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Shot noise suppression due to a magnetic field in disordered conductors
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Abstract We investigate the effect of an orthogonal mag-

netic field on a 2-D disordered wire, by means of a numeri-

cal model based on the recursive Green’s function technique.

We discuss the resulting behavior of the shot noise suppres-

sion factor and of the conductance in terms of the interplay

among the relevant transport quantities, i.e. the mean free

path, the localization length, the average separation between

impurities and the cyclotron radius. We find that, starting

from a diffusive or quasi-diffusive behavior, shot noise is

increasingly suppressed as the magnetic field is turned on,

up to a noiseless condition typical of the disappearance of

backscattering for edge states.

1 Introduction

Shot noise suppression in ballistic and diffusive conductors

has been the subject of an intense research effort in the last

two decades [1], with quite interesting results from both the

theoretical and the experimental point of view.

In particular, it is well-known that the shot noise power

spectral density is suppressed in disordered conductors with

respect to the full shot noise power spectral density yielded

by Schottky’s theorem [2]. Beenakker and Büttiker [3] pre-

dicted, based on random matrix theory [4], that shot noise

in a diffusive conductor is reduced down to 1/3 of its full

value. This effect was experimentally confirmed by Henny

et al. [5] for metallic diffusive wires, while its observation
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has proved to be elusive in semiconductors [6], mainly be-

cause of the difficulty in achieving the right parameter com-

bination in a semiconductor nanostructure [7]. A few years

ago we observed [8] that application of an orthogonal mag-

netic field led to further suppression of shot noise below the

1/3 value, but at the time we did not investigate the issue in

detail, mainly due to the computational cost of an in-depth

analysis of this effect. Here we report the results of numer-

ical simulations made possible by the availability of better

computational resources and of improved codes, aimed at

obtaining a more accurate picture of the dependence of shot

noise suppression on magnetic field. We will focus on the

role played by an orthogonal magnetic field on shot noise

suppression in two dimensional disordered conductors, ana-

lyzing the behavior in terms of the conductance, the localiza-

tion length, the cyclotron radius and the average separation

between impurities, which we assume as hard-wall scatter-

ers, since we have previously observed [7,9] that their effect

on shot noise suppression is substantially equivalent to that

of a more realistic but more computationally expensive soft-

wall disordered potential.

The paper is organized as follows: in the next section we

discuss the numerical method that we have adopted, based

on the recursive Green’s function approach [10–13], while

in the third section we report the results of the numerical

simulation and their interpretation.

2 Numerical Method

We have evaluated the conductance and the shot noise power

spectral density from the transmission matrix of the struc-

ture, which has been computed with the recursive Green’s

function method.

Defining x, y and z as the coordinates in the longitudi-

nal, transverse and orthogonal directions (and x̂, ŷ and ẑ as
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the corresponding unit vectors), we include the effect of a

magnetic field B = Bẑ orthogonal to the plane containing

the device by means of a Landau gauge with a transversally-

oriented vector potential A= (Bx)ŷ.

In our simulations we subdivide the structure into a se-

ries of cascaded sections, within each of which both the elec-

trostatic and the vector potential can be approximated as lon-

gitudinally constant.

With the adopted Landau gauge, in each section the so-

lutions of the Schrödinger equation coincide with those in

the absence of a magnetic field, except for the multiplica-

tion of the transverse component of the wave function by a

Peierls phase factor [14–16]. In detail, if in the i-th section

(with longitudinal coordinate xi) the n-th transport mode, in

the absence of a magnetic field, is given by

ψ0
n,xi

(x,y) = χ0
n,xi

(y)eik
0
n,xi

x , (1)

in the presence of a magnetic field it becomes

ψn,xi(x,y) =
[

χ0
n,xi

(y)e−i e
h̄
Bxiy

]

e
ik0n,xi

x , (2)

where χ(y) is the transverse component of the wave func-

tion, k the longitudinal wave vector, e the elementary charge,

and h̄ the reduced Planck constant.

