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Abstract In this note, we consider the boundary value problem in exterior
domains for the p-Laplacian system. For suitable p and Lr-spaces, r > n, we
furnish existence of a high regular solution, that is a solution whose second
derivatives belong to Lr(Ω). Hence, in particular we get λ-Hölder continuity
of the gradient of the solution, with λ = 1 − n

r . Further, we improve previous
results on W 2,2-regularity in a bounded domain.
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1 Introduction

We consider the p-Laplacian boundary value problem, p ∈ (1, 2), in a C2-smooth
exterior domain Ω ⊆ IRn, n ≥ 2:

(1.1)
−∇ · (|∇u|p−2∇u) = f in Ω ,

u = 0 on ∂Ω ,
p ∈ (1, 2)

where u : Ω ⊂ IRn → IRN , N ≥ 1, is a vector field.
We prove existence and uniqueness of solutions which are high regular, in

the following sense:

Definition 1.1. Given a distribution f , by high-regular solution of system (1.1)
we mean a field u such that

i) ∇u ∈ Lp(Ω), u = 0 on ∂Ω;

ii) for some r ∈ (n,+∞), D2u ∈ Lr(Ω);

iii) (|∇u|p−2∇u,∇ϕ) = (f, ϕ), for all ϕ ∈ C∞0 (Ω) .

There are several contributions to the local regularity of weak solutions of
(1.1), particularly when N = 1. We just recall papers [1], [13], [25] and [26],
for integrability of second derivatives in the interior. The global regularity,
in the sense of regularity up to the boundary, has been less investigated. In
the case of a bounded domain, we particularly refer to [7], [8], [9] for global
boundedness or Hölder continuity of the gradient, to [21] for Lr integrability of
second derivatives in the scalar case, to [4], [5] and [11], where, for systems, Lr

integrability of second derivatives has been studied, under the assumption of p
close enough to the limit exponent 2. As far as we know, with the exception of a
result in [12], where an even more involved equation is studied in the whole IRn,
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this paper is the first contribution for global regularity in an exterior domain,
and more in general in an unbounded domain.

The paper has different aims.
Firstly, to fill the gap in the theory between bounded and exterior domains.
Secondly, to derive solutions with high regularity, that is solutions whose

second derivatives belong to Lr(Ω), r > n. Hence, in particular, u ∈ C1,λ(Ω),
λ = 1− n

r . As in the case of a bounded domain, the result holds for exponents
p constrained with the value of r. We remark that this result is a first step for
the study of the corresponding parabolic problem in exterior domains, following
the approach used in [10].

Last, but not least, to investigate the nature of the estimate of second deriva-
tives. To better explain this last task, it should be recalled the analogous ques-
tion concerning the linear case. Let us consider the Dirichlet boundary value
problem in an exterior domain Ω ⊂ IRn, n ≥ 2:

−∆u = f, in Ω, u = 0 on ∂Ω,

with u → 0 as |x| → ∞ if n > 2, u → u∞ as |x| → ∞ if n = 2. Then the
estimate

‖D2u‖r ≤ c‖f‖r,

holds for r ∈ (1, n2 ), n ≥ 3, and fails for r ∈ [n2 ,∞), n ≥ 2. A first contribute in
this sense is given in [22]. Subsequently, several contributes have been given. For
a full enough list of references on the topic, we refer the reader to the monograph
[23]. However, in [22], for all u such that u ∈W 1,r(Ω1), Ω1 ⊂ Ω bounded domain
such that ∂(Ω− Ω1) ∩ ∂Ω = ∅, u = 0 on ∂Ω and D2u ∈ Lr(Ω), it is proved, as
a priori estimate, that the following estimate holds for any exponent r ∈ [n2 ,∞)
(r ∈ (1,∞) for n = 2):

(1.2) ‖D2u‖r ≤ c
(
‖f‖r + ‖u‖Lr(Ω1)

)
,

where f := ∆u.
Motivated by the above considerations, it appears interesting to understand

if an estimate similar to (1.2) holds for solutions to the p-Laplacian problem, or
if the nonlinear character of the operator entails new difficulties to the question.
Our main theorem can be stated as follows.

Theorem 1.1. Let Ω be an exterior domain of class C2. Assume that f ∈
Lr(Ω) ∩ (Ŵ 1,p(Ω))′, with r ∈ (n,∞). Then, there exists p := p(r) ∈ (1, 2) such
that if p ∈ (p, 2) there exists a unique high-regular solution u of system (1.1),
with

(1.3) ‖∇u‖p ≤ c ‖f‖
1

p−1

−1,p′ ,

(1.4) ‖D2u‖r ≤ c (‖f‖
1

p−1

−1,p′ + ‖f‖
1

p−1
r ),

where c is a constant independent of u.
Moreover, the solution is unique in the class of weak solutions.

The restriction on the exponent p arises from some Lr-estimates for second
order derivatives of solutions to the Dirichlet problem for the Poisson equation
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in bounded domains. However, in the case of an exterior domain one cannot
directly apply the corresponding estimates for the Poisson equation, since they
rely on the finite measure of Ω. Hence, we need to introduce some new ideas.

