors: C. Santus, D. Taylor, M. Benedetti 

 

 

Creative Commons Attribution Non-Commercial No Derivatives License 

 

 

 

 

DOI Link: https://doi.org/10.1016/j.ijfatigue.2017.10.002  

https://doi.org/10.1016/j.ijfatigue.2017.10.002
https://doi.org/10.1016/j.ijfatigue.2017.10.002


Determination of the fatigue Critical Distance according to the Line and the
Point Methods with rounded V-notched specimen

C. Santusa,∗, D. Taylorb, M. Benedettic

aDepartment of Civil and Industrial Engineering, University of Pisa, Italy.
bDepartment of Mechanical & Manufacturing Engineering, Trinity College Dublin, Ireland.

cDepartment of Industrial Engineering, University of Trento, Italy.

Abstract

The critical distance length should in principle be deduced from the plain specimen fatigue limit and the threshold

stress intensity factor range. However, the threshold range is difficult to measure experimentally, hence this length

is usually obtained by means of a notched specimen. The critical distance inverse search, both according to

the Line and the Point Methods, is presented in this paper referring to a relatively sharp V-notched specimen.

Precise indications about the geometry parameters are given along with a complete analytical procedure to easily

obtain the critical distance. A sensitivity analysis is discussed, providing evidence of a critical distance range for

a well-posed inversion problem.
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Nomenclature

LM, PM Line Method and Point Method.

∆Kth Threshold stress intensity factor range.

∆σfl Plain specimen fatigue limit range.

L Critical distance obtained with the LM.

x,y Local coordinates for the notch stress distribution.

σy Notch axial stress.

σN Notched specimen (net) nominal stress.

∆σN,fl Notched specimen nominal stress, fatigue limit range.

Kf Fatigue stress concentration factor.

D Specimen bar diameter.

R Notch radius.

A Notch depth.

ρ Notch radius ratio.

r Dimensionless notch radius.

a Dimensionless notch depth.

ξ Dimensionless x local coordinate.

α Notch angle.

s Williams’ power law singularity exponent.

KN Notch-Stress Intensity Facotr (N-SIF).

KN,U N-SIF for unitary nominal stress.

KN,UU N-SIF for unitary nominal stress and unitary half diameter.

l Dimensionless critical distance obtained with the LM.

l0 Dimensionless singular term critical distance obtained with the LM.

L0 Singular term critical distance obtained with the LM.

lmin Minimum limit for the range of accurate critical distance determination.

lmax Maximum limit for the range of accurate critical distance determination.

f (l) Correction function relating to the sharp and the rounded notch LM average stresses.

γ(l) Inversion function for the LM critical distance determination.

γmin Minimum value of the inversion function range.

γmax Maximum value of the inversion function range.
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β Line slope of the LM inversion function.

p1, . . . , p4 Model function coefficients for lmin

q1, . . . ,q4 Model function coefficients for γmin

c1,c2,c3 Model function coefficients for lmax

l′0 Dimensionless singular term critical distance obtained with the PM.

L′0 Singular term critical distance obtained with the PM.

l′ Dimensionless critical distance obtained with the PM.

L′ Critical distance obtained with the PM.

f ′(l′) Correction function relating to the sharp and the rounded notch PM stress.

γ ′(l′) Inversion function for the PM critical distance determination.

δ1, . . . ,δ5 Coefficients for the PM polynomial inversion function.

S,S′ Critical distance sensitivity with respect to Kf for LM and PM respectively.

l′0,n, l
′
n Iterative l′0, l

′ values for the proposed direct problem numerical calculation.

1. Introduction

The theory of critical distances introduces a material length which inherently relates the notch sensitivity to

the local radius of a specimen or a component, both under monotonic fracture and fatigue loading [1, 2]. Of the

various formalisations, the most common are the Line Method (LM) and the Point Method (PM), which are both

considered in this paper. The Area and the Volume methods are also available. However, according to Taylor

and Wang [3], PM is the most accurate on variously notched specimens. When a multiaxial fatigue criterion

is required, combined with a high gradient stress condition, several approaches may be followed such as the

Volume method along with the Findley criterion [4]. The PM has been extensively applied together with the

Modified Wöhler Curve Method (MWCM) critical plane criterion [5], and this approach was recently extended

to the fretting fatigue [6, 7, 8, 9, 10]. The life assessment of metallic components under fretting loading has

also been performed by applying a critical plane-based multiaxial fatigue criterion, proposed by Carpinteri and

co-workers, in conjunction with the PM [11, 12]. Another application of interest for the critical distance is the

shot peened notch, where a compressive residual stress has a dominant role to improve the fatigue strength. The

LM has been found to be more appropriate to take into account the high gradient residual stress distribution,

with a specific profile, which cannot be accurately captured by a single point (PM) approach [13, 14]. Finally,

other methods such as the Implicit Gradient [15] and the Gradient Elasticity [16, 17, 18] entail advanced stress
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analysis yet still require a material dependent length.

The fatigue critical distance is generally determined by combining the threshold stress intensity factor range

∆Kth, with the plain specimen fatigue limit range ∆σfl:

L =
1
π

(
∆Kth

∆σfl

)2

(1)

Reference values for ∆Kth and ∆σfl can be found in dedicated papers and books such as Ref. [1]. However,

the data derived from the literature may refer to a material with a slightly different composition, even if the

nomenclature is the same, or with a different heat treatment. Without any reference data, the threshold stress

intensity factor range has to be found experimentally, for example by implementing the ASTM E647 standard

[19]. However some issues need to be considered:

• though well described in the ASTM standard, the experimental procedure is challenging and a specific

equipment is required;

• when the material is available in bars, instead of plates, a large size diameter is required in order to have

enough volume to produce the specimen itself;

• the fatigue crack growth test is usually performed on a very few samples, or even a single specimen, thus

without a sound statistical significance;

• after the specimen precracking, the material at the crack tip experiences damage, residual stress and

plasticity, while the critical distance is aimed at initially undamaged components where notches are just

produced by machining.

For these reasons, as an alternative to fracture mechanics testing, one of the critical distance methods can be

considered in order to be able to find the length that matches the notched and the plain specimen strengths, or

two notches with different severities. This approach can be found in several papers, especially those regarding

monotonic fracture, such as Li et al. [20], Yin et al. [21], Cicero et al. [22], Voiconi et al. [23], where the

threshold is replaced by the fracture toughness KIc, and the inherent strength σ0 has to be considered rather

than the fatigue limit. Susmel and Taylor [24] extensively applied this principle both for monotonic fracture and

fatigue loadings, and they found and validated a large material database of KIc and ∆Kth. The same approach was

also presented for finite fatigue life under torsional loading [25].

In this paper, the determination of the critical distance without the fracture mechanics test is obtained with a

dedicated notched specimen. An analytical formulation is also provided to straightforwardly calculate the critical

distance lengths both according to the LM and the PM, without the need of a specific finite element analysis,
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having obtained the required coefficients with accurate simulations. The sensitivity of the critical distance with

respect to the experimental data is then investigated in order to recommend an optimal specimen geometry.

As suggested by Taylor [26], a reliable estimate of the critical distance can be obtained with sharply-notched

specimens. In fact, this paper provides a range of accurate predictions which reveal that the minimum limit of

this range depends on the notch radius.

In principle any kind of notch type could be exploited for this inversion analysis. However, in order to avoid edge

effects and intermediate plain stress to plain strain conditions, plate specimens were not considered as a reference

geometry. The circumferentially notched cylindrical bar specimen was therefore selected for this study. U-notch

was not considered the best solution, since the local radius cannot be very small. On the other hand, sharp notch

and easy manufacturing can be obtained with a small radius V-notch and a relatively open angle, e.g. 60◦ or 90◦,

as shown by Campagnolo et al. [27] and Berto et al. [28] respectively.

2. V-notched specimen FE modelling

A series of linear elastic plane axisymmetric Finite Element (FE) simulations were performed to obtain the

numerical solutions and then provide the coefficients for the formulation analytically proposed. The dimensions

of the notched specimen are (Fig. 1): the bar diameter D, the notch depth A (defined up to the deepest point, both

sharp and rounded notches), the opening angle α and the notch radius R. The load type investigated is axial, and

the nominal (net) notch stress σN is defined as the uniform ligament stress.
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Figure 1: Specimen dimensions and axial stress distributions for: (a) sharp V-notch and (b) rounded V-notch.

Clearly, if the notch radius is zero (or assumed as zero), the stress distribution is unbounded and the singular term

is the dominant part of the linear elastic solution. After introducing a certain notch radius, the stress distribution

features a (bounded) maximum stress at the notch surface point, however the stress gradient ahead of the notch

tip still resembles the singular term distribution.
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2.1. Sharp V-notched specimen

Initially, the analysis focused on the perfectly sharp notch (zero radius). The singular term of the local stress

solution is:

σy(x) =
KN

xs (2)

where KN is the Notch-Stress Intensity Factor (N-SIF) with units [MPa mms ] and s is the power law singularity

exponent, or degree of singularity, which obviously is dimensionless. This exponent s was obtained by solving

the Williams’ problem [29] for a local plane sharp notch. The dependence on the opening angle α is shown in

Fig. 2 in agreement with Refs. [30, 31]. The accurate values of the exponent s for the two most common notch

angles α = 60◦ and α = 90◦ are also reported in the graph.
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Figure 2: Dependence of the Williams’ power law singularity exponent on the notch opening angle and specific values for α = 60◦ and
α = 90◦.

The stress linearity allows the definition of a unitary nominal stress N-SIF:

σy(x) = σN
KN,U

xs (3)

The self-similarity of the solution implies that the problem can be rescaled with respect to a dimension that

represents the specimen size. The reference dimension chosen was D/2, thus obtaining the following definitions:

a = A/(D/2),r = R/(D/2). Hence, Eq. 3 is rewritten as follows:

σy(ξ ) = σN
KN,UU

ξ s (4)

where ξ = x/(D/2) and KN,UU = KN,U/(D/2)s which is the dimensionless (net) N-SIF for unitary nominal stress

and unitary scaling length, i.e. when the specimen radius D/2 equals unity. The KN,UU values were obtained

by processing the near notch tip FE results with a linear logarithm fit, Fig. 3. The fit was taken after selecting
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the maximum slope range along the local coordinate to avoid both the stress gradient drop, far from the notch,

and the size effect of the elements at the tip. The fit stress slope was found to be in good agreement with the

theoretical power law singularity deduced from the Williams’ analysis.

(a)

6 nested 

refinements

( )y 

Dimensionless local coordinate, ξ

Logarithm fit to find, KN,UU

Axisymmetric plane model with

D/2 = 1, a = 0.1, …, 0.7
(b)

5

Innermost element

size 7.0 10 

Figure 3: FE model to accurately find the unitary N-SIF: (a) FE mesh with multiple refinements at the notch tip, (b) N-SIF determination
by means of optimized linear logarithm fit.

