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Abstract—A Battery Management System (BMS) is needed to

ensure a safe and effective operation of a Lithium-ion battery,

especially in electric vehicle applications. An important function

of a BMS is the reliable estimation of the battery state in

a wide range of operating conditions. To this end, a BMS

often uses an equivalent electrical model of the battery. Such

a model is computationally affordable and can reproduce the

battery behaviour in an accurate way, assuming that the model

parameters are updated with the actual operating condition of

the battery, namely its state-of-charge, temperature and ageing

state. This paper compares the performance of two battery state

and parameter estimation techniques, i.e., the Extended Kalman

Filter and the classic Least Squares method in combination with

the Mix algorithm. Compared to previous ones, this work focuses

on the concurrent estimation of battery state and parameters

using experimental data, measured on a Lithium-ion cell subject

to a current profile significant for an electric vehicle application.

I. INTRODUCTION

The Energy Storage System (ESS) is a key element in
Electric and Plug-in Hybrid Electric Vehicles (EVs/PHEVs),
as well as smart grid systems. In these applications, the
Lithium-ion (Li-ion) battery technology is currently the most
promising one, thanks to its high energy and power densities,
high charge/discharge efficiency and long cycle life. However,
Li-ion cells are very sensitive to under discharge, overcharge
and to operating temperatures outside the safety range. These
conditions can cause permanent damages to the cells and even
hazardous situations. To extend the battery life and to avoid
dangerous failures, the ESS includes an electronic Battery
Management System (BMS). This system mainly monitors
current, voltage and temperature of each cell and disconnects
the battery from the load/charger when an unsafe condition oc-
curs. BMS also tracks the battery internal state, i.e., the State-
of-Charge (SoC) and the State-of-Health (SoH), to estimate
the battery residual energy and to improve its performance
through charge balancing strategies [1], [2].

SoC indicates the residual charge that can be provided by
a cell at room temperature and at a low ampere-hour rate and
is usually expressed in percentage of the cell capacity [3]. As
SoC cannot be measured directly, many algorithms have been
developed to estimate this important state variable [3]–[10].
Coulomb Counting is the most used technique and is based on
current integration. Thus, errors on the current measurement
due to current sensor offset, noise and quantisation accumulate
and can cause the SoC estimation to become unreliable
over time. Another widely used method is based on Open

Circuit Voltage (VOC) measurement. VOC depends on SoC,
but slightly on temperature, ageing and current rate. However,
the cell voltage relaxes to VOC after a long time, when the cell
current is equal to zero. Thus, this technique cannot be used in
highly dynamic systems. Other accurate methods are based on
a black-box battery model (artificial neural networks and fuzzy
logic approaches) [5], but they are computationally intensive
and require long training procedures. Good results are reached
by the use of model-based algorithms, such as Kalman Filters
(KFs) [10], Particle Filters (PFs) [6] and the Mix algorithm
[4]. These techniques are closed-loop and suitable for real-
time implementation in a BMS. The model is used to predict
the cell voltage. The predicted cell voltage is compared with
the measured one and the resulting error is used to correct the
model state variable estimation. The SoC estimation accuracy
thus depends on the model capability to reliably reproduce the
cell behaviour.

There are many modelling approaches, such as electro-
chemical and mathematical models. A good trade-off between
complexity and accuracy is given by equivalent electrical
models, assuming that their parameters change with the cell
operating conditions and ageing. Moreover, also variations in
the manufacturing process should be considered. A typical
method to account for parameter variation is by means of
Look-up Tables (LUTs). However, this solution is suitable only
to consider the dependence on temperature and SoC [7]. In
fact, online parameter identification is needed to include the
ageing and manufacturing variability.

Two promising approaches for battery parameter identifi-
cation are Moving Window Least Squares (MWLS) method
used with the AutoRegressive eXogenous (ARX) structure of
the electrical model [8], [11] and Bayesian estimation with
the EKF, an extension of the KF for non linear cases [10]. A
preliminary comparison of these two methods is presented in
[12]. In that work, the battery voltage response is simulated
using a LUT-based equivalent cell model [13].

This work significantly extends the analysis in [12], by
comparing the capability of these methods to estimate the state
and parameters concurrently. Moreover, experimental data
representative of the use of the battery in an EV application are
used. The MWLS method is used in conjunction with the Mix
algorithm to estimate both SoC and the model parameters.
We refer to this method as the Adaptive Mix Algorithm. The
paper is organised as follows. Section II recalls the equivalent
electrical cell model. Section III describes the compared



Fig. 1. Equivalent electrical model.

state and parameter estimators, while the experimental results
are discussed in Section IV. Finally, Section V draws some
conclusions.