The result is deduced by means of the technique of invading domains. We
establish regularity properties of solutions to approximating problems in Ω∩BR.
The task is to deduce these properties uniformly in R.

Even though our main interest is to deal with high regularity in exterior
domains in the sense specified before, our approach enables us to obtain a L2-
regularity result for second derivatives either in exterior and in bounded domains
of class C2, under the unique assumption p ∈ (1, 2). More precisely, we have
the following result.

Set

(1.5) r̂


=

2n

n(p− 1) + 2(2− p)
, if n ≥ 3,

∈
(

2,
2

p− 1

)
, if n = 2 .

Theorem 1.2. Let Ω be an exterior domain of class C2 and p ∈ (1, 2). Assume

that f ∈ Lr̂(Ω) ∩ (Ŵ 1,p(Ω))′. Then, denoting by u the unique weak solution of
(1.1) the following regularity estimates hold

‖∇u‖p ≤ c ‖f‖
1

p−1

−1,p′ ,

‖D2u‖2 ≤ c (‖f‖
1

p−1

−1,p′ + ‖f‖
1

p−1

r̂ ) .

The same result holds for a C2 bounded domain E.

The interest of Theorem 1.2 is twofold. On one hand, it improves the known
W 2,2-regularity for bounded domains, for which we refer to papers [4, Corollary
2.2] and [11, Theorem 1.1, q̂ = 2]). Actually, in these papers it is shown that
the unique weak solution of (1.1) belongs to W 2,2, for any p ∈ (1, 2) if the
(sufficiently regular) domain E is bounded and convex, only for p close enough
to 2 if E is bounded but non-convex. We are able to overcome the latter
restriction, achieving the result for any p ∈ (1, 2). The second reason of interest
for such a L2-integrability result is connected with the behavior of the solution
and its gradient as |x| → ∞ when the space dimension is n = 2. It is well
known that, in the case of the Laplacian, a L2-theory for ∇u is not sufficient to
ensure that u → 0 as |x| → ∞, as well as a L2-theory fo D2u is not sufficient
for ∇u → 0 as |x| → ∞. So, it is remarkable (in this regard see [14] and [15])
that for the p-Laplacian (p ∈ (1, 2)), the existence class enables to deduce an
asymptotic behavior.

The plan of the paper is the following. In sec. 2 we give the notation used
throughout the paper and introduce or recall some auxiliary results. In sec. 3 we
introduce an approximating problem, whose solution has second derivatives in
L2(Ω∩BR), and satisfiesR-uniform estimates. This enables us to prove Theorem
1.2. In sec. 4 we improve the regularity of the solution of the approximating
system up to Lr(Ω ∩ BR), r > n, and in the final section we prove our main
result passing to the limit as R tends to infinity.
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2 Notation and some preliminary results

Throughout the paper we will assume p ∈ (1, 2). Moreover Ω ⊆ IRn, n ≥ 2,
will denote an exterior domain, that is an unbounded domain with C2 compact
boundary. E ⊂ IRn will denote a C2 bounded domain and |E| denotes its
Lebesgue measure.

We choose the origin of coordinates lying in the interior of IRn \Ω. For any
σ > 0 let us denote by Bσ := B(O, σ) the n-dimensional open ball of radius
σ centered at the origin. We define Ωσ := Ω ∩ Bσ. We fix R0 > 0 such that
IRn \ Ω ⊂ BR0

2
. Throughout the paper R will be a real number greater than

2R0. Without loss of generality we require that any ΩR satisfies the same cone
property as Ω does.

We decompose ∂E in two disjoint parts, ∂E := Γ1∪Γ2, where Γ2 is a surface
such that, at any point of Γ2, E is locally the subgraph of a concave function
(see [18, §1.1.5]). In particular if E = ΩR, we set Γ2 := ∂BR.

Let d > 1 be an integer. We define an infinitely differentiable function
χd : [0,+∞) → [0, 1] satisfying the conditions χd(x) = 0 for x ≤ (d − 1),
χd(x) = 1 for x ≥ d. If θ is a positive constant and x is a point of IRn , we let

χθd(x) = χd(
|x|
θ ).

We use the summation convention on repeated indices. For a function v(x),
by ∂iv we mean ∂v

∂xi
, and, if v(x) is a vector valued function, by ∂jvi we mean

∂vi
∂xj

. If v and w are two vector fields, by w · ∇v we mean wj∂jvi. Further, by

the symbol (∇v ⊗∇v)D2w we mean ∂jvi ∂kvh∂
2
jkwh.

By Lr(Ω) and Wm,r(Ω), m nonnegative integer and r ∈ [1,∞], we denote
the usual Lebesgue and Sobolev spaces, with norms ‖·‖r,Ω and ‖·‖m,r,Ω, respec-
tively. The L2-norm, Lr-norm and Wm,r-norm on Ω will be simply denoted,
respectively, by ‖ · ‖, ‖ · ‖r and ‖ · ‖m,r, when no danger of confusion is possible.