This dimensionless N-SIF only depends on the shape of the specimen, which is defined by the α angle and the

notch depth ratio a = A/(D/2). When the notch depth is quite small, the role of the specimen size is limited,

thus the deeper the notch, the higher the stress intensification. On the other hand, if the notch depth is large

and comparable to the size of the diameter bar, the stress gradient is limited by the relatively near diametrically

opposite side which experiences reverse stress gradient. Clearly, these two trends balance at an intermediate

depth where the intensity factor is maximum (Fig. 4) and this agreed with the net stress concentration factor

trend reported by Peterson’s handbook for similar geometries [32]. The maximum N-SIF at the dimensionless

notch depth a = 0.3 is evident for both α = 90◦ and α = 60◦, Fig. 4. This optimal value for a was then kept

for the rounded notch, assuming that the configuration with the most dominant singular term provides a more

developed gradient distribution in order to effectively evaluate the critical distance.

2.2. Rounded V-notched specimen

The FE model to find the stress distributions along the bisector of the rounded notch is shown in Fig. 5. A

fine mesh was initially prepared over the entire geometry, then a series of three circular refinements were applied,

thus obtaining an accurate stress simulation along the ligament section. The discretization of the output stress

path was 1× 10−5 (referred to D/2 = 1), which was then used for the dimensionless critical distance analysis

developed in Section 3. The rounded notch FE analyses were only limited to the depth a = 0.3 previously found

as maximum N-SIF, thus the remaining geometry variable was the notch radius. The radius ratio parameter
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Dimensionless notch depth, a

KN,UU Max at a = 0.3

Highest notch

stress int. factor 

= 60°

=90°

D
A
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D
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0.3210
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Figure 4: Dependence of the dimensionless N-SIF on the dimensionless depth for the notch angles α = 90◦ and α = 60◦.

ρ = R/A = r/a was introduced and the series of values ρ = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0 were analysed,

which ranged over two orders of magnitude to cover all the possible configurations by a large margin.

Fine base mesh 

and 3 nested 

refinements

Axisymmetric plane model with / 2 1,

0.3, 0.01, ..., 1.0

D

a 



 

5

Innermost element

size 8.7 10 

5

Path discretization:

point-to-point dist. 1 10 

5

Number of elements:

approx. 3 10

Figure 5: FE model to accurately find the axial stress distribution along the notch bisector of the rounded V-notched specimen.

The high resolution stress function σy(ξ ) obtained with the FE model, was then post-processed according to the

LM and PM. The average stress was calculated by implementing the trapezoidal rule over the sample points along

the bisector path, while the linear interpolation was used to evaluate the stress at a certain point on the same path.

This numerical database was used to calculate the inversion functions (introduced in Section 3) which were then

modelled to solve the inverse problem with accurate approximation, without the need to repeat the specific FE

analysis for any single radius ratio value.
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3. Critical distance determination

3.1. Line Method

According to the LM formalization, the critical distance determination entails finding the L value for which

the average stress equals the fatigue limit. The LM average integral can be easily rewritten according to the

dimensionless approach:

1
2L

∫ 2L

0
∆σy(x)dx =

1
2l

∫ 2l

0
∆σy(ξ )dξ (5)

where l = L/(D/2) is defined in agreement with the other dimensionless sizes introduced above.

If only the stress distribution singular term is considered, the dimensionless N-SIF can be introduced and the

average integral analytically solved:

1
2l

∫ 2l

0
∆σN

KN,UU

ξ s dξ =
∆σN

1− s
KN,UU

(2l)s (6)

By imposing the average stress, calculated for the notched specimen fatigue limit, equal to the plain specimen

fatigue limit, a simple equation follows:

∆σN,fl

1− s
KN,UU

(2l0)s = ∆σfl (7)

where l0 is the (dimensionless) LM critical distance within the framework of the singular stress assumption. The

fatigue stress concentration factor Kf = ∆σfl/∆σN,fl is then introduced:

1
1− s

KN,UU

(2l0)s = Kf (8)

and this power equation can be easily reversed to find l0:

l0 =
1
2

(
KN,UU

(1− s)Kf

)1/s

(9)

Finally, the dimensional critical distance L0 is obtained by multiplying it by the reference dimension D/2:

L0 =
D
4

(
KN,UU

(1− s)Kf

)1/s

(10)

The length L0 can be regarded as a first approximation of the critical distance L to be found, though not very

accurate in some circumstances, as is evident in the example presented in Section 4.1.

When the notch radius R is introduced, the stress distribution is bounded with a relatively severe gradient, in

which the material critical distance needs to be compared. Two extreme conditions can result:

• the critical distance is much smaller than the notch radius, as a consequence the local stress gradient is not

very high, Fig. 6 (a);
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Figure 6: Extreme conditions for determining the critical distance: (a) small critical distance with respect to the local radius; (b) relatively
large critical distance with respect to the notch depth; (c) inverse search uncertainty as a consequence of low gradient stress distribution.

• the critical distance is relatively too large, thus the integration length is partly outside the high gradient

region, Fig. 6 (b).

