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1 Introduction

The aim of this note is to give a rather elementary proof of existence, uniqueness, and data dependence for
strong solutions to the Stokes system with Dirichlet boundary conditions. Let Ω ⊂ R3 be an open bounded
set with a C1,1 boundary ∂Ω and let u = (u1, u2, u3) and π denote the unknown velocity and pressure,
respectively. We will use customary Lebesgue Lq(Ω) and Sobolev W k,q(Ω) spaces (see e.g. Brezis [6])
and we define the following spaces: Vq := (W 2,q(Ω) ∩W 1,q

0 (Ω))3, with norm ‖u‖Vq
= ‖u‖W 2,q , and also

Mq :=
{

f ∈ W 1,q(Ω) :
∫

Ω
f dx = 0

}

, with norm ‖f‖Mq
= ‖∇f‖Lq , which is equivalent to that in W 1,q(Ω)

thanks to the Poincaré inequality. We also set Xq := Vq × Mq. By adapting techniques from Beirão da
Veiga [4], we will give an alternative proof of the following well-known result, fundamental in the theory of
the Navier-Stokes equations.

Theorem 1 Let be given 0 < ν ≤ 1, f ∈ (Lq(Ω))3, and g ∈ Mq, for some 1 < q < ∞. Then, there exists a

unique solution (u, π) ∈ Xq to the (non homogeneous) Stokes problem











−ν∆u+∇π = f in Ω,

∇ · u = g in Ω,

u = 0 on ∂Ω,

(1)

and there exists C = C(q,Ω) > 0 such that

ν ‖u‖W 2,q + ‖π‖W 1,q ≤ C(‖f‖Lq + ‖g‖W 1,q ). (2)

To prove Theorem 1 we will re-cast some standard tools in a new way. We recall that Theorem 1 dates
back to Cattabriga [7] and to the announcement in Solonnikov [15] (the complete proofs of Solonnikov
result appