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Abstract: Substitutional boron doping of devices based on graphene ribbons gives rise to a unipolar
behavior, a mobility gap, and an increase of the ION/IOFF ratio of the transistor. Here we study how
this effect depends on the length of the doped channel. By means of self-consistent simulations based
on a tight-binding description and a non-equilibrium Green’s function approach, we demonstrate
a promising increase of the ION/IOFF ratio with the length of the channel, as a consequence of the
different transport regimes in the ON and OFF states. Therefore, the adoption of doped ribbons with
longer aspect ratios could represent a significant step toward graphene-based transistors with an
improved switching behavior.

Keywords: graphene ribbon; transistor; boron doping; channel length; transport; ION/IOFF ratio;
mobility gap

1. Introduction

Graphene is a two-dimensional honeycomb lattice of carbon atoms which was first systematically
isolated by mechanical exfoliation from bulk graphite in 2004 [1], and is a material that presents
many interesting properties [2,3]. For example, the envelope function equation of graphene
formally coincides with the relativistic wave equation of massless spin-1/2 particles (the Dirac–Weyl
equation) [4]. This has made it possible to experimentally observe relativistic phenomena such as Klein
tunneling, Zitterbewegung, and anomalous quantum Hall effect, at the low energies that are typical
of condensed matter physics [5–8]. Moreover, graphene is a one-atom-thick material that is light and
flexible but with a large mechanical strength, it has very high electrical and thermal mobilities, and
is transparent and impermeable. Many applications have been proposed for it, some of which are
rapidly finding their way to the market [9–11].

From the point of view of electronic devices, the thinness, two-dimensional geometry, and high
mobility of graphene have suggested its application as the conduction channel of scaled transistors.
However, the absence of an energy gap in two-dimensional monolayer graphene has hampered
the fabrication of graphene-based MOS (metal-oxide-semiconductor) transistors with a ION/IOFF
ratio sufficiently high to allow their use for digital circuits [12] (the ION/IOFF ratio is the ratio
between the current flowing through the device in its ON state and in its OFF state). The ambipolar
behavior characteristic of pristine graphene represents a further drawback, since the possibility
of using complementary devices would be desirable. To date, these limitations have limited the
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possible application of graphene transistors to analog electronics, particularly in the radiofrequency
field [12,13]. Meanwhile, for the realization of graphene-based digital devices, alternative operating
principles such as that of the tunnel-field-effect-transistor [14,15] have been proposed. However,
many efforts have been focused on the improvement of the switching properties of graphene-based
transistors. Even though the possibility of surpassing or even approaching the commutation properties
of traditional transistors currently seems out of reach, the availability of well-operating digital graphene
field-effect-transistors (FETs) would allow us to benefit from the excellent properties of this material.
For example, it would make it possible to fabricate flexible, transparent, and low-cost all-graphene
electronic circuits, high-speed devices, or devices in which also the mechanical, thermal, or optical
properties of graphene could be exploited. Several methods have been proposed to induce an energy
gap in graphene [16], such as transversal confinement [17,18], doping [19–24], strain [25,26], the
introduction of an antidot lattice [27,28], functionalization [29,30], or the application of an electric field
orthogonally to bilayer graphene [31].

A common substitutional dopant for graphene (and, more generally, carbon materials) is boron,
an element of the III chemical group (and thus with only one valence electron less than carbon)
that has a size comparable to carbon and presents a quite low ionization energy if substituted
into the graphene lattice. In particular, in Reference [32] we have shown that the introduction of
boron atoms in substitutional positions breaks the ambipolar behavior of graphene, thus giving rise
to asymmetric device trans-characteristics, opens a mobility gap (i.e., an energy region with very
low conductance), and increases the ION/IOFF ratio. While these effects become more pronounced
when increasing the doping concentration, the values of the ION/IOFF ratio obtained in the devices
examined in Reference [32] are still unsatisfactorily low. Here, starting from those results, we examine
the possibility of improving the ION/IOFF ratio by increasing the length of the device channel.
The analysis is performed by means of an atomistic simulation code in which the Poisson equation for
the device electrostatics and a tight-binding-based non-equilibrium Green’s function (NEGF) transport
calculation are self-consistently solved. The substitutional boron doping is mimicked through a
proper distribution of fixed charges. To ensure the successful completion of the simulations, we adopt
enhanced convergence schemes with variable convergence thresholds and a recursive scanning of
the simulation domain. Our results show that the ION/IOFF ratio, the width of the mobility gap,
and the asymmetry of the transport characteristics increase when longer ribbons are considered,
due to the cumulative effect of the boron atoms distributed along the ribbon. We demonstrate
that this improvement of the switching behavior is intimately related to the different transport
regime in the ON and OFF states of the device. We conclude that the adoption of longer ribbons in
graphene-based transistors should have a positive effect from this point of view, thus representing a
further advancement in the direction of functional devices.

2. Method

The effect on transport of the boron impurities is strictly related to the details of the (short-range)
atomistic potential around the boron dopants. Therefore, an envelope-function approach such as
that of References [33–36] would not be accurate enough, and more computationally demanding
atomistic models are needed. On the other hand, a complete ab-initio simulation of the considered
device which includes thousands of atoms would not be numerically feasible. Therefore, for our
simulations we adopted a tight-binding model, which is a more simplified approach but preserves
atomistic details and is able to correctly reproduce ab-initio results. In our tight-binding scheme we
have included only the 2pz atomic orbitals of the carbon and boron atoms, which give rise to the
delocalized π molecular orbitals and thus mainly determine the transport properties. In particular, we
have used the NanoTCAD ViDES simulation code [37,38], which self-consistently solves the transport
and electrostatic equations in the device.
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Regarding the transport side of the simulation, the Schrödinger equation with open boundary
conditions is solved within the Green’s function formalism [39]. More in detail, the Green’s function is
obtained as

G(E) = [E I − H − ΣS − ΣD]
−1 , (1)

where E is the energy of the charge carriers, I the identity matrix, and H is the nearest-neighbor
tight-binding Hamiltonian matrix including only the 2pz orbitals. ΣS and ΣD are the self-energy
matrices of the source and drain contacts, which enforce boundary conditions on the Schrödinger
equation corresponding to the presence of Schottky contacts at the two ends. For the self-energies, the
method described in Reference [40] is adopted, which mimics the effect of real metal contacts.

In order to determine the device electrostatics, the Poisson equation is solved (using the
Newton–Raphson numerical technique) on a tridimensional domain including the device. We consider
Neumann conditions (corresponding to constant—and in particular zero—electric field) at the
boundaries of the solution domain, and Dirichlet conditions (constant potential) at the gates.
In particular, the Poisson equation

∇[ε(~r)∇φ(~r)] = −e[p(~r)− n(~r)]− ρ f ix(~r) (2)

is solved over a rectilinear grid defined over the tridimensional domain. In this equation, ε is the
dielectric constant, φ is the electrostatic potential, e is the elementary charge, p and n are the electron
and hole concentrations, ρ f ix is the density of fixed charge, and~r is the position vector.

The transport and electrostatic equations are mutually connected. The Schrödinger equation
depends on the potential energy φ(~r) (i.e., on the solution of the Poisson equation), while the Poisson
equation depends on the electron and hole concentrations, which can be obtained from the Green’s
function of the system (i.e., from the solution of the transport calculation). To perform the simulation,
we start from an initial guess potential, we perform the NEGF calculation, and then we solve the
Poisson equation with the electron and hole concentrations obtained from the NEGF procedure.
The new potential obtained from the Poisson equation is then passed to the NEGF module, and so on
recursively until the norm of the difference between the potentials obtained in two successive cycles is
less than a given threshold. In our approach, the free charge around each atom is uniformly spread in
the cell of the rectilinear grid that contains the atom.

The current flowing through the device can be computed from the converged Green’s function
through the Landauer equation:

I =
2e
h

∫ +∞

−∞
T(E)

[
f (E− EFS)− f (E− EFD )

]
dE . (3)

here, h is Planck’s constant, f is the Fermi–Dirac occupation function, EFS and EFD are the Fermi
energies of the source and drain, respectively, and the transmission coefficient T(E) is given by

T = −Trace
[(

ΣS − Σ†
S

)
G
(

ΣD − Σ†
D

)
G†
]

. (4)

The tight-binding parameters and the fixed charge distribution of our model have been
calibrated [32] on ab-initio simulations for a simplified structure consisting of a graphene ribbon
with a single substitutional boron atom at different positions along the ribbon transverse section.
In Reference [32], we reported results obtained from ab-initio density functional theory (DFT)
simulations, performed with the SIESTA code [41] with a local density approximation and a double-ζ
basis set. From these simulations, it emerged that the quasi-bound states localized around the boron
atom introduce resonant backscattering—and thus a conduction reduction—in the hole branch of
the transmission spectrum. In the devices we simulated, this effect dominates over the electrostatic
effect of the impurity [42–46]. The energy of the conductance dip depends on the position of the
boron impurity with respect to the ribbon edges [43]. From a purely electrostatic point of view, the
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boron atom, being an electron acceptor, introduces a repulsive potential for electrons; this potential
profile was also extracted from the ab-initio simulation. We compared [32] the transmission spectra
and the potential profiles obtained from the DFT calculations with those obtained from the previously
described self-consistent tight-binding calculation performed through the ViDES code. A very good
agreement was obtained by using the tight-binding parameters typical of undoped graphene and a
particular choice of fixed charges. In detail, all the onsite energies were assumed equal to zero. The
transfer integral between nearest neighbor atoms was always taken equal to tp = −2.7 eV, except
between atoms belonging to the edge dimers of armchair ribbons. In this last case, the transfer integral
was set to 1.12 tp, in order to account for the reduced interatomic distance at the edges, and to correctly
reproduce the energy gap of the ribbon [18]. Regarding the distribution of fixed charges ρ f ix(~r), the
best fitting was obtained considering a fixed charge null at each carbon atom and equal to −e at each
boron atom. This can be physically explained observing that the sum of the charge of the nucleus
and of all the electrons that are not in the 2pz orbitals is equal to +e for carbon atoms and to 0 for
boron atoms. The total charge is the sum of this charge and of the charge of the electrons in the π

orbitals (which derive from the 2pz atomic orbitals—i.e., the only orbitals that are considered in the
tight-binding calculation). Let us call LDOS the local density of π states for unit area and energy, EF
the Fermi energy and Ei the midgap energy. Then, the total charge contained in an area S of the ribbon
(containing NC carbon atoms and NB boron atoms) is given by

+eNC − e
∫

S
dS

∫ +∞

−∞
dE LDOS(E) f (E− EF) =

+eNC − e
∫

S
dS

∫ Ei

−∞
dE LDOS(E) f (E− EF)− e

∫
S

dS
∫ +∞

Ei

dE LDOS(E) f (E− EF) . (5)

we can sum and subtract from Equation (5) the charge of the electrons that would fill all the states in
the π valence bands; that is,

− e
∫

S
dS

∫ Ei

−∞
dE LDOS(E) . (6)

the total number of states in the π valence bands is half the total number of π states, which is
2(NC + NB) because each atom contributes with two 2pz states with different spin. Therefore, the value
of Equation (6) is −e(NC + NB). Summing and subtracting this charge from Equation (5), we obtain
that the total charge in S is given by

+eNC − e(NC + NB) + e
∫

S
dS

∫ Ei

−∞
dE LDOS(E)[1− f (E− EF)] +

−e
∫

S
dS

∫ +∞

Ei

dE LDOS(E) f (E− EF) = −eNB + e
∫

S
dS (p− n) . (7)

therefore, the fixed charge to consider in Equation (2) is given by a charge null at each carbon atom
and equal to −e at each boron atom.

Here, we adopted this approach to study the transport behavior as a function of the channel
length of MOS transistors where the channel is represented by a boron-doped graphene ribbon.

