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Nomenclature

ap = propulsive acceleration

ac = characteristic acceleration

e = eccentricity

E = specific mechanical energy

F = auxiliary function, see Eq. (11)

h = orbital angular momentum

îr = radial unit vector

îθ = circumferential unit vector

O = Sun’s center of mass

r = Sun-spacecraft distance (r⊕ � 1AU)

t = time

T = heliocentric polar reference frame

α = sail pitch angle

θ = polar angle

μ� = Sun’s gravitational parameter

ρ = relative error in radial distance

χ = auxiliary variable, see Eq. (7)

Subscripts

0 = initial, parking orbit
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max = maximum

Superscripts

· = time derivative

� = critical

∼ = numerical

Introduction

Analytic trajectories for a spacecraft subjected to a low, continuous, propulsive accelera-

tion are available only for very special cases [1–3], even though these solutions find significant

utility in preliminary mission design and optimization [4]. If a closed-form trajectory corre-

sponding to a given thrust control law cannot be recovered, a possible option is to resort to a

shape-based approach [5–7], or to suitably simplify the differential equations of motion [8–10].

Within the latter context, in this Note an analytical, albeit approximate, expression for

the heliocentric trajectory of a spacecraft propelled by a low-performance electric sail [11,

12] is discussed. Using a two-dimensional model and under the assumptions of constant

thrust angle and low propulsive acceleration modulus, the spacecraft heliocentric trajectory

is obtained in a parametric way as a function of time. The effectiveness of the mathematical

model is checked by comparing the analytic solution with a numeric integration of equations

of motion.

Trajectory Approximation

Consider a spacecraft, whose propulsion system is an electric sail with characteristic

acceleration ac, that initially tracks a heliocentric (Keplerian) parking orbit. In analogy with

the performance metrics used for solar sails [13], the spacecraft characteristic acceleration is

defined as the maximum propulsive acceleration at a solar distance equal to one Astronomical
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Unit. However, even though a solar sail and an electric sail are both capable of producing

a propulsive thrust without the need of any propellant, these two propulsion systems are

substantially different in terms of performance, shape, and dimensions [14].

Consider a two-dimensional scenario, and introduce a heliocentric polar reference frame

T (O; r, θ), where r is the Sun-spacecraft distance (with r⊕ � 1AU) and θ is the polar

angle measured counterclockwise from the Sun-spacecraft direction at the initial time instant

t0 � 0. According to recent numerical simulations [14], the electric sail thrust modulus varies

inversely proportional to the Sun-spacecraft distance r. Therefore, the spacecraft propulsive

acceleration vector ap can be written as

ap = ac
r⊕

r

(
îr cosα + îθ sinα

)
(1)

where îr and îθ are, respectively, the radial and circumferential unit vectors of T , and

α ∈ [−αmax, αmax] is referred to as sail pitch angle, with αmax = 30 deg [14]. Note that,

in this simplified mission scenario, the pitch angle is the only system control parameter. If

the propulsion system is switched-on at t = t0, the spacecraft motion is described by the

equations

θ̇ =
h

r2
(2)

r̈ = −μ�

r2
+

h2

r3
+

ac r⊕ cosα

r
(3)

ḣ = ac r⊕ sinα (4)

where h is the modulus of the osculating orbit’s angular momentum vector, and μ� is the

Sun’s gravitational parameter.

Assuming that the sail pitch angle α is maintained constant along the whole heliocentric
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trajectory, Eq. (4) states that the angular momentum increases linearly with time according

to the relationship

h = h0 + (ac r⊕ sinα) t (5)

where h0 is the angular momentum along the heliocentric parking orbit. Note that Eq. (5)

holds regardless of the parking orbit’s eccentricity or the value of the characteristic accelera-

tion. A constant pitch angle essentially corresponds to a constant angle between the electric

sail nominal plane (that is, the mean plane containing the spacecraft charged tethers [15])

and the incoming solar wind flux. Such a simple control strategy is useful, for instance, for

simplifying the design of both the spacecraft thermal and electrical power subsystems [14] .

Equation (5) provides a first integral of the motion, which can be substituted into Eq. (3)

to facilitate the heliocentric trajectory analysis. In general, however, even with the aid

of Eq. (5) an exact closed-form solution for the radial component of velocity ṙ cannot be

recovered. The only, notable, exception is obtained when α = 0, that is, for a purely radial

propulsive acceleration (ap · îθ = 0). In that case h is constant along the whole trajectory,

and Eq. (3) becomes an autonomous second-order differential equation in the variable r. A

mission analysis for an electric sail subjected to a pure radial thrust is thoroughly discussed

in Ref. [16] using the potential well concept by Prussing and Coverstone [17].

On the other hand, an approximate analytical expression for the spacecraft trajectory

can be found if the initial parking orbit is circular (with radius r0 � h2
0/μ�) and the maxi-

mum modulus of the reference propulsive acceleration is sufficiently small. This scenario is

consistent, for instance, with a low-performance electric sail (that is, a propulsion system of

the first generation) that leaves the Earth’s sphere of influence with zero hyperbolic excess

velocity. Numerical simulations of a ten years flight time show that the time-variation of

the dimensionless spacecraft radial acceleration r̈/(μ�/r
2
0) fluctuates around a mean value

on the order of 10−4 when r0 = r⊕ and ac ≤ 0.1mm/s2 .
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This behaviour suggests the introduction of the approximation r̈ ≈ 0 into Eq. (3), in

analogy with the classical work of Tsu [18, 19] about the logarithmic spiral solution for a

solar sail spacecraft [20], or the Battin’s method [10] for the spacecraft motion analysis under

a circumferential, small, propulsive acceleration of constant modulus . The validity and the

practical implications of such an assumption will be discussed afterwards with the aid of

numerical simulations. For now, it suffices to observe that, as long as the left hand side of

Eq. (3) is about zero, the right hand side of the same equation can be solved for r to get the

Sun-spacecraft distance as a function of h, viz.

r =
μ�

2 ac r⊕ cosα

(
1−

√
1− 4 ac r⊕ h2 cosα

μ2
�

)
(6)

Note that if α > 0 (or α < 0) the angular momentum h increases (or decreases) with time

according to Eq. (5), and Eq. (6) implies an orbit raising (or lowering). In the limit as

ac → 0, Eq. (6), when combined with Eq. (5), provides the exact value of the initial parking

orbit’s radius, that is, r0 = h2
0/μ�. If, instead, ac is not zero but is sufficiently small, Eq. (6)

gives a value of r slightly greater than r0 and, therefore, does not meet exactly the initial

boundary condition. The spacecraft trajectory can be obtained using a change of variable

χ � 1− 4 ac r⊕ h2 cosα

μ2
�

(7)

In fact, Eq. (6) is now rewritten as

r =
μ�

2 ac r⊕ cosα
(1−√

χ) (8)
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while Eq. (2) is turned into a differential equation with separable variables:

dθ

dχ
= − cotα

2
(
1−√

χ
)2 (9)

which, under the assumption of α 	= 0, can be integrated to yield the polar angle

θ =
F (χ0)− F (χ)

2 tanα
(10)

with

F (χ) �
2
(
1 +

√
χ
)

1− χ
+ ln

[
(1− χ)

(
1−√

χ
)

1 +
√
χ

]
(11)

where χ is given by Eq. (7) as a function of h, and χ0 � χ(h0). Equations (8) and (10)

are in the form r = r(χ) and θ = θ(χ) and, as such, they define the spacecraft heliocentric

trajectory in a parametric form.

Moreover, the expression r = r(χ) can be used for evaluating the osculating orbit charac-

teristics. In fact, bearing in mind Eqs. (5)-(6), a closed form approximation of the osculating

orbit mechanical energy E is obtained as

E =
2h2 a2c r

2
⊕ sin2 α

μ2
� − 4 ac r⊕ h2 cosα

+
h2

2 r2
− μ�

r
(12)

Therefore, the semimajor axis and eccentricity of the osculating orbit are a = −μ�/(2 E) and

e =
√
1− 2 E h2/μ2

�, where E is given by Eq. (12) as a function of h. As before, if ac → 0,

Eq. (12) is exact (E = −0.5μ�/r0), while if ac is small, but not zero, the corresponding initial

value of E is slightly overestimated.

The intrinsic limit of the previous mathematical model is in the form of Eq. (6). In fact,
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if α > 0, the term under the square root in Eq. (6) will become negative when t > t�, where

t� =
μ�/(2

√
ac r⊕ cosα)− h0

ac r⊕ sinα
with α ∈ (0, αmax] (13)

Anyway, the preceding equation shows that t� is a decreasing function of both ac and α. In

particular, recalling that the current electric sail design [15] requires that α ≤ 30 deg, and

assuming r0 = r⊕ (that is, h0 =
√
μ� r⊕ = 2 πAU2/year) and ac ≤ 0.1mm/s2, Eq. (13)

provides t� ≥ 59.2 years, a value greater than any flight time of practical interest.