We use a mixed representation for the Green’s functions

[11–13]: in the real space along x and in the space of the

transverse eigenmodes along y. Therefore, the Green’s func-

tion G relates two points along x and two modes along y.

For the numerical simulations, a grid of discretization nodes

with a step a is used along x; the nodes will be identified

with their position number.

We first assume the sections as isolated from one an-

other, with Dirichlet boundary conditions at their ends. In

this case, the Green’s function matrix between any pair of

points along x (which is a function of the transverse modes)

can be represented with a diagonal matrix because no mode-

mixing exists inside each longitudinally-invariant section.

As we will detail below, for each element of this matrix,

which represents an independent one-dimensional problem,

an analytical expression is available, as a function of the lon-

gitudinal wave vector k and discretization step a.

Once the Green’s functions of the single isolated sec-

tions have been computed, they can be recursively composed

using the Dyson equation.

Let us consider a couple of adjacent sections and let us

call V the part of Hamiltonian (written on the basis of the

nodes along x and of the modes along y) which couples the

two sections (ifH0 andH are the Hamiltonians of the system

when the sections are uncoupled and coupled, respectively,

then H = H0+V ). If G0 (G) is the Green’s function of the

unperturbed (perturbed) system represented by the two un-

coupled (coupled) sections, then:

G= G0+G0VG (3)

Gab
0 G

0
bb

G
0
cc

G
0
cdG

0
aa

ca b d

Fig. 1 Sketch of the Green’s functions required for the composition

of two adjacent section, extending from the node a to the node b, and

from the node c to the node d, respectively.

(Dyson equation). This is an implicit equation, but it can be

recast into a set of explicit relations.

In detail, let us define Gi j = 〈i|G| j〉 the Green’s function
between the generic nodes i and j of the discretization grid

along the x direction. When composing the section running

from node a to node b with the section running from node

c (adjacent to b) to node d, Gad and Gaa can be computed

from the Green’s functions represented in Fig. 1 using the

following relations:

Gaa = G0
aa+G0

abVbc(I−G0
ccVcbG

0
bbVbc)

−1G0
ccVcbG

0
ba

Gad = G0
abVbc(I−G0

ccVcbG
0
bbVbc)

−1G0
cd , (4)

which derive from Eq. (3).

Note that since the term which, in the real space, couples

two adjacent nodes along x is v = −h̄2/(2ma2) (where m is

the effective mass of the electrons), the elements of the ma-

trix Vi j coupling adjacent nodes i and j of different sections

are equal to the overlap integrals of the transverse modes in

the two neighboring sections multiplied by v.

The relations (4) are used as follows. We assume two

semi-infinite leads attached to the left and right ends of the

device, in order to enforce absorbing boundary conditions.

Starting from the right semi-infinite lead, for which, as we

will shortly detail, we know G0
cc and G0

cd , and from the ad-

jacent section at its left, for which G0
aa, G

0
ab and G0

bb are

available, we compute the Green’s functions Gaa and Gad

of the block deriving from their composition. Considering

these two functions as the new G0
cc and G0

cd , we can fur-

ther compose this block with the section at its left, again

using Eqs. (4). Recursively repeating this procedure for all

the sections up to the left semi-infinite lead, we can obtain

the Green’s functions of the overall device.

As we have briefly mentioned, the Green’s functions, be-

tween pairs of nodes, of the semi-infinite leads and of the

single sections (which we have exploited in the described

procedure) have a diagonal matrix representation in the space

of the transverse modes. The analytical expressions of the

elements of these matrices, one for each mode (let us define

(G0
i j)n = 〈n|G0

i j|n〉 for a generic mode n), can be derived

exploiting the expression of the Green’s function between

two generic nodes of an infinite one-dimensional discretized

chain [17,18] and are reported in the following.
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For the semi-infinite right lead, with first node c and a

generic node d:

(G0
cd)n =

eiNθn

v
, (G0

cc)n =
eiθn

v
, (5)

where θn = kna (with kn the longitudinal wave vector for the

mode n) and N = |d−c|+1 (the number of nodes from c to

d).