For r ∈ (1,∞) we set Ŵ 1,r(Ω) := completion of C∞0 (Ω) in ‖∇ · ‖r-norm.

By (Ŵ 1,r(Ω))′ we denote the normed dual of Ŵ 1,r(Ω), by ‖ ·‖−1,r′ its norm and
by 〈·, ·〉 the duality pairing. Note that in the case of a bounded domain E, the

space (Ŵ 1,r(E))′ and W−1,r′(E) are isomorphic.
We use the symbols ⇀ and → to denote weak and strong convergences,

respectively.
We shall use the lower case letter c to denote a positive constant whose

numerical value (and dependence on some parameters) is unessential for our
aims. As well as, we can find in the same line k > 1 and k c ≤ c.

We begin by recalling some known results, related to the regularity theory
for linear elliptic equations and systems.

We will make use of the following Lq-estimate in bounded domains

(2.1) ‖D2 u‖q,E ≤ K1(q, E)‖∆u‖q,E ,

for u ∈ W 2,q(E) ∩W 1,q
0 (E), q > 1 , where the constant K1 depends on q and

E. It relies on standard estimates for solutions to the Dirichlet problem for the
Poisson equation in bounded domains. For details we refer to [2], [17] and, for
the particular case q = 2, also to [18, §1.1.5] and [19, §3.8]. Estimate (2.1) is
improved in the following three lemmas.

Lemma 2.1. Assume that v ∈W 1,2
0 (E) ∩W 2,2(E). Then, we have

(2.2) ‖D2v‖2,E ≤ ‖∆v‖2,E + C‖∇v‖2,Γ1
.
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Proof. The result easily follows from the proof of estimate (2.1), with q = 2, for
which we refer to [18, §1.1.5]. From this proof we can infer that ‖D2v‖2,E can
be controlled by ‖∆v‖2,E and by the integral of the normal derivative on the
boundary multiplied by a term κ(∂E) involving the curvature:

(2.3) ‖D2v‖22,E = ‖∆v‖22,E+

∫
Γ1

(n · ∇v)2κ(Γ1)ds+

∫
Γ2

(n · ∇v)2κ(Γ2) ds,

where we have used the decomposition ∂E = Γ1∪Γ2 introduced in the notation.
Since κ(Γ2) ≤ 0, we immediately get the result.

We point out that, for E = ΩR, ∂BR does not contribute to the estimate
(2.2) since ∂BR = Γ2.

Lemma 2.2. For any q ∈ (1,+∞) there exists a constant K2(q), not depending
on R, such that

‖D2u‖q,BR
≤ K2(q)‖∆u‖q,BR

for any u ∈W 1,q
0 (BR) ∩W 2,q(BR).

Proof. The proof follows by (2.1) applied to the unit ball B1, and then using
an homothetic transformation on the ball BR.

¿From estimate (2.1) and Lemma 2.2, we show the following

Lemma 2.3. For any q ∈ [p,+∞), setting

K3(q) := 4(K1(q,Ω2R0
) +K2(q)),

for any u ∈W 1,p
0 (ΩR) ∩W 2,q(ΩR) the following estimate holds

‖D2u‖q,ΩR
≤ K3(q)‖∆u‖q,ΩR

+ C(q,R0)‖∇u‖p,Ω2R0
.

Proof. We introduce the infinitely differentiable function χR0
2 : IRn → [0, 1], and

we decompose u as
u := uχR0

2 + u(1− χR0
2 ).

Extending u to 0 in IRn \ Ω, we get that (uχR0
2 ) ∈W 2,q(BR) ∩W 1,p

0 (BR) and

∆(uχR0
2 ) = χR0

2 ∆u+ 2∇χR0
2 · ∇u+ u∆χR0

2 .

By applying Lemma 2.2
(2.4)
‖D2(uχR0

2 )‖q,BR
≤ K2(q)(‖∆u‖q,BR\BR0

+ ‖∇u‖q,B2R0
\BR0

+ ‖u‖q,B2R0
\BR0

) .

By applying Gagliardo-Nirenberg’s inequality and then Young’s inequality

‖∇u‖q,BR\B2R0
≤ c(R0)‖D2u‖aq,B2R0

\BR0
‖∇u‖1−ap,B2R0

\BR0
+ c‖∇u‖p,B2R0

\BR0

≤ ε‖D2u‖q,B2R0
\BR0

+ c(ε,R0)‖∇u‖p,B2R0
\BR0

,

with a = n(q−p)
nq+pq−np . Further, by applying Poincaré’s inequality and then rea-

soning as above we get

‖u‖q,B2R0
\BR0

≤ ‖u‖q,Ω2R0
≤ c(R0)‖∇u‖q,Ω2R0

≤ ε‖D2u‖q,Ω2R0
+ c(ε,R0)‖∇u‖p,Ω2R0

.
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Collecting the previous estimates, (2.4) gives
(2.5)
‖D2(uχR0

2 )‖q,BR
≤ K2(q)‖∆u‖q,BR\BR0

+ ε‖D2u‖q,Ω2R0
+ c(ε,R0)‖∇u‖p,Ω2R0

.