Numerical Simulations

The accuracy of the previous analytical results can be compared, by simulation, with a

numerical integration of equations of motion (2)–(4) using, in both cases, the same parking

orbit radius, and the same propulsion system characteristics, that is, ac and α. The numer-

ical integrations have been performed through a variable order Adams-Bashforth-Moulton

solver [21] with absolute and relative errors of 10−12.

Assuming r0 = r⊕, ac = 0.1mm/s2 and α = αmax, the comparison is summarized in Fig. 1

for a ten-years time interval. Figure 1 clearly shows that the analytical approximations of E

and of θ closely follow their numerical counterparts.

On the contrary, the numerical simulations of radial distance and eccentricity exhibit an

oscillatory behavior superimposed to a secular variation, which is essentially described by

Eq. (6). This is confirmed by Fig. 2 in which the time histories of radial (ṙ) and circumfer-

ential (h/r) velocities have been normalized through the circular velocity along the parking

orbit (
√
μ�/r⊕). Note that the analytical expressions of both velocity components do not

satisfy the actual initial conditions, but fit well their mean values.

On the other hand, the spacecraft trajectory obtained using Eqs. (8) and (10) closely

follows the trajectory calculated numerically, as is shown in Fig. 3. The difference between the
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Figure 1: Simulation results for a ten-years orbit raising with ac = 0.1mm/s2, α =
30deg, and r0 = r⊕ (solid line = numerical; dashed line = analytical).

two trajectories is better appreciated in terms of relative error in radial distance ρ � |r̃(θ)−

r(θ)|/r̃(θ) for a given value of polar angle θ, where r̃(θ) is the actual Sun-spacecraft distance

evaluated through numerical integration . Figure 4 shows the maximum (relative) distance

error ρ, over a ten-years simulation, as a function of ac ∈ [0.01, 0.1]mm/s2 and the sail

pitch angle α = ±{30, 20, 10, 1} deg. For a given value of ac, the maximum error increases

linearly with |α|, for both an orbit raising (Fig. 4(a)) and an orbit lowering (Fig. 4(b)).

Notably, the difference between the approximated trajectory and the numerical solution is

always moderate, and the maximum value of ρ is of a few percent only, even for long time

intervals.

The previous analytical relationships are useful to obtain an estimate of the flight time

required by an electric sail to reach a prescribed distance from the Sun. For example, in
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Figure 2: Components of spacecraft velocity (ac = 0.1mm/s2, α = 30deg, and r0 = r⊕).

a hypothetical flyby mission toward Mars (r = 1.524AU), assuming ac = 0.1mm/s2 and

α = 30 deg, the flight time obtained integrating the equations of motion is 1603 days, while

Eqs. (5)-(6) provide a flight time of 1521 days, with a percentage difference of 5% only with

respect to the value obtained by simulation. This difference is further reduced in a flyby

mission to Venus (r = 0.723AU, ac = 0.1mm/s2 and α = −30 deg) in which the mission

time is 1061 days (numerical simulation), while the analytic model estimates 1063 days.

Another potential application, not directly related to the trajectory approximation, con-

cerns a minimum time rendez-vous problem between two circular and coplanar orbits. In

this case it is possible to obtain a precise information about the time interval along which

the propulsion system is switched-on. In fact, although the optimal control law allows a

variation of the sail pitch angle between their extremal values [22], numerical simulations of

a low-performance electric sail show that α = αmax in an optimal orbit raising, or α = −αmax
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Figure 3: Spacecraft trajectory in a ten years orbit raising (ac = 0.1mm/s2, α = 30deg,
and r0 = r⊕).

in an optimal orbit lowering. In other terms, the spacecraft optimal trajectory consists of

a sequence of propelled or coasting arcs in which |α| is equal to its maximum value. As a

result, the thrusting time is obtained from Eq. (5) by setting h equal to the target orbit’s

angular momentum modulus and solving for t. For example, a minimum time (simplified)

Earth-Mars transfer with ac = 0.1mm/s2 requires a flight time of 1782 days, with a thrusting

time of 1617 days. The latter coincides with the value obtained from Eq. (5) when h =
√
μ� r,

with r = 1.524AU.

Conclusions

This Note has discussed an analytical, approximated, model for calculating the helio-

centric trajectory of a low-performance electric sail. Under the assumption of constant sail

pitch angle, the spacecraft trajectory can be found in a parametric way and the main char-
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Figure 4: Maximum (relative) error in radial distance, for a ten-years mission as a
function of the characteristic acceleration (r0 = r⊕).
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acteristics of the osculating orbit can be obtained as a function of the flight time. The

numerical simulations confirm the accuracy of the analytical solution even on timescales of

several years.
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