For each single finite section, extending from the node a

to the node b:

(G0
ab)n =

sinθn
vsin(N+1)θn

,

(G0
aa)n = (G0

bb)n =
sinNθn

vsin(N+1)θn
, (6)

where N = |b−a|+1 (the number of nodes from a to b).

Finally, for the semi-infinite left lead, with generic node

a and last node b:

(G0
ab)n =

eiNθn

v
,

(G0
aa)n =

eiNθn

v

sinNθn
sinθn

, (G0
bb)n =

eiθn

v
, (7)

where N = |b−a|+1 (the number of nodes from a to b).

Once the Green’s functions of the overall device have

been computed, by means of the recursive procedure we

have described, it is possible to obtain the transmission and

reflection matrices. The elements of the transmission matrix

between the nodes j and l and of the reflection matrix at the

node l are given by [11,19]

tnm = −i2v(sinθn sinθm)
1/2ei(θml−θn j)〈n|G jl |m〉 , (8)

rnm = −(sinθn/sinθm)
1/2ei2(θn+θm)l ×

(i2vsinθm〈n|Gll |m〉+δmn) , (9)

where n and m specify two propagating modes (at the nodes

j and l, respectively, in Eq. (8); both at the node l in Eq. (9))

and δmn is a Kronecker delta.

In order to exploit the relations (8)-(9), which are valid

in the absence of magnetic field, we have considered a mag-

netic field which is null at the nodes of the leads between

which the Green’s functions are computed and then linearly

increases (from the leads towards the center of the struc-

ture) until it reaches the desired constant value, which is then

kept constant across the operating region of the device (see

Fig. 2).

The length of the sections into which the device is sub-

divided is limited by the fact that the method is valid only

if the longitudinal variations of the electrostatic and the vec-

tor potential within each section are negligible. In particular,

the flux of the magnetic field through each section has to be

less than the magnetic flux quantum h/(2e) [14]. For high
values of the magnetic field and for wide structures this con-

straint strongly increases the number of sections that have to

be considered and thus the computational times.
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Fig. 2 Value of the orthogonal magnetic field as a function of the lon-

gitudinal coordinate; the magnetic field is ramped from zero to its full

value (constant in the active region) and than back to zero.

Once the transmission matrix of the overall device is ob-

tained, its conductance G and the shot noise power spec-

tral density SI can be computed exploiting the Landauer-

Büttiker approach [20,21]. In particular, if wi are the eigen-

values of the matrix t†t, G and SI can be obtained from:

G=
2e2

h
∑
i

wi , SI =
4e2

h
|eV |∑

i

wi(1−wi) , (10)

where V is the voltage applied between the contacts of the

device. As a consequence, the Fano factor F (i.e., the shot

noise suppression factor with respect to the full shot noise

power spectral density SI = 2e|I|= 2e|V |G) is given by

F =
〈∑ jwi(1−wi)〉

〈∑iwi〉
, (11)

where the angle brackets indicate an average over the elec-

tron energies.

Notice that the choice of the exact positions in the leads

of the points between which the Green’s function is com-

puted has no influence onG, SI and F because, as it is appar-

ent in Eq. (8), it modifies only the phase of the transmission

matrix.

Since here we are interested in the evaluation of shot

noise, we assume a bias condition for which shot noise is

prevalent with respect to thermal noise and thus we consider

an applied voltage V between the terminals much greater

than kT/e (where k is the Boltzmann constant and T is the

absolute temperature). In these conditions, on an energy range

eV the Fermi-Dirac distribution function can be approxi-

mated with a step function and thus the averages in Eq. (11)

are uniform averages over all the energies between the Fermi

levels of the two contacts. These averages have to be per-

formed separately for the numerator and the denominator (as

in actual measurements, where noise and current are mea-

sured separately), before taking the ratio.