Let us estimate D2(u(1− χR0
2 )). By using estimate (2.1), we readily get

‖D2(u(1− χR0
2 ))‖q,Ω2R0

≤ K1(q,Ω2R0
)(‖∆u‖q,Ω2R0

+‖∇u‖q,B2R0
\BR0

+ ‖u‖q,B2R0
\BR0

).

Treating the last two terms as before, we find

(2.6)
‖D2(u(1− χR0

2 ))‖q,Ω2R0
≤ K1(q,Ω2R0

)(‖∆u‖q,Ω2R0

+ε‖D2u‖q,Ω2R0
+ c(ε,R0)‖∇u‖q,Ω2R0

).

Therefore, using (2.5) and (2.6), we end up with

‖D2u‖q,ΩR
≤ ‖D2(uχR0

2 )‖q,ΩR
+ ‖D2(u(1− χR0

2 ))‖q,ΩR

≤ K2(q)‖∆u‖q,BR\BR0
+K1(q,Ω2R0)‖∆u‖q,Ω2R0

+ε‖D2u‖q,Ω2R0
+ c(ε,R0)‖∇u‖p,Ω2R0

,

which, choosing ε = 1
2 gives the result.

3 W 2,2-regularity

Let µ ∈ (0, 1]. We introduce the following auxiliary problem

(3.1)
− ∆uE

(µ+ |∇uE |2)
2−p
2

− (p− 2)
(∇uE ⊗∇uE)D2uE

(µ+ |∇uE |2)
4−p
2

= f in E

uE = 0 on ∂E.

Proposition 3.1. Let p ∈ (1, 2) and let f ∈ Lr̂(E)∩W−1,p′(E), with r̂ defined
in (1.5). Then, there exists a solution uE ∈W 1,2

0 (E)∩W 2,2(E) of system (3.1).
Moreover, the following estimates hold

(3.2) ‖∇uE‖p,E ≤ c
(
‖f‖

1
p−1

−1,p′ + µ
1
2 |E|

n
p

)
,

(3.3) ‖D2uE‖2,E ≤ c (‖f‖
1

p−1

−1,p′ + µ
1
2 |E|

n
p + ‖f‖

1
p−1

r̂ + µ
2−p
2 ‖f‖),

with c independent of |E|.

Proof. Let us consider the following auxiliary problem for fixed ε > 0

(3.4)
−ε∆u−∇ ·

(
(µ+ |∇u|2)

p−2
2 ∇u

)
= f in E,

u = 0 on ∂E.

By [6, Theorem 8.2], as f ∈ L2(E) we determine the solution uε ∈ W 2,2(E) of
the above problem. Multiplying (3.4) by uε and integrating over E we get

ε‖∇uε‖2 +

∫
E

|∇uε|2

(µ+ |∇uε|2)
2−p
2

dx = 〈f, uε〉.
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It follows that ∫
E

|∇uε|2

(µ+ |∇uε|2)
2−p
2

dx ≤ ‖f‖−1,p′‖∇uε‖p.

Using the above estimate together with Young’s inequality, since µ ≤ 1, we have

‖∇uε‖pp =

∫
{|∇uε|2≥µ}

|∇uε|p dx+

∫
{|∇uε|2<µ}

|∇uε|p dx

≤ 2
2−p
2

∫
E

|∇uε|2

(µ+ |∇uε|2)
2−p
2

dx+ µ
p
2 |E| ≤ 2

2−p
2 ‖f‖−1,p′‖∇uε‖p + µ

p
2 |E|

≤ 1

p
‖∇uε‖pp + c‖f‖p

′

−1,p′ + µ
p
2 |E|

hence

(3.5) ‖∇uε‖p ≤ c
(
‖f‖

1
p−1

−1,p′ + µ
1
2 |E|

1
p

)
,

with the constant c independent of ε, µ and |E|. Considering that uε ∈
W 1,2

0 (E) ∩W 2,2(E) we can state that

(3.6) − ε∆uε −
∆uε

(µ+ |∇uε|2)
2−p
2

− (p− 2)
(∇uε ⊗∇uε)D2uε

(µ+ |∇uε|2)
4−p
2

= f a.e. in E.

Multiplying equation (3.6) by (µ + |∇uε|2)
2−p
2 , and taking the L2(E)-norm of

both sides, we get

(3.7)

‖∆uε‖ ≤ ‖∆uε(1 + ε(µ+ |∇uε|2)
2−p
2 )‖

≤ (2− p)‖D2uε‖+ ‖(µ+ |∇uε|2)
2−p
2 f‖

≤ (2− p)‖D2uε‖+ ‖f |∇uε|2−p‖+ µ
2−p
2 ‖f‖.