Of these two cases, the latter can be obtained even with a (theoretical) perfectly sharp notch, since it is a

comparison between the critical distance and the notch depth, while the former is specifically related to the

rounded notch case. The accuracy of the inverse search is limited for both these situations. Indeed, a sizeable

variation in the critical distance implies a small variation of the average stress, conversely, small variations in

the fatigue limit stresses, due to any experimental bias, introduce a large deviation in the critical distance, Fig. 6

(c). For this reason, these two cases need to be identified by introducing two limit values, and the inverse search

should be made in an intermediate range where the slope of the average stress is high.

The LM stress solution of a rounded notch, and its average integration according to the LM can still be computed

according to an analytical form [33], including the effects of the local radius and the second non-singular term

[34]. However, since the specific axisymmetric geometry of the V-notch on a relatively small diameter bar, an

accurate solution can only be obtained with the FE modelling.

The approach followed here was to keep the singular form as a reference and then introduce a multiplicative

correction function f (l). The average stress integration can be rewritten as:

1
2l

∫ 2l

0
∆σy(ξ )dξ = ∆σN

f (l)
1− s

KN,UU

(2l)s (11)

The function f (l) tends to zero for a vanishingly small critical distance l. Therefore, this function was considered

as an indicator to define the range limits for accurate inverse search. Theminimum dimensionless critical distance
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was defined by fixing f (l) equal to a certain fraction, and 0.5 was found to be an effective choice. When f (l) is

equal or smaller than 0.5, the local radius of the notch is relatively too large, with respect to the critical distance,

and the singular term is not predominant, Fig. 6 (a). On the other hand, if the critical distance is large, the

stress distribution is characterized by a lower gradient, Fig. 6 (b), and the integration of the actual stress tends

to go above the singular term, up to the condition of unitary correction function. The range 0.5 ≤ f (l) ≤ 1.0

was therefore taken, and further modelling was confined within these limits. As an example, Fig. 7 reports

the average stress for the notch radius ratio ρ = 0.1 and α = 90◦, showing the determination of the minimum

lmin and the maximum lmax dimensionless critical distances, corresponding to f (lmin) = 0.5 and f (lmax) = 1.0,

respectively.

Dimensionless critical distance (LM), l

av

N

( )l






N,UU1

1 (2 )s

K

s l

N,UU0.5

1 (2 )s

K

s l

minl maxl

Figure 7: Limit values for determining the critical distance based on the correction function, example with α = 90◦ and ρ = 0.1.

Similarly to above, after introducing the correction function, l and Kf can be related:

f (l)
1− s

KN,UU

(2l)s = Kf (12)

and by substituting Eq. 8, a relationship between l and l0 is obtained:

l
f (l)1/s = l0 (13)

An inversion function is finally defined as: γ(l) = l/ f (l)1/s to have the inverse problem simply formulated as:

γ(l) = l0 (14)

In this equation critical distance l is the unknown, while l0 is the known term carrying the experimental

information Kf. Alternatively, l0 can be seen as the first assessment value for l, which then has to be corrected by

solving Eq. 14.

The dependence of this inversion function γ(l) turned out to be very accurately approximated by a linear
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relationship, see for example Fig. 8 (a) for ρ = 0.1. For this reason, the dimensionless critical distance was

solved straightforwardly as a simple linear equation:

l = lmin +
l0− γmin

β
(15)

where:

β =
γmax− γmin

lmax− lmin
(16)

In principle, γmin and γmax are just the γ values for lmin and lmax, respectively. However, to recover small deviations

from a straight line of the γ(l) function, a weighted linear fit produced better results, especially for small l values,

instead of just connecting the maximum to the minimum points, Fig. 8 (b).
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Figure 8: (a) LM inversion function and effective range boundaries. (b) Weighted linearisation for a more accurate fit especially for small
dimensionless critical distances.

To have the limit values for l and γ as continuous functions of the radius ratio ρ , analytical fit models were

selected and were accurate at least in the radius ratio range ρ = 0.01−1.0. lmin and γmin were approximated with

polynomials as follows:

lmin = p1ρ3 + p2ρ2 + p3ρ + p4

γmin = q1ρ3 +q2ρ2 +q3ρ +q4

(17)

whereas the identity lmax = γmax, resulting from the maximum limit condition f (lmax) = 1 and Eq. 13, gave a

single equation for lmax and γmax:

lmax = γmax = c1 + c2ρ
c3 (18)

The coefficients for these models, about the notch angles α = 90◦ and 60◦, are listed in Table 1, with γmin derived

by considering the weighted fit of the γ(l) function.
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Table 1: pi,qi,ci fit model coefficients for the limit values of l and γ .
Notch angle α = 90◦, notch depth a = 0.3, radius ratio range ρ = 0.01−1.0

p1,q1,c1 p2,q2,c2 p3,q3,c3 p4,q4

lmin 1.5331595E-03 -5.4476787E-03 1.3930191E-02 4.3940341E-06
γmin 4.3035219E-03 -2.0461370E-02 6.2189732E-02 -9.0345965E-06
lmax -7.8790423E-02 1.8286498E-01 1.4527845E-01
Notch angle α = 60◦, notch depth a = 0.3, radius ratio range ρ = 0.01−1.0

p1,q1,c1 p2,q2,c2 p3,q3,c3 p4,q4

lmin 3.4760317E-03 -1.0042167E-02 1.8482608E-02 1.3622097E-05
γmin 1.2733490E-02 -3.9007230E-02 7.5860044E-02 1.0597477E-04
lmax 1.7783232E-02 8.5788750E-02 3.2189338E-01

The trends of the limit values are reported in Fig. 9 in logarithm scales. The minimum limit lmin and the

corresponding γmin strongly depend on the notch radius, indeed their variation is almost two orders of magnitude

as ρ ranges from 0.01 to 1.0. On the other hand, the maximum limit lmax depends less on the radius since it is

related to the stress distribution over a wider range of the notch region.
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Figure 9: Trends of the l and γ limit values, for α = 90◦, in the investigated range of the radius ratio ρ .

3.2. Point Method

The determination of the critical distance according to the PM is presented in this section following the

same steps as the determination with the LM. Initially, the point stress is analytically evaluated at half of the

(dimensionless) critical distance position, only considering the singular term:

∆σN,fl
KN,UU

(l′0/2)s = ∆σfl (19)

where l′0 is the PM counterpart of the previously defined l0 for the LM. The fatigue stress concentration factor is
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then introduced and related to this length:

KN,UU

(l′0/2)s = Kf (20)

and this equation can be solved for l′0:

l′0 = 2
(

KN,UU

Kf

)1/s

(21)

Finally, by multiplying for D/2, the dimensional length L′0 is obtained:

L′0 = D
(

KN,UU

Kf

)1/s

(22)

This expression for L′0 is similar to the corresponding equation for the LM length L0 (Eq. 10). Obviously, if

the angle α were zero, the crack geometry would result which implies s = 0.5, and then the LM and the PM

singular term lengths would be equal: L0 = L′0. On the other hand, if α > 0 the PM value is slightly larger, and

the relative difference is approximately 1.5% for α = 60◦ and 5% for α = 90◦.

A new correction function is introduced to take into account the actual stress distribution:

∆σN,fl f ′(l′)
KN,UU

(l′/2)s = ∆σfl (23)

after introducing Kf and substituting Eq. 20, the same form as above for the inverse problem is obtained:

l′

f (l′)1/s = l′0 (24)

and the PM inversion function definition γ ′(l′) = l′/ f (l′)1/s reduces the inverse search as:

γ
′(l′) = l′0 (25)

Unlike the LM, the function γ ′(l′) is not linear, and 4th degree polynomial was found to provide an accurate

approximation within the same LM range (lmin− lmax):

l′ = δ1 l′0
4
+δ2 l′0

3
+δ3 l′0

2
+δ4 l′0 +δ5 (26)

As an example, Fig. 10 shows the PM inversion function obtained by fitting the FE data for α = 90◦ and ρ = 0.1.

The δi coefficients depend in a complex way on the radius ratio. In order to make them available, these

dependences are reported as tabular values in Tables 2 and 3 for α = 90◦ and α = 60◦, respectively. The

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) was used to improve the resolution in terms of ρ .

For example, the δ3 coefficient function for α = 90◦ is shown in Fig. 11, which reports both the reference FE

values and the PCHIP which preserves the function shape and smoothly interpolates the reference points.
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4. Applications of the analytical procedure

4.1. LM and PM critical distance determination examples

An example with realistic data is reported here to show in details the two calculation procedures according

to the PM and the LM. The specimen dimensions are:

D = 20 mm, α = 90◦, A = 3 mm, R = 0.2 mm, ρ = 0.0667 (27)

and the notch singularity parameters for α = 90◦ (see Figs. 2 and 4), are:

s = 0.455516, KN,UU = 0.3210 (28)

The maximum and minimum dimensionless critical distance limits are obtained by means of Eqs. 17 and 18

along with the corresponding inversion function boundaries:

lmin = 0.000909, γmin = 0.004047, lmax = γmax = 0.04460 (29)
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Table 2: δi coefficients as function of the radius ratio ρ , α = 90◦.
ρ δ1 δ2 δ3 δ4 δ5
0.010 -4.0625068E+05 1.3254291E+04 -1.5735507E+02 1.8756197E+00 -8.3757643E-04
0.015 -2.0274357E+05 8.0211209E+03 -1.2275768E+02 1.9328524E+00 -1.3066123E-03
0.020 -8.6517506E+04 4.8921480E+03 -1.0154513E+02 1.9927558E+00 -1.8215206E-03
0.030 -5.1291681E+04 3.4643434E+03 -8.9951601E+01 2.1258786E+00 -2.9992639E-03
0.040 -3.2578318E+04 2.6704605E+03 -8.3263462E+01 2.2659113E+00 -4.3082657E-03
0.050 -2.4660913E+04 2.2881305E+03 -8.0269106E+01 2.3946781E+00 -5.6862588E-03
0.060 -2.0805181E+04 2.0693125E+03 -7.8961946E+01 2.5094271E+00 -7.1198231E-03
0.070 -1.7944659E+04 1.9052482E+03 -7.8047904E+01 2.6188123E+00 -8.6244163E-03
0.080 -1.5864574E+04 1.7824934E+03 -7.7384144E+01 2.7217664E+00 -1.0181087E-02
0.090 -1.4350154E+04 1.6876038E+03 -7.6827827E+01 2.8172221E+00 -1.1770886E-02
0.100 -1.3186628E+04 1.6071350E+03 -7.6236117E+01 2.9041121E+00 -1.3374861E-02
0.120 -1.1255252E+04 1.4636002E+03 -7.4974192E+01 3.0619358E+00 -1.6634614E-02
0.140 -9.6823246E+03 1.3428683E+03 -7.3813836E+01 3.2066934E+00 -1.9981617E-02
0.160 -8.4416131E+03 1.2433092E+03 -7.2751063E+01 3.3388229E+00 -2.3395963E-02
0.180 -7.5068873E+03 1.1632928E+03 -7.1781887E+01 3.4587621E+00 -2.6857743E-02
0.200 -6.8519162E+03 1.1011888E+03 -7.0902322E+01 3.5669490E+00 -3.0347049E-02
0.250 -5.6654703E+03 9.7870186E+02 -6.8958378E+01 3.8134532E+00 -3.9212343E-02
0.300 -4.7055330E+03 8.7740106E+02 -6.7254734E+01 4.0401526E+00 -4.8277871E-02
0.350 -3.9424256E+03 7.9384328E+02 -6.5712999E+01 4.2462522E+00 -5.7471352E-02
0.400 -3.3464697E+03 7.2458535E+02 -6.4254782E+01 4.4309576E+00 -6.6720508E-02
0.450 -2.8879867E+03 6.6618413E+02 -6.2801694E+01 4.5934739E+00 -7.5953057E-02
0.500 -2.5372980E+03 6.1519647E+02 -6.1275344E+01 4.7330064E+00 -8.5096720E-02
0.600 -1.9546400E+03 5.1993752E+02 -5.8103304E+01 4.9827254E+00 -1.0322669E-01
0.700 -1.4522507E+03 4.3251698E+02 -5.4944570E+01 5.2118840E+00 -1.2131309E-01
0.800 -1.0584000E+03 3.5989780E+02 -5.1800550E+01 5.4071396E+00 -1.3935146E-01
0.900 -8.0135821E+02 3.0904295E+02 -4.8672656E+01 5.5551495E+00 -1.5733732E-01
1.000 -7.0939535E+02 2.8691538E+02 -4.5562298E+01 5.6425711E+00 -1.7526620E-01