Since, especially in disordered samples with a low num-

ber of randomly located scatterers, the results strongly de-

pend on their actual distribution, sometimes it can also be
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Fig. 3 Realization of the disordered potential, with 500 square 10 nm

× 10 nm obstacles, with a height of 40 meV.

useful to perform an average of the values of Fano factor

obtained for several scatterer distributions. From an experi-

mental point of view, this corresponds to averaging the re-

sults obtained measuring different samples, in order to ob-

tain an estimate of the most likely conductance and noise

values.

3 Results and Discussion

The first structure that we have studied is a square 2-D con-

ductor with a size of 2µm ×2µm and 500 hard-wall square

10 nm × 10 nm randomly distributed scatterers. The Fermi

energy is assumed to be 6.24 meV (as in all the follow-

ing simulations), and results are averaged over 21 uniformly

spaced energy values in a range of 40 µeV around the Fermi

level, which corresponds to±10kT , for T ≃ 23 mK. A real-

ization of the scatterer landscape is reported in Fig 3.

The density of scatterers is chosen in such a way that

transport is in the diffusive regime, i.e. the inequality lel ≪
L≪ lloc is satisfied, where lel is the elastic mean free path, L

is the device length and lloc is the localization length, which,

in the presence of 2-D or 3-D disorder is about Nlel in the

absence of a magnetic field and about twice such value in

the presence of a magnetic field [7,4,22,23].

In Fig. 4 we show the computed conductance, in units of

the conductance quantumG0 = 2e2/h (where h is the Planck
constant), as a function of magnetic field. There is a slight

increase of the conductance as the magnetic field is turned

on (probably due to the suppression of weak localization)

and then a substantially linear decrease.

Indeed for zero or very small magnetic field the Fano

factor (see Fig. 5) behaves as expected for a diffusive con-

ductor, with a value around 1/3. It is to be noticed that the

range of Fermi energies for which, for the chosen device ge-

ometry and scatterer density, a diffusive behavior is kept, is

rather limited, as we have discussed in general in Ref. [7].
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Fig. 4 Conductance as a function of the magnetic field for a diffusive

2µm × 2µm conductor.
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Fig. 5 Fano factor as a function of the magnetic field for a diffusive

2µm × 2µm conductor.

As the magnetic field is increased, we observe a sub-

stantially linear decrease of the Fano factor. It is interesting

to understand the origin of this decrease, and, in particular,

whether it is associated with a departure from the diffusive

limit due to a reduction of the number of propagating modes

or to suppressed scattering. The former hypothesis would

be based on the observation that, as the magnetic field con-

fines the wave function in a portion of the width of wire, the

number of propagating modes is reduced, which involves a

reduction of the localization length (which we have previ-

ously seen to be proportional to the number of propagating

interacting modes) and therefore makes it more difficult to

satisfy the inequality lel ≪ L ≪ lloc. Indeed, looking at the

Fano factor of narrower wires with no magnetic field a sim-

ilar shot noise reduction is observed. The latter hypothesis,

instead, stems from the consideration that, from a semiclas-

sical point of view, the magnetic field bends the trajectories

of the charge carriers into cyclotron orbits, thereby making

it more difficult to backscatter or even completely suppress-

ing backscattering when narrow edge states are formed [24].
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Fig. 6 Fano factor as a function of the magnetic field for a disordered

400 nm × 600 nm conductor.

This is also a simple and intuitive way to explain the quan-

tum Hall effect [24].

In order to decide between these two possible explana-

tions, we have looked at the transmission eigenvalues, notic-

ing that, as the magnetic field is increased, the number of

significantly nonzero eigenvalues decreases, but their value

is, on average, closer to 1. This means that the second expla-

nation, i.e. the progressive suppression of backscattering is

at the root of the observed noise behavior.