II. ELECTRICAL EQUIVALENT MODEL

The general form of an equivalent electrical model is shown
in Fig. 1. The left-hand side models the cell capacity and
SoC. In fact, SoC is expressed as Q/Qn, where Q is the
remaining charge stored in the cell and Qn is its maximum
value, expressed in Coulomb. Instead, the right-hand side
generates the cell terminal voltage vM, as the sum of VOC, a
voltage R0iL, due to the internal resistance, and one or more
relaxation voltages vRCi. The number of RC groups affects the
accuracy of the model and its computational complexity. The
transient effects are simulated with accuracy using two RC
groups [14]. For applications with fast transients, good results
are also achieved using only one RC group. The consequent
low complexity of the model supports its adoption in a BMS.
The time-domain state space model of the cell is the following:
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vM = VOC �R0iL � vRC

(1)

Cell model parameters can be extracted offline by observing
the voltage/current relationship in the time domain [1]. This
method is typically used for cell characterisation, applying a
specific current waveform, such as a pulsed profile, to a cell in
several conditions. Each pulse has an amplitude and duration,
which make the cell SoC vary by a specific amount. Each
current pulse is followed by a pause, in which the voltage
relaxes towards VOC. The use of a pulsed current facilitates
the extraction of the model parameters [14]. The latter can
be stored in multi-dimensional LUTs that account for the
parameter dependence on SoC, temperature and current rate
[13].

A LUT-based model is easy to implement, but can hardly
model parameter variations due to manufacturing tolerances
and ageing. For this reason, an online identification of the cell
model parameters should be employed to take into account

Fig. 2. Adaptive Mix Algorithm block diagram.
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Fig. 3. Open circuit voltage VOC, as a function of SoC.

all the operating condition dependencies with the aim of
improving SoC estimation in a BMS.

III. STATE AND PARAMETER ESTIMATORS

This Section briefly discusses the Adaptive Mix Algorithm
(AMA) and the Dual EKF (DEKF), the performance of which
will be compared in the subsequent Section.

A. Adaptive Mix Algorithm

The Mix algorithm is a simple to compute model-based
SoC estimation method, firstly introduced in [4]. Its working
principle is shown in the block diagram seen in Fig. 2.
The model output voltage vM is generated by the electric
model shown in Fig. 1 with a single RC group. The VOC

voltage is the output of a LUT, which models the VOC-SoC
relationship, shown in Fig. 3, with a 1% SoC resolution. vM
is compared to the measured cell voltage vT to generate an
error signal. The latter is amplified by the observer gain L
and subtracted to the measured cell current iL. The resulting



current signal is then integrated over time to produce SoC, as
in the conventional Coulomb Counting method. The observer
gain L can be chosen to reduce the sensitivity to uncertainties
over the SoC initialisation and the current measurements
affecting the Coulomb Counting method [15].

However, such a valuable result relies on the capability of
the model to reproduce the cell behaviour in an accurate way.
Instead of using three-dimensional LUTs as in [7], a Parameter
Identification block is used here to adapt the cell model in
order to take into account also parameter variation due to
battery ageing and to manufacturing process tolerances. The
Parameter Identification block is implemented by the MWLS
algorithm, applied to an ARX structure of the electrical model
[12], [16].

In more detail, the equivalent electric model is linearised
around the time-variant cell operating point and the model
parameters are considered constant during the identification
time window. This is justified by the fact that the cell operating
point slowly changes over time. The VOC-SoC non-linear
function is approximated by a piecewise linear curve VOC =
↵0+↵1SoC, where ↵0 and ↵1 depend on the operating point.
Applying the Laplace-transform to state-space cell model (1),
we obtain the transfer function from the current input to the
cell terminal voltage output:

Y (s)� ↵0

U(s)
= �

R0s
2 + ( ↵1

Qn
+ 1

C + R0
RC )s+ ↵1

QnRC

(s+ 1
RC )s

(2)

where Y (s) and U(s) are the Laplace transforms of the voltage
output vT and current input iL, respectively. The discrete-time
system transfer function is obtained by the application of the
bilinear transform to (2):

Y (z�1)� ↵0

U(z�1)
=

b0 + b1z
�1 + b2z

�2

1 + a1z�1 + a2z�2
(3)

The discrete-time relationship between the input and output
samples can be obtain from (3):

y(k) =� a1y(k � 1)� a2y(k � 2) + ↵0(1 + a1 + a2)

+ b0u(k) + b1u(k � 1) + b2u(k � 2)
(4)

which is equivalent to a second order ARX model. The
MWLS technique implies the application of the LS method
to the current and voltage samples contained into a given time
window. This window is shifted in time when new voltage and
current samples are acquired, to track the parameter variation
over time. In this way, the parameters [a1, a2, b0, b1, b2] are
identified, from which the model parameters [R0, R, C] can
easily be computed [12].