3. Numerical Results and Discussion

In particular, we have simulated a double gate FET (sketched in Figure 1). Its channel is an
armchair graphene ribbon with width W = 3.81 nm (corresponding to 32 dimer lines) and length L
variable between 10 nm and 70 nm. The channel is substitutionally doped with randomly located
boron atoms, and connects the source and drain contacts. Two 1-nm-thick silicon oxide layers, located
above and under the ribbon, separate it from the top gate and the bottom gate. The two gates are
kept at the same potential and bias the transport channel. In our simulations, performed at room
temperature, we applied a voltage VDS = 0.1 V between the source and the drain, and we computed
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the current ID flowing through the channel as a function of the voltage VGS applied between the gates
and the source. In this way, we obtained the transfer characteristic ID(VGS) of the device.
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Figure 1. Sketch of the considered field-effect-transistors. The transmission channel is a boron-doped
armchair graphene nanoribbon, represented at the bottom: black and red atoms are carbon and boron
atoms, respectively, while the hydrogen atoms passivating the edges are not represented.

We solved the Poisson equation on a linear grid with a step of 0.1 nm inside the ribbon and
progressively increasing towards 0.3 nm when approaching the domain boundaries.

Let us first consider the case of the undoped ribbon. When the gate voltage coincides with the
average between the contact voltages (i.e., VGS = VDS/2), the energy of the charge carriers falls in
the transition energy range between the valence and the conduction bands, where the density of
states is minimum, and therefore the current is minimum. Instead, when increasing (decreasing) the
gate voltage, the graphene band structure shifts towards lower (higher) energies. As a consequence,
the energy of the charge carriers falls in the range of the conduction (valence) bands, where the electron
(hole) concentration is large, and thus the current ID increases. This gives rise to a typical ambipolar
transport behavior. In particular, in the case of the undoped ribbon, the transfer characteristic is
symmetric with respect to VGS = VDS/2, as an effect of the symmetry of the dispersion relations with
respect to the midgap energy.

In the presence of doping, the cumulative backscattering effect of the boron atoms breaks this
symmetry and a unipolar behavior appears, together with a mobility gap. In our numerical simulations,
we have considered several realizations of the random dopant spatial distribution. These have been
used as a statistical ensemble for the extraction of average transistor characteristics.

Figure 2 shows the results reported in Reference [32] for a device based on a 20-nm-long graphene
ribbon with a boron concentration equal to 0.3% and 0.6%, compared with those achieved for the
undoped graphene ribbon. The boron concentration was defined as the ratio between the number of
substitutional boron atoms and the total number of atoms within the channel. Numerical convergence
problems precluded the simulation of ribbons with boron percentages larger than 0.6%. For each boron
concentration, the dashed thin lines represent the characteristics obtained for the different random
distributions of dopants, while the thick solid lines correspond to their average. When increasing
the boron concentration, the hole and electron branches of the ID(VGS) characteristic become more
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asymmetric, the voltage range for which we have low conduction through the device (and thus the
mobility gap) widens, and the ION/IOFF ratio increases.

GS
V (V)

DI 
  

/W
( 

  
A

/n
m

)
µ

 3.5

 3

 2.5

 2

 1.5

 1

 0.5

 0
−1  0  0.5  1−0.5

0%

0.3%

0.6%

Figure 2. Transfer characteristics (obtained for VDS = 0.1 V) of the double-gate field-effect-transistor
based on a 20-nm-long graphene ribbon with a boron concentration of 0% (undoped ribbon), 0.3%,
and 0.6%. The thin lines (dashed for the 0.3% boron concentration, dotted for the 0.6% boron
concentration) show the results for 23 individual realizations of the dopant distribution, while the thick
lines represent the average over the ensemble. The current value was divided by the ribbon width
W = 3.81 nm in order to represent the current density.

However, the values of the ION/IOFF ratio obtained with the 20-nm-long ribbon are still largely
insufficient for a well-operating digital transistor. Indeed, a device with good switching properties
should be characterized by a current flow in the OFF state much smaller than in the ON state. From
this point of view, the adoption of longer doped graphene ribbons could improve the device behavior,
due to the combined effect of a larger number of dopants. Therefore, our present analysis has focused
on the dependence of the transport behavior on the length L of the boron-doped ribbon.

From the numerical point of view, the convergence of the self-consistent calculation is quite a
difficult task, due to the presence of localized charges. In particular, this is particularly challenging
for longer ribbons, which contain a larger number of dopants. To solve this problem, we adopted an
enhanced convergence scheme with respect to Reference [32], based on a progressive approach to the
final characteristic. In detail, we chose the starting potential profile for the self-consistent calculations
in the following way. For the gate potential for which the convergence was found to be easier (in our
simulations, VGS = 0.5 V) we used the flat band potential as a guess starting point. Then, the potential
profile obtained at the end of the self-consistent simulation was used as a guess potential profile in
the calculation performed for the successive gate potential value we considered. We repeated this
procedure scanning the entire range of considered gate potentials a few times, alternatively moving
for increasing and decreasing values of VGS. At the same time, the error threshold adopted for the
termination of the self-consistent calculations was progressively reduced to increase the accuracy of
the solution. Finally, we considered that the convergence was achieved once the difference between
the ID(VGS) transfer characteristics obtained from successive scans of the domain became negligible.

We investigated 3.81-nm-wide ribbons with a 0.6% boron concentration (i.e., the highest
percentage studied in the case of the 20-nm-long ribbon). We considered ribbons with lengths 10, 20,
30, 40, 50, 60, and 70 nm. For each length, we analyzed several different realizations of the boron
dopant spatial distribution (20, 23, 24, 19, 18, 9, and 9 distribution realizations, respectively, for the
seven considered lengths). In Figure 3, for each of the seven ribbon lengths, we report the sets of
characteristics obtained for the different doping realizations (the dispersion of these curves is due to
the low number of dopants). With a thicker line, we also plot the mean behavior achieved averaging,
for each VGS, the current obtained for the different boron distributions. These average behaviors are
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directly compared in Figure 4. In Figure 5, the black dots represent the values of the ION/IOFF ratio
(obtained from these seven curves dividing the values of ID in the regions of high and low conduction)
as a function of the ribbon length.
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Figure 3. Transfer characteristics (obtained for VDS = 0.1 V) of the double-gate field-effect-transistor
based on a graphene ribbon with a 0.6% boron concentration over a length of (a) 10 nm, (b) 20 nm,
(c) 30 nm, (d) 40 nm, (e) 50 nm, (f) 60 nm, and (g) 70 nm . The thin lines correspond to the individual
realizations of the dopant distribution, while the thick lines correspond to the average. The current
value was divided by the ribbon width W = 3.81 nm in order to represent the current density.
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=30 nmL
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Figure 4. Average transfer characteristics (obtained for VDS = 0.1 V) of the double-gate
field-effect-transistor based on a graphene ribbon with a 0.6% boron concentration over a length
of 10, 20, 30, 40, 50, 60, and 70 nm. The current value was divided by the ribbon width W = 3.81 nm
in order to represent the current density. The four vertical lines identify the values of VGS for which the
values plotted in Figure 6 were extracted.
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Figure 5. The black dots show the values of the ION/IOFF ratio obtained for the double-gate
field-effect-transistor based on the graphene ribbon with a 0.6% boron concentration, for the seven
considered ribbon lengths. The red dashed line represents the extrapolated analytical behavior.