In order to estimate the L2-norm of D2uε we use Lemma 2.1, which yields

(3.8) ‖D2uε‖2,E ≤ ‖∆uε‖2,E + C‖∇uε‖2,Γ1
,

and the constant C depends on the geometry of Γ1 but not on |E|. To estimate

the boundary term we consider a fixed neighborhood Ẽ ⊂ E of Γ1, and we make
use of Gagliardo-Nirenberg’s inequality, and then of Young’s inequality, to get,

(3.9)

C‖∇uε‖2,Γ1 ≤ C‖∇uε‖2,∂Ẽ≤Cc2
(
‖∇uε‖2,Ẽ+ ‖∇uε‖

1
2

2,Ẽ
‖D2uε‖

1
2

2,Ẽ

)
≤ σ‖D2uε‖2,Ẽ + Cc2

(
Cc2
4σ

+ 1

)
‖∇uε‖2,Ẽ

for any σ > 0 and the constants, here and in the following inequalities, do not
depend on |E|. Employing once again Gagliardo-Nirenberg’s inequality with

a := n(2−p)
2n+2p−np , and successively Young’s inequality, we get

(3.10)
‖∇uε‖2,Ẽ ≤ c3(Ẽ)

(
‖D2uε‖a2,Ẽ‖∇uε‖

1−a
p,Ẽ

+ ‖∇uε‖p,Ẽ
)

≤ δ‖D2uε‖2,Ẽ + c(δ)‖∇uε‖p,Ẽ .
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Substituting estimate (3.10) in (3.9), choosing δ small enough and σ ∈ (0, 1
2 ),

by (3.8), we get

(3.11) ‖D2uε‖2,E ≤
1

1− 2σ
‖∆uε‖2,E + c(σ)‖∇uε‖p,E .

For the term ‖f |∇uε|2−p‖ in (3.7) we distinguish between n = 2 and n ≥ 3. Let
be n ≥ 3. By applying Hölder’s inequality with exponents r̂

2 , n/(n− 2)(2− p),
we have

(3.12) ‖f |∇uε|2−p‖ ≤ ‖ f‖r̂ ‖∇uε ‖2−p2n
n−2

.

If n = 2, since r̂ ∈ (2, 2
p−1 ), we can find r > 2 such that r̂ = 2r

r−2(2−p) . Hence,

we apply Hölder’s inequality with exponents r̂
2 , r

2(2−p) , and we obtain

(3.13) ‖f |∇uε|2−p‖ ≤ ‖ f‖r̂ ‖∇uε ‖2−pr .

We set r = 2n
n−2 , for n ≥ 3, and r = r > n, for n = 2. In any case we can apply

the Sobolev embedding theorem, and obtain

(3.14) ‖∇uε‖r ≤ c(∂E)(‖D2uε‖+ ‖∇uε‖),

where the constant c depends only on the cone determining the cone property
of E∗. Interpolating L2 between Lp and Lr and using Young’s inequality we
get that, for any δ > 0,

(3.15) ‖∇uε‖2,E ≤ δ‖∇uε‖r,E + c(δ)‖∇uε‖p,E .

If we choose a suitable δ in (3.15), and we replace (3.15) in (3.14), we get

(3.16) ‖∇uε‖r ≤ c(‖D2uε‖+ ‖∇uε‖p).

Hence, by applying Young’s inequality, we finally get, for any η > 0,

(3.17) ‖f |∇uε|2−p‖ ≤ ‖f‖r̂‖∇uε‖2−pr ≤ η‖D2uε‖+ c‖f‖
1

p−1

r̂ + c‖∇uε‖p.

Therefore, by using estimate (3.17) and (3.11) in (3.7), we obtain, for any σ ∈
(0, p−1

2 ) and η ∈ (0, p− 1− 2σ),

(3.18)

(
1− (2− p)

1− 2σ
− η

1− 2σ

)
‖∆uε‖ ≤ c‖∇uε‖p + c‖f‖

1
p−1

r̂ + µ
2−p
2 ‖f‖.

Hence, by (3.11) and (3.18) we get

(3.19) ‖D2uε‖2,E ≤ c (‖f‖
1

p−1

−1,p′ + µ
1
2 |E|

n
p + ‖f‖

1
p−1

r̂ + µ
2−p
2 ‖f‖),

for any ε > 0, where c = c(p). Therefore, with the aid of Poincaré’s inequality,
we get that

‖uε‖2,2,E ≤ c(E)(‖f‖
1

p−1

−1,p′ + µ
1
2 |E|

n
p + ‖f‖

1
p−1

r̂ + µ
2−p
2 ‖f‖),

∗Note that when E = ΩR, the cone property is uniform with respect to R.
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uniformly in ε. It follows that we can find a function uE ∈W 2,2(E) ∩W 1,2
0 (E)

such that, up to subsequences, uε ⇀ uE weakly in W 2,2(E). Moreover, by
the Relich-Kondrachov embedding theorem, we can suppose that ∇uε → ∇uE
almost everywhere in E. Since the sequence {(µ+ |∇uε|2)

p−2
2 ∇uε} is bounded

in Lp
′
(E), Lemma I.1.3 in [20] allows us to infer the weak convergence

(µ+ |∇uε|2)
p−2
2 ∇uε ⇀ (µ+ |∇uE |2)

p−2
2 ∇uE in Lp

′
(E).