In the following, we report the eigenvalue data for a

smaller disordered structure, for which it is possible to per-

form calculations at higher values of the magnetic field within

a reasonable amount of time.

Indeed, we have to satisfy the condition that each of the

slices into which the structure under investigation is subdi-

vided must be threaded by a flux less than the flux quantum.

For the 2µm × 2µm structure the number of slices needed

is already around 4000 for values of the magnetic field of

0.8 T.

The smaller structure (400 nm wide and 600 nm long),

although not precisely in the diffusive regime for B = 0,

allows a much more detailed exploration of the parameter

space. In particular, we are interested in reaching values of

the magnetic field for which the cyclotron radius is smaller

than the average separation between impurities, so that, ac-

cording to Büttiker [24], backscattering should be completely

suppressed. We have included 30 impurities, thus keeping

their concentration the same as the one in the previous struc-

ture. Thus also in the new structure the average separation

between scatterers is given by limp =
√

(WL)/Nimp = 89.44

nm, whereW is the device width and Nimp is the number of

scatterers.

In order to obtain a cyclotron radius of about 45 nm in

Gallium Arsenide (the material whose parameters have been

used for all the calculations), we need a magnetic field of

about 1.6 T, for which we can easily perform numerical sim-

ulations in a structure 400 nm wide.
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Fig. 7 Conductance as a function of the magnetic field for a

400 nm × 600 nm conductor.
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Fig. 8 Fano factor for a disordered conductor as a function of the mag-

netic field, in a narrow interval around the value for which noiseless

edge states form.

The behavior of the Fano factor is reported in Fig. 6,

where it is possible to see that there is a substantially lin-

ear decrease until, upon formation of the edge states without

backscattering, the noise suddenly drops to zero, which is

consistent with the behavior of the transmission eigenval-

ues. The behavior of the conductance is reported in Fig. 7.

We report also a close-up view (Fig. 8) of the Fano factor

at the onset of the free-propagating edge states, for a few dif-

ferent distributions of the scatterers. We notice that the tran-

sition is rather sharp and occurs in a relatively small range

of values of the magnetic field (1.505T< B< 1.525T), for

all the considered distributions. As soon as the ballistic edge

states are formed, transmission for these two states is unitary

and noise drops to zero.

In Fig. 9, we report the dependence of the largest 7 eigen-

values (the ones above 0.1 at B = 0) on magnetic field. As

the magnetic field is increased, the smaller eigenvalues drop

to zero (due to magnetic confinement), while the two top

ones, although with some fluctuations, get closer and closer

to 1, as a result of the formation of edge states free from

backscattering. The data reported in Fig. 9 have been ob-
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Fig. 9 Representation of the 7 largest eigenvalues, as a function of the

magnetic field.

tained averaging over 6 different realizations of the scat-

tering potential (using different seeds for the generation of

the position of the hard-wall scatterers). We notice that the

thresholds, in terms of magnetic field, for propagation of the

eigenvalues are rather close to those for Landau levels in

an unconfined 2-DEG (2-Dimensional Electron Gas), due to

the relatively large width of the considered sample.

It is interesting to observe how the conductance and Fano

factor behavior depend on the length of the device. To this

purpose, we have repeated the calculations for structures that

are twice and three times as long with respect to the one

just described, while sharing all other parameters. Therefore

the new structures have the same 400 nm width, but lengths

of 1200 and 1800 nm. In Fig. 10 we report a comparison

of the conductance for the three structures: the conductance

at B = 0 is not exactly inversely proportional to the length,

since, due to the limited width, we are not fully in the dif-

fusive limit. However we are reasonably close to an ohmic

condition, and it is interesting to examine the peculiar be-

havior of the conductance for the 1800 nm long device. In

this case there is no substantial variation as a function of the

magnetic field. Examining the transmission eigenvalues, we

see that for B= 0 there are 5 eigenvalues with a nonnegligi-

ble value: 0.9095, 0.6008, 0.2417, 0.09235, 0.02632; as the

magnetic field is increased, they undergo an initial increase

(that can be interpreted as the suppression of weak localiza-

tion) and then fluctuate, with a sharp drop in the value of the

smaller ones. At about 0.8 T there are only three eigenval-

ues left that contribute significantly to the overall transmis-

sion: 0.8675, 0.6803, 0.1001. Further increasing the mag-

netic field up to 1.6 T, only two eigenvalues are left, both

approximately unitary.