B. Dual EKF

In the Bayesian framework, the discrete time evolution of
the parameters and the system observations are described by
the following equations:

p(k + 1) = p(k) + �(k), (5)
vT(k) = G(x(k), iL(k), p(k)) +  (k). (6)

Equation (5) is the parameter equation (also called process
equation), while (6) is the measurement equation. Here, k is
the discrete time, x is the column vector of the system state
variables (including SoC), iL is the terminal current, p is the
column vector of the parameters, vT is the terminal voltage,
� and  are the parameter and measurement noise, with zero
mean and covariance matrix ⌃� and ⌃ , respectively. The
measurement operator G is non-linear because of the non-
linear relationship between VOC and SoC in (1).

Equation (5) is characterised by an identity transition opera-
tor acting on the parameters, while the parameter dynamics is
caused fictitiously by the Gaussian noise �. From a practical
point of view, this process allows the parameters to change at
each time instant, tracking the system dynamically.

In order to perform an online estimation of the parameters,
the tracking of the battery state (and in particular of SoC)
is also needed. Indeed, (6) allows the output to be computed
from the information on the battery state. The problem can
be approached effectively with the so-called dual estimation
technique [17], in which two interleaved and interacting pro-
cesses take place: one for the parameters and the other for
the state. This approach can be considered more efficient for
online applications, as the involved matrix dimension is lower
[9]. The first process is still represented by (5), while the state
process equation is given by

x(k + 1) = F(x(k), iL(k), p(k)) + ⇠(k), (7)

being F the state operator and ⇠ the state noise. The measure-
ment equation holding for both state and parameter evolution
is (6), which can be used twice, on the basis of the up-to-date
values available from the interleaved process.

Given a sequence of observations of vT, the optimal
Bayesian estimator, under mild Markovianity hypotheses, can
be calculated recursively in two successive steps [17]. For
linear Gaussian statistical models, running two interleaved
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Fig. 4. Cell behaviour in 4 consecutive UDDS cycles.



Fig. 5. Photograph of the experimental setup.

Kalman filters yields the optimal Bayesian solution [18]. This
method turns out to be very effective also in its extended form,
the Extended Kalman Filter, where the presence of non linear-
ities is taken into account [6], [10]. The EKF is based on the
application of a linear Kalman filter to the equations, which are
linearised around the actual state and parameter estimates. We
end up with the DEKF, which has been successfully applied
to the state and parameter estimation of batteries, sometimes
in combination with other techniques [19]. Implementation
details applied to battery state and parameter estimation can
be found in [6].

IV. EXPERIMENTAL RESULTS

Parameter identification strongly depends on the input stim-
uli. So, a representative battery current profile is necessary
to assess the performance of the AMA and the DEKF in an
electric vehicle application. To this end, the current profile
used to exert the battery in the experimental tests carried out,
was derived starting from a standard driving cycle, namely the
Urban Dynamometer Driving Schedule (UDDS), defined by
the U.S. Environmental Protection Agency [20]. The power
at the battery’s terminals and then the current is obtained
from the speed profile using a simple model of an electric
vehicle, as described in [12]. The resulting battery current was
scaled maintaining the same C-rate to be applied to a 1.5A h
NMC cell (Kokam SLPB723870H4), used in the experimental
tests. The cell has preliminary been characterised by means
of pulsed current tests to extract the VOC-SoC relationship,
as shown in Fig. 3, and an average value for the model
parameters. The battery current profile related to one UDDS
cycle determines approximately a 20% SoC variation and is
repeated 4 times, after a full charge (see Fig. 4). All the tests
have been carried out at room temperature.

A photograph of the experimental testbed is shown in Fig. 5.
It consists of a Source Meter Unit (SMU) Keithley 2440,
controlled by a LabVIEW application running on a PC, which
generates the current profile and acquires the cell voltage. The
acquired current and voltage samples are processed by Matlab
scripts. They implement the AMA and the DEKF, computing
the parameters of the cell model and the SoC over time.