By multiplying for the reference dimension D/2, the limits Lmin and Lmax are easily obtained:

Lmin = (D/2) lmin = 0.00909 mm, Lmax = (D/2) lmax = 0.4460 mm (30)

Assuming a value for Kf that is typical for a quite sharp notch and a high strength metal alloy, the singular term

LM critical distance is then calculated with Eq. 9:

Kf = 3.5, l0 = 0.01002 (31)

The dimensionless critical distance l can be obtained from Eq. 15, and the final L value is:

l = 0.00734, L = (D/2) l = 0.0734 mm (32)

which falls well inside the range Lmin−Lmax.

Now this example with the same geometry and fatigue stress concentration factor input is repeated for the PM

procedure. l′0 is calculated with Eq. 21 which gives a value similar to l0:

Kf = 3.5, l′0 = 0.01055 (33)
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Table 3: δi coefficients as function of the radius ratio ρ , α = 60◦.
ρ δ1 δ2 δ3 δ4 δ5
0.010 -1.0336805E+04 9.2508401E+02 -2.8841864E+01 1.3658263E+00 -3.6646815E-04
0.015 -1.1927899E+04 1.1271447E+03 -3.7532418E+01 1.5338756E+00 -9.2141543E-04
0.020 -1.2744751E+04 1.2499543E+03 -4.3947712E+01 1.6794386E+00 -1.5289537E-03
0.030 -1.2565950E+04 1.3152821E+03 -5.1328805E+01 1.9122292E+00 -2.9184154E-03
0.040 -1.2155047E+04 1.3533900E+03 -5.6559601E+01 2.1089337E+00 -4.4575143E-03
0.050 -1.1700291E+04 1.3657627E+03 -5.9681694E+01 2.2744973E+00 -6.0599774E-03
0.060 -1.1225304E+04 1.3564379E+03 -6.1638299E+01 2.4183912E+00 -7.7027882E-03
0.070 -1.0665461E+04 1.3325856E+03 -6.3296655E+01 2.5479343E+00 -9.4088204E-03
0.080 -1.0076647E+04 1.3003888E+03 -6.4584386E+01 2.6648437E+00 -1.1160636E-02
0.090 -9.5147424E+03 1.2660304E+03 -6.5429116E+01 2.7708360E+00 -1.2940796E-02
0.100 -9.0356311E+03 1.2356935E+03 -6.5758469E+01 2.8676282E+00 -1.4731862E-02
0.120 -8.2132180E+03 1.1802430E+03 -6.5841784E+01 3.0444486E+00 -1.8356878E-02
0.140 -7.4418951E+03 1.1217439E+03 -6.5902954E+01 3.2046141E+00 -2.2055805E-02
0.160 -6.7510140E+03 1.0643838E+03 -6.5944067E+01 3.3492680E+00 -2.5808708E-02
0.180 -6.1699262E+03 1.0123503E+03 -6.5967205E+01 3.4795538E+00 -2.9595649E-02
0.200 -5.7279831E+03 9.6983099E+02 -6.5974454E+01 3.5966148E+00 -3.3396691E-02
0.250 -4.8892966E+03 8.8451557E+02 -6.5684501E+01 3.8618732E+00 -4.2994840E-02
0.300 -4.1787812E+03 8.0963937E+02 -6.4911190E+01 4.1036661E+00 -5.2739827E-02
0.350 -3.5853512E+03 7.4405954E+02 -6.3799345E+01 4.3222430E+00 -6.2568320E-02
0.400 -3.0979214E+03 6.8663319E+02 -6.2493791E+01 4.5178534E+00 -7.2416987E-02
0.450 -2.7054060E+03 6.3621745E+02 -6.1139352E+01 4.6907467E+00 -8.2222494E-02
0.500 -2.3967197E+03 5.9166945E+02 -5.9880852E+01 4.8411724E+00 -9.1921509E-02
0.600 -1.8753865E+03 5.0964919E+02 -5.7461307E+01 5.1130966E+00 -1.1111942E-01
0.700 -1.4144811E+03 4.3434980E+02 -5.4851063E+01 5.3628133E+00 -1.3020646E-01
0.800 -1.0458429E+03 3.6994290E+02 -5.2049173E+01 5.5768889E+00 -1.4917055E-01
0.900 -8.0131109E+02 3.2060010E+02 -4.9054690E+01 5.7418898E+00 -1.6799960E-01
1.000 -7.1272509E+02 2.9049302E+02 -4.5866667E+01 5.8443823E+00 -1.8668153E-01