This is enough to ensure that uE is a solution of (3.1) and satisfies estimates
(3.2) and (3.3).

In the above proposition we have taken care to get all the constants in-
dependent of |E|. Further, as previously remarked, if E = ΩR the constants
depending on ∂E actually depend on ∂Ω. Hence, from the above Proposition
we immediately obtain the following result.

Corollary 3.1. Let p ∈ (1, 2) and let f ∈ C∞(ΩR), for a fixed R. Further
assume that

(3.20) µ
1
2R

n
p = Rα, for some α < 0.

Then, there exists a solution uR := uE ∈W 1,2
0 (ΩR)∩W 2,2(ΩR) of system (3.1).

Moreover, setting

(3.21) Λ := c (‖f‖
1

p−1

−1,p′ +Rα + ‖f‖
1

p−1

r̂ + µ
2−p
2 ‖f‖),

the following estimates hold

(3.22) ‖∇uR‖p,ΩR
≤ c

(
‖f‖

1
p−1

−1,p′ +Rα
)
,

(3.23) ‖D2uR‖2,ΩR
≤ Λ,

with c independent of R.

Proof of Theorem 1.2. We start with the case of Ω exterior.
Firstly we assume f ∈ C∞0 (Ω). Then there exists a R such that for any

R > R, f ∈ C∞(ΩR). Further we assume that µ and R satisfy (3.20). Then,
from Corollary 3.1, for any fixed R (and µ), there exists a solution uR of system
(3.1). The solution u of (1.1) corresponding to f ∈ C∞0 (Ω) can be obtained
as limit of the sequence of solutions {uR}, letting R go to infinity †. We omit
the proof of this convergence, as it will be completely given in the last section
(Proof of Theorem 1.1, Step 1). The estimates on ∇u and D2u follow from
(3.22) and (3.23), respectively, and the lower semicontinuity.

Let us remove the extra assumption on f . Therefore let f ∈ Lr̂(Ω) ∩
(Ŵ 1,p(Ω))′. In this case the result can be obtained by approximating f in

the norms of Lr̂(Ω) and (Ŵ 1,p(Ω))′ throughout a suitable sequence. We omit
the details and refer to the last section (Proof of Theorem 1.1, Step 2).

†We point out that as R goes to infinity the parameter µ goes to zero following the behavior
given in (3.20).
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Let us consider the case of a bounded domain E. For any µ > 0, let {uµE}
the sequence of solutions, obtained in Proposition 3.1. The solution u of (1.1)
in E can be obtained as limit of this sequence as µ → 0. The proof is an easy
adaptation of the proof of convergence of the sequence {uR}, as R → ∞ (see
the last section, Proof of Theorem 1.1, Step 1). The estimates on ∇u and D2u
follow from (3.2) and (3.3), respectively, and the lower semicontinuity.

By uniqueness, the solution coincides with the unique weak solution of (1.1),
for which we refer to [20, §2.2].

4 High regularity for solutions of the approxi-
mating system

We begin this section with a regularity result for the non singular approximating
problem. The method is based on classical elliptic estimates, hence the proof
will only be sketched.

Proposition 4.1. Let p ∈ (1, 2), µ > 0 and f ∈ C∞(E). Then the solution u
of the problem

(4.1)
−∇ ·

((
µ+ |∇u|2

) p−2
2 ∇u

)
= f in E

u = 0 on ∂E

has second derivatives in Lr(E), for any r ∈ [2,∞).

Proof. The solution uE of system (3.1) belongs to W 2,2(E), by Proposition 3.1,
and it clearly coincides with the unique solution u of system (4.1). From [7,
Theorem 2] we also know that Du is Hölder continuous in E. Let us consider
the following system in the unknown v

−∆v − (p− 2)
∇u⊗∇u
µ+ |∇u|2

D2v = f
(
µ+ |∇u|2

) p−2
2 in E

v = 0 on ∂E.

The above system is linear, the coefficients are uniformly continuous and
satisfy the Legendre-Hadamard condition, hence any W 2,2 solution has second
derivatives in Lr(E) (see [3],[24],[16]). Since u solves the system, we immediately
get the result.

Our aim is to get an explicit dependence on R of ‖D2uR‖q, q > 2, with uR
given in Corollary 3.1.

Let us set ρ = 2
3R0 and define

(4.2) p(r) := 2− 1

K3(r)
,

with K3(r) introduced in Lemma 2.3.