We observe that the increase of the graphene channel length has the positive effect of enhancing
the ION/IOFF ratio. Moreover, it widens the OFF region of the transistor (i.e., the range of gate voltages
for which the current flowing through the device is low). This can be explained by the fact that, for a
given concentration of boron atoms, longer channels contain a larger number of dopants. The combined
scattering action of the dopants on the charge carriers flowing through the device gives rise to the
observed positive effect. At the same time, we observe an overall decrease of the current profile.
However, this detrimental effect could be compensated by operating several transistors in parallel.
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Figure 6. (a) Current density ID/W (with W = 3.81 nm) and (b) Channel resistance R = VDS/ID as a
function of the length L for the four values of the voltage VGS identified by the vertical lines in Figure 4.
In panel (b), the dashed red curves indicate the fit of the channel resistance as a function of the channel
length for VGS = −0.075 V and VGS = 0.75 V, which we take as representative of the OFF state and ON
state, respectively, based on the analytical formulas for localized and diffusive transport regimes.

In order to better analyze our numerical results, Figure 6a reports the behavior of the current as a
function of the length L for the four values of the voltage VGS identified with vertical lines in Figure 4.
In Figure 6b, we show the corresponding values of the channel resistance R = VDS/ID as a function
of the length L. When the device is in its OFF state, the resistance R increases exponentially with the
length L, thus suggesting that the device is working in a strong localization transport regime. Instead,
when moving towards the ON regime, the resistance dependence on the channel length becomes linear.
The transport in the ON state is therefore diffusive. Only when further increasing the channel length,
the transport regime in the ON state is expected to become localized, with an exponential suppression
of the current on a length scale much larger than that in the OFF state. In further detail, let us assume
the behaviors for VGS = −0.075 V and VGS = 0.75 V (where, approximately, the minimum and the
maximum current regimes are reached in all cases) as representative of the OFF state and of the ON
state, respectively. Then, a good fit of the dependence of the device resistance as a function of the
channel length is given by the relations

ROFF = (11.5 KΩ)× exp
(

L
15.4 nm

)
(8)

in the OFF regime, and

RON = (7.8 KΩ) +

(
0.615

KΩ
nm

)
L (9)

in the ON regime. Since R = VDS/IDS and VDS is the same in the two regimes, the ION/IOFF ratio
should be reasonably fitted by the relation:

ION
IOFF

=
ROFF
RON

=
1.474× exp

(
L

15.4 nm

)
1 + L

12.683 nm
. (10)

This is verified in Figure 5, where we plot this expression as a dashed red curve. Indeed, it appears
to fit well the seven black dots, which represent the values of the ION/IOFF ratio that we have previously
computed for the considered ribbon lengths.
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Equation (10) allows us to extrapolate some considerations for longer ribbons, for which
a complete numerical treatment would be too computationally challenging. Indeed, following
Equation (10), further increasing the channel length L should lead to a nearly-exponential enhancement
of the ION/IOFF ratio. Therefore, the adoption of longer graphene ribbons with a sufficiently high
boron doping concentration could be usefully exploited in order to achieve graphene-based devices
with an improved switching behavior and asymmetric electron–hole transport characteristics.

4. Conclusions

We numerically analyzed the transport characteristics, as a function of the channel length, of MOS
transistors based on graphene ribbons randomly doped with substitutional boron atoms. The study
was carried out through self-consistent quantum simulations based on a tight-binding atomistic model,
validated through comparison with ab-initio DFT calculations. The numerical complexity of the
calculations, increasing with the length of ribbons, required the adoption of enhanced convergence
schemes. From the results of our simulations, performed for ribbon lengths ranging from 10 nm to
70 nm, we were able to observe a strongly localized transport in the OFF operating region and a
diffusive transport in the ON operating region. This made it possible to extrapolate an analytical,
nearly exponential relationship between the ION/IOFF ratio and the channel length. In addition,
by increasing the length of the channel we observed an enhanced electron–hole asymmetry in the
ID(VGS) characteristics and a widening of the voltage range corresponding to the mobility gap.
The results of our simulations suggest that graphene-based transistors should strongly benefit—from
the point of view of both the ION/IOFF ratio and the device unipolarity—from an increase of the length
of the boron-doped channel. Therefore, this solution could be exploited to improve the switching
performances of graphene-based devices.

Author Contributions: P.M. performed the numerical simulations and wrote the paper; P.M., A.C., and S.R.
analyzed and discussed the results.

Conflicts of Interest: The authors declare no conflict of interest.
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