From Table 2 (α = 90◦), by linearly interpolating ρ = 0.0667 between the two tabular values ρ = 0.060 and

ρ = 0.070, the δi coefficients are obtained:

δ1 =−1.88982×104, δ2 = 1.95994×103, δ3 =−7.83526×101,

δ4 = 2.58235, δ5 =−8.12289×10−3
(34)

The PM dimensionless critical distance is calculated with Eq. 26 and the final L′ value is:

l′ = 0.01247, L′ = (D/2) l′ = 0.1247 mm (35)

These two inverse searches are reported in Fig. 12 which highlights that, despite the similar l0 and l′0 values, the

relative difference between LM and PM critical distances can be considerable, at least for this combination of

input values.

4.2. Inverse search validation

The proposed critical distance determination procedure was validated with a series of numerical cases in

which the average stress (LM) and the point stress (PM) were back-calculated by post-processing the results of

full scale FE models, exploring different combinations of the geometry parameters. The first of these simulations
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Figure 12: Inverse search example and comparison between the critical distances obtained with the LM and the PM.

regarded the previous example and the calculated stresses are reported in Fig. 13 where the PM and the LM

stresses are in evident agreement with the reference stress. All the results of the analysed validation cases are

listed in Table 4. The errors with respect to the reference stress were always below 1%.
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Figure 13: LM and PM back-calculated stresses and comparison with the reference stress.

This analysis confirmed the high accuracy of the proposed calculation, at least for the geometrical dimensions

considered here. Nevertheless, there is some inaccuracy with extremely low l values, and consequently very

small ρ , which are, however, unrealistic for most of the engineering materials.
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Table 4: Successful validation analysis, small stress percentage errors obtained for different parameter combinations.
Test n. 1 α = 90◦ Test n. 2 α = 90◦ Test n. 3 α = 90◦

R = 0.2 mm Kf = 3.5 R = 0.2 mm Kf = 4.2 R = 0.2 mm Kf = 4.9
L = 0.0734 mm L′ = 0.1247 mm L = 0.0378 mm L′ = 0.0686 mm L = 0.0171 mm L′ = 0.0314 mm
LM err. 0.74% PM err. 0.06% LM err. 0.60% PM err. 0.34% LM err. −0.42% PM err. −0.001%
Test n. 4 α = 90◦ Test n. 5 α = 90◦ Test n. 6 α = 90◦

R = 1.0 mm Kf = 1.7 R = 1.0 mm Kf = 2.5 R = 1.0 mm Kf = 2.6
L = 0.4190 mm L′ = 0.6779 mm L = 0.070 mm L′ = 0.134 mm L = 0.049 mm L′ = 0.092 mm
LM err. −0.18% PM err. −0.08% LM err. −0.04% PM err. 0.03% LM err. −0.25% PM err. 0.03%
Test n. 7 α = 60◦ Test n. 8 α = 60◦ Test n. 9 α = 60◦

R = 0.2 mm Kf = 3.5 R = 0.2 mm Kf = 4.2 R = 0.2 mm Kf = 5.2
L = 0.084 mm L′ = 0.140 mm L = 0.045 mm L′ = 0.081 mm L = 0.014 mm L′ = 0.028 mm
LM err. 0.37% PM err. −0.11% LM err. 0.66% PM err. 0.23% LM err. −0.06% PM err. −0.45%
Test n. 10 α = 60◦ Test n. 11 α = 60◦ Test n. 12 α = 60◦

R = 1.0 mm Kf = 1.7 R = 1.0 mm Kf = 2.3 R = 1.0 mm Kf = 2.5
L = 0.435 mm L′ = 0.682 mm L = 0.130 mm L′ = 0.238 mm L = 0.074 mm L′ = 0.141 mm
LM err. −0.54% PM err. 0.72% LM err. 0.19% PM err. 0.34% LM err. 0.29% PM err. 0.29%

4.3. Sensitivity to the experimental input

The proposed LM and PM inversion procedures provide the relationship between the experimental input

Kf and the critical distance output L or L′. The sensitivity analysis presented here quantifies how the inverse

search result is affected by a variation of the input, e.g. due to any experimental issues or as a result of the non-

homogeneity of the material. Considering the example reported in Section 4.1, and assuming a small alteration

of Kf, such as ∆Kf = 0.1, the LM and PM critical distance variations are:

L = 0.0734 mm, ∆L =−0.0065 mm

L′ = 0.1247 mm, ∆L′ =−0.0096 mm
(36)

These variations have more significance if related to the size of the critical distances themselves and the entity of

the input alteration. Rather than the finite difference ratios, the derivatives are considered , giving the following

sensitivity definitions:

S =−1
L

dL
dKf

=−1
l

dl
dKf

, S′ =− 1
L′

dL′

dKf
=−1

l′
dl′

dKf
(37)