Proposition 4.2. Let f ∈ C∞(ΩR) and uR be the solution obtained in Corol-
lary 3.1. For any r > n and p ∈ (p(r), 2), the following estimate holds

(4.3) ‖D2uR‖r ≤ µ
2−p
2 ‖f‖r + c‖f‖

1
p−1
r + c

(
‖f‖

1
p−1

−1,p′ +Rα
)
,

with α as in (3.20).
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Proof. We remark that, by Proposition 4.1, uR ∈ W 2,q(ΩR) for any q ≥ 1.

Multiplying equation (3.1) by (µ+ |∇uR|2)
2−p
2 , and taking the Lr-norm of both

sides, we have

(4.4)
‖∆uR‖r ≤ (2− p)

∥∥∥∥∇uR ⊗∇uRµ+ |∇uR|2
D2uR

∥∥∥∥
r

+ ‖f(µ+ |∇uR|2)
2−p
2 ‖r

≤ (2− p)‖D2uR‖r + µ
2−p
2 ‖f‖r + ‖f‖r‖∇uR‖2−p∞ .

For the last term on the right-hand side, we reason as follows. By employing
the Sobolev embedding theorem, the convexity of the norm, and then Young’s
inequality we have

‖∇uR‖∞ ≤ c(‖D2uR‖r + ‖∇uR‖r) ≤ c(‖D2uR‖r + ‖∇uR‖θ∞‖∇uR‖1−θp )

≤ c‖D2uR‖r + δ‖∇uR‖∞ + c(δ)‖∇uR‖p ,

with θ = r−p
r . We remark once again that the constant c depends on the cone

property of Ω, hence not on R. Choosing a small δ > 0 we get,

‖∇uR‖∞ ≤ c(‖D2uR‖r + ‖∇uR‖p) .

Therefore, by applying Lemma 2.3 and Young’s inequality, we obtain

‖f‖r‖∇uR‖2−p∞ ≤c ‖f‖r(‖∆uR‖r + c(R0)‖∇uR‖p)2−p

≤ε‖∆uR‖r + c(ε)‖f‖
1

p−1
r + c(R0)‖f‖r‖∇uR‖2−pp .

Inserting this estimate in (4.4), we get

(4.5)
‖∆uR‖r ≤ (2− p)‖D2uR‖r + ε‖∆uR‖r + µ

2−p
2 ‖f‖r + c(ε)‖f‖

1
p−1
r

+c(R0)‖f‖r‖∇uR‖2−pp .

By using Lemma 2.3, we get

(1− (2− p)K3(r)− ε)‖∆uR‖r ≤ c(R0)‖∇uR‖p + µ
2−p
2 ‖f‖r

+c(ε)‖f‖
1

p−1
r + c‖f‖r‖∇uR‖2−pp ,

whence, applying Young’s inequality, recalling estimate (3.22) and the assump-
tion on p, we get (4.3).

5 Proof of Theorem 1.1

Step 1: f ∈ C∞0 (Ω).

Let R and µ be as in (3.20) and p > p(r) defined in (4.2). First of all we observe
that, from Corollary 3.1, for any R such that supp f ⊂ ΩR,

(5.1) ‖∇uR‖p,ΩR
≤ c

(
‖f‖

1
p−1

−1,p′ +Rα
)
.
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Moreover, by Proposition 4.2, ‖D2uR‖r satisfies (4.3). Let us show that, in
the limit as R goes to ∞, uR tends to a function u, which is the high-regular
solution of (1.1), and, from (5.1), (4.3), and the lower-semicontinuity, satisfies

(5.2) ‖∇u‖p,Ω ≤ c‖f‖
1

p−1

−1,p′ ,

(5.3) ‖D2u‖r,Ω ≤ c‖f‖
1

p−1

−1,p′ + c‖f‖
1

p−1
r .

Let us fix l ∈ IN, l > 2R0. Considering integer values of R we have that, by
(5.1), the sequence {uR} is bounded in L

np
n−p (Ωl), {∇uR} is bounded in Lp(Ωl),

and by (4.3) {D2uR} is bounded in Lr(Ωl). Hence we can extract a subsequence
{ulR} from {uR}, and find a function ul such that

ulR ⇀ ul weakly in L
np

n−p (Ωl),

∇ulR ⇀ ∇ul weakly in Lp(Ωl),

D2ulR ⇀ D2ul weakly in Lr(Ωl).

Considering the set Ωl+1 we can use the same procedure and find another func-
tion defined on Ωl+1. By the uniqueness of the weak limit, the new function
coincides with the previous one on Ωl. By applying the Cantor diagonalization
method, we construct a subsequence, still denoted by {uR}, converging to u in
the whole Ω. We want to show that the limit function u solves (1.1) in Ω. We
recall that uR is a solution of the problem (3.1) which, using identity (3.20), we
write as follows

(5.4) −∇ ·
((
Rβ + |∇uR|2

) p−2
2 ∇uR

)
= f in ΩR,

β = 2(α− n
p ). For a fixed ϕ ∈ C∞0 (Ω) we can find R ∈ IN such that the support

of ϕ is contained in ΩR. Multiplying (5.4) by ϕ and considering that ϕ is null
outside ΩR we have

(5.5)

∫
Ω

f · ϕdx =

∫
ΩR

(
Rβ + |∇uR|2

) p−2
2 ∇uR · ∇ϕdx.