On the other hand, the Fano factor (see Fig. 11) has a

behavior that is very similar for all lengths, with a linear

decrease as the magnetic field is increased, and then a sharp

drop down to zero around 1.5 T, when the cyclotron radius

becomes less than half of the average separation between

impurities.
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Fig. 10 Conductance comparison, as a function of magnetic field, for

disordered conductors 400 nm wide and with a length of 600 nm (thick

solid line), 1200 nm (dashed line), and 1800 nm (thin solid line).
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Fig. 11 Comparison of the Fano factor, as a function of magnetic field,

for disordered conductors 400 nm wide and with a length of 600 nm

(thick solid line), 1200 nm (dashed line), and 1800 nm (thin solid line).

Therefore we can conclude that in 2-dimensional disor-

dered conductors an orthogonal magnetic field affects the

noise behavior mainly through the reduction of backscatter-

ing (contrary to the case of 1-D disorder, where the main

action is through the increase of the localization length) and

the resulting “regularization” of the flow of electrons.
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3. C. W. J. Beenakker, M. Büttiker “Suppression of shot noise in

metallic diffusive conductors,” Phys. Rev. B 46, 1889(R) (1992).

4. C. W. J. Beenakker, “Random-matrix theory of quantum transport,”

Rev. Mod. Phys. 69, 731 (1997).

5. M. Henny, S. Oberholzer, C. Strunk and C. Schönenberger, “1/3-

shot- noise suppression in diffusive nanowires,” Phys. Rev. B 59,

2871, (1999).

6. F. Liefrink, J. I. Dijkhuis, M. J. M. de Jong, L. W. Molenkamp, H.

van Houten, “Experimental study of reduced shot noise in a diffusive

mesoscopic conductor,” Phys. Rev. B 49, 14066 (1994).



Shot noise suppression due to a magnetic field in disordered conductors 7

7. P. Marconcini, M. Macucci, D. Logoteta, M. Totaro, “Is the regime

with shot noise suppression by a factor 1/3 achievable in semicon-

ductor devices with mesoscopic dimensions?,” Fluct. Noise Lett. 11,

1240012 (2012).

8. M. Macucci, P. Marconcini, “Effect of magnetic field on shot noise

in diffusive conductors and cascaded barriers,” J. Computational

Electronics 7, 272 (2008).

9. P. Marconcini, M. Totaro, G. Basso, M. Macucci, “Effect of poten-

tial fluctuations on shot noise suppression in mesoscopic cavities,”

AIP Advances 3, 062131 (2013).

10. D. J. Thouless, S. Kirkpatrick, “Conductivity of the disordered lin-

ear chain’,’ J. Phys. C 14, 235 (1981).

11. F. Sols, M. Macucci, U. Ravaioli and K. Hess, “Theory for a quan-

tum modulated transistor,” J. Appl. Phys. 66, 3892 (1989).

12. M. Macucci, A. T. Galick, and U. Ravaioli, “Quasi-three-

dimensional Green’s-function simulation of coupled electron waveg-

uides,” Phys. Rev. B 52, 5210 (1995).

13. M. Macucci, L. Bonci, “Nanoscale device modeling,” in “Hand-

book of Theoretical and Computational Nanotechnology,” vol. 10,

ed. M. Rieth and W. Schommers. American Scientific Publishers,

Stevenson Ranch, CA, USA (2006).
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24. M. Büttiker, “Absence of backscattering in the quantumHall effect

in multiprobe conductors”, Phys. Rev. B 38, 9375 (1988).