In principle, these sensitivity functions could be analytically calculated by combining the equations reported

above. However, in order to avoid heavy calculations, a numerical analysis was implemented. LM and PM

sensitivity graphs are shown in Fig. 14 for the entire ρ range investigated. The graphs highlight that the lower

the radius ratio ρ , the lower the sensitivity, especially for small critical distance values. This always happens for

the LM, while for the PM some of the lower ρ lines can be slightly above the higher ρ lines, but only for large

critical distances. Considering a certain specimen geometry, i.e. by following a single ρ line, there is a minimum

sensitivity which can be interpreted as an optimal configuration. At the lateral extremes, the higher sensitivity

can be explained by the two conditions of Fig. 6 (a) and (b) which are the cases of excessively small or overly large
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critical distances, respectively. This evidence confirmed that Lmin−Lmax is the effective range for an accurate

inverse search where the sensitivity to bias is small. Therefore, the critical distance result obtained should be well

inside this range. If not, the experimental fatigue series should be repeated with a revised specimen geometry.

A smaller notch radius is required for a low critical distance, while a higher diameter specimen is recommended

for a large critical distance. On the other hand, if a preliminary guess value is available, e.g. from the literature

or other tests, the availability of Lmin and Lmax means that the notched specimen can be sized correctly.
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Figure 14: Sensitivity functions of the critical distance determination for: (a) LM and (b) PM.

4.4. Direct problem

Besides the inverse search, in which the critical distance is the unknown, the proposed analytical procedure

can be used to solve the “direct” problem, where the critical distance is known (or assumed as known) and the

specimen fatigue stress concentration factor is assessed. For example, this is useful for a preliminary evaluation

of the loads for the notched specimen fatigue test series, at least to have a starting point.

The direct problem can be solved straightforwardly for the LM, since the relationship between the variables l and

l0 just linear. l0 is initially found from l:

l0 = γmin +β (l− lmin) (38)

and then Kf is derived from l0 with Eq. 8.

The PM derivation of l′0 from l′ is more challenging since it has a 4th degree polynomial which cannot be easily

inverted, though analytically possible. An iterative procedure is suggested here. After having verified that l′ falls

in the range lmin− lmax, the average of these two values is assumed as the first guess value for l′0:

l′0,1 = (lmax + lmin)/2 (39)
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and the corresponding l′1 is obtained from Eq. 26. If l′1 > l′ the guess value needs to be decreased, otherwise

increased. A small increase or decrease quantity is suggested, such as 0.001, and then the guess value is updated:

l′0,2 = l′0,1−0.001 if l′1 > l′

l′0,2 = l′0,1 +0.001 if l′1 < l′
(40)

This updating has to be repeated until the inequality check reverses at the n-th iteration, thus obtaining:

l′n > l′ > l′n−1 or l′n < l′ < l′n−1 (41)

A local linearisation, such as for the LM as shown in Fig. 15, is sufficiently accurate since the suggested step

quite small, and the last iteration value can be easily found:

l′0,n+1 = l′0,n +
l′0,n−1− l′0,n

l′n−1− l′n
(l′− l′n) (42)

Finally, Kf is obtained with Eq. 20 introducing l′0,n+1 as an accurate approximation of l′0. With regard to the

example at the beginning of this section, Kf = 3.4995 was found with this iterative procedure which is very

similar to the reference value Kf = 3.5.
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Figure 15: Numerical iterative procedure suggested for the PM direct problem.

5. Conclusions

In this paper, a small radius V-notched specimen has been presented as an alternative to the crack threshold

stress intensity factor for determining the fatigue critical distance, and a calculation procedure is provided to

avoid the specific FE simulation of the specimen. The present analysis was formulated as dimensionless where

the fatigue stress concentration factor (the experimental input) was initially converted into a preliminary critical

distance value, based on the singular stress term, and the definitive length is then obtained as the solution of an

inverse problem. This inversion turned out to be linear with the Line Method, while a 4th degree polynomial was
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required for the Point Method. A series of validation tests confirmed the accuracy of the analytical modelling

and the coefficients provided. By means of a specific definition of a sensitivity parameter, it was shown how

the obtained critical distance value should fall in a certain range to avoid an ill-posed inverse problem. If the

material critical distance is expected to be relatively small, the notch radius has to be sharp as well. On the other

hand, if the critical distance is high, the specimen size should be large accordingly. Numerical examples with

typical values for structural metals were presented in order to show step-by-step the application of this analytical

procedure. Though not reported in this paper, an experimental activity is being performed and the results will

be available in future publications.

The same approach can be applied to other critical distance formalizations, such as the Area or the Volume

Methods, or even to a multiaxial criterion combined for example with the Point method, to accurately provide the

specific length. The steps to follow are the same: put the problem in a dimensionless form, derive the length as

based on the singular term, define and calculate the inversion function, and model its dependence on the radius

ratio.

This study has only investigated calculating the critical distance in the case of fatigue loading. In principle, the

same specimen and procedure could equally be used for the monotonic fracture critical distance. However, the

inherent strength σ0 should either be equal to the ultimate tensile strength (e.g. for brittle materials) or at least

known from another test. With σ0 available, the fatigue stress concentration factor Kf can simply be replaced

by the ratio between the material inherent strength and the notched specimen nominal stress at fracture. On the

hand, if the inherent strength is unknown, this procedure cannot be applied since two notched specimens are

required with different levels of sharpness.
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