Since the domain ΩR is bounded, by (4.3) and Rellich-Kondrachov’s theorem
we can extract a subsequence (not relabeled) such that

∇uR −→ ∇u a.e. in ΩR.

It follows that(
Rβ + |∇uR(x)|2

) p−2
2 ∇uR(x) −→ |∇u(x)|p−2∇u(x) a.e. in ΩR.

Since by (5.1) the sequence

{(
Rβ + |∇uR|2

) p−2
2 ∇uR

}
is bounded in Lp

′
(ΩR)

we can apply [20, Lemma I.1.3] and conclude that(
Rβ + |∇uR|2

) p−2
2 ∇uR ⇀ |∇u|p−2∇u weakly in Lp

′
(ΩR).
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Passing to the limit in (5.5) we have that∫
Ω

f · ϕdx =

∫
ΩR

|∇u|p−2∇u · ∇ϕdx =

∫
Ω

|∇u|p−2∇u · ∇ϕdx.

Since the choice of ϕ is arbitrary, we have proved that u is a solution of problem
(1.1). To prove estimates (5.2) and (5.3), we fix a bounded domain Ω′ ⊂ Ω and,
for R large enough we can write (5.1) and (4.3) on Ω′. Letting R go to infinity
we get (5.2) and (5.3) on Ω′, and, for the arbitrariness of Ω′, on Ω.

Step 2: f ∈ Lr(Ω) ∩ (Ŵ 1,p(Ω))′.

Set ζξ := 1− χξ2(x) and

Gε,ξ(x) := Jε(f ζ
ξ)(x),

where Jε is a Friedrich’s mollifier. Note that, by the assumptions on f , Gε,ξ ∈
C∞0 (Ω),

(5.6) ‖Gε,ξ‖r ≤ ‖f‖r , and lim
ε→0
‖Gε,ξ − fζξ‖r = 0 .

Further, since by Hardy’s inequality

‖∇ζξ Jεψ‖p ≤ c
∥∥∥∥Jεψξ

∥∥∥∥
Lp(ξ≤|x|≤2ξ)

≤ c‖∇ Jεψ‖Lp(|x|≥ξ) ,

with c independent of ξ, the following ε, ξ-uniform bound holds: for any ψ ∈
Ŵ 1,p(Ω)

|〈Gε,ξ, ψ〉| = |〈f, ζξJεψ〉| ≤ ‖f‖−1,p′‖∇(ζξJεψ)‖p
≤ c‖f‖−1,p′‖∇Jεψ‖p ≤ c‖f‖−1,p′‖∇ψ‖p .

Hence

(5.7) ‖Gε,ξ‖−1,p′ ≤ c‖f‖−1,p′ .

Let us consider system (1.1) where the right-hand side f is replaced by Gε,ξ.
As, for any fixed ε, ξ, the function Gε,ξ satisfies the assumptions of Step 1, there
exists a corresponding function uε,ξ, which is solution of system

(5.8) ∇ · (|∇uε,ξ|p−2∇uε,ξ) = Gε,ξ , in Ω ,

in the sense of Definition 1.1. Further, thanks to estimates (5.2) and (5.3) to-
gether with (5.6) and (5.7), it satisfies

(5.9) ‖∇uε,ξ‖p ≤ c ‖f‖
1

p−1

−1,p′ .

(5.10) ‖D2uε,ξ‖r ≤ c (‖f‖
1

p−1

−1,p′ + ‖f‖
1

p−1
r ),

with a constant c independent of ε, ξ. We want to pass to the limits as ε → 0
and then as ξ →∞. We just sketch one of these convergences, since the proofs
are quite the same. We pass to the limit as ε → 0. The ε-uniform bounds
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(5.9) and (5.10) ensure the existence of a subsequence, that we do not relabel,
and a function uξ, such that, in the limit as ε → 0, D2uε,ξ ⇀ D2uξ in Lr(Ω),
∇uε,ξ ⇀ ∇uξ in Lp(Ω), |∇uε,ξ|p−2∇uε,ξ ⇀ Ψ in Lp

′
(Ω). Hence, by Rellich-

Kondrachov’s theorem, there exists a further subsequence, depending on σ, such
that

∇uε,ξ → ∇uξ in Lp(Bσ) ,

|∇uε,ξ|p−2∇uε,ξ → |∇uξ|p−2∇uξ a.e. in Bσ .

Since this last subsequence weakly converges to Ψ in Lp
′
(Bσ) too, we find that

Ψ = |∇uξ|2−p∇uξ, on each compact Bσ ⊂ Ω, which ensures that

(5.11) |∇uε,ξ|p−2∇uε,ξ ⇀ |∇uξ|p−2∇uξ in Lp
′
(Ω) as ε→ 0 .

Hence uξ is high-regular solution of the limit problem and satisfies estimates
(1.3) and (1.4) by lower semicontinuity.
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