Fig. 6 shows the results of the parameter identification,
i.e., R0, R, C and ⌧ = RC. The results provided by the
two methods are in good agreement with each other and
with the average values (R0 = 26m⌦, R = 12m⌦ and
C = 780F) extracted from the pulsed current tests. This is
especially noticeable for the series resistance R0, which is a
valuable result, as R0 strongly affects the capability of the
model to reproduce the cell behaviour and is very sensitive to
the cell operating conditions. Indeed, tracking R0 over time
can provide a good indication of battery ageing, enabling SoH
estimation [21].

To assess the capability of the model with online update of
its parameters using the MWLS and the DEKF approaches,
the model output is compared to the measured cell voltage.
In this analysis, SoC is obtained by the Coulomb Counting
of the current measured by the SMU (this value is used as
the reference value for the SoC variable). This means that
the observer gain L is set to zero for the Mix algorithm.
Fig. 7 shows the absolute difference between the measured
cell voltage and the voltage predicted by the model (i.e.,
ev = |vT � vM|), when the parameters are identified by the
MWLS method, by the DEKF, and when the parameters are
kept constant to their average values. The error behaviour
is similar in the three cases, even if a slight improvement
can be obtained by the online parameter update, as shown by
the maximum and rms values of the voltage prediction error
reported in Table I. A greater improvement can be expected
when the battery operates at a temperature or ageing state
different from that of the characterisation tests.

We now analyse the performance of the concurrent esti-
mation of the battery state and parameters, by comparing the
SoC estimated by the AMA, the DEKF and the Mix algorithm
(with constant parameters) to the reference value. This is
shown in Fig. 8 and in Table II. The estimated SoC behaviours
are in very good accordance with the reference one, apart from
the SoC interval 50% down to 25%. In this SoC interval,
the VOC-SoC curve is almost flat (see Fig. 3), thus making
SoC poorly observable [15].

Finally, we evaluate the response of the AMA and the
DEKF to uncertainty of the initial SoC value. Fig. 9 shows
the SoC behaviour estimated by the two methods, when the
SoC is initialised to the wrong value of 40% (instead of
the correct 99.3%). The slower response of the AMA is
determined by the choice of the observer gain L = 1/(R0+R),
which is able to cancel a steady-state error due to an offset
in the current sensor [15]. We can see that both algorithms
are able to recover from a wrong initialisation, feature that
cannot be achieved by the simple Coulomb Counting. More-
over, the DEKF algorithm is much faster than the AMA. In
fact, SoC estimated by the DEKF converges to the estimate
obtained with the correct initialisation after 40 s (when the
difference between the two cases is lower than 1%), whereas
this occurs for the AMA after 691 s.
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Fig. 6. Comparison of the parameter identification results. The dashed lines (Const. params) indicate the average value of the model parameters extracted
from the pulsed current tests.
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V. CONCLUSION

This paper has discussed the performance of the Adaptive
Mix Algorithm (AMA) and the Dual Extended Kalman Filter
(DEKF) to estimate the battery state and parameters in an
electric vehicle application. Experimental tests have been

TABLE I
VOLTAGE PREDICTION ERROR

Estimator Max rms

Const. params 69mV 28mV
MWLS 59mV 26mV
Dual EKF 52mV 26mV

performed on a Li-ion NMC cell exerted with a current profile
obtained from a standard driving cycle. Both methods provide
good estimates of both parameters and SoC. The AMA seems
to be more noisy in the parameter estimation and shows a
slower response to wrong SoC initialisations. On the contrary,
it performs slightly better when SoC lies in the range in which
the slope of the VOC-SoC curve is low. This work proves
that both methods are capable of identifying the cell model
parameters, which is a valuable achievement as the model
parameters strongly vary with the cell operating condition.

The real effectiveness of online estimation methods can be
appreciated in different operating conditions (temperature and
ageing), from those in which the cell characterisation has
been executed. For this reason, future work will focus on
investigating the algorithm performance in a wider range of
operating conditions. Moreover, we will evaluate the compu-
tational resources required to implement both methods and,
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TABLE II
SoC ESTIMATION ERROR

Estimator Max rms

Adaptive Mix 9.3% 4.3%
Dual EKF 11.8% 5.1%
Mix 9.7% 4.6%
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Fig. 9. Comparison of SoC estimation after a wrong initialisation.

thus, their suitability to be used in a BMS for concurrent state
and parameter estimation in real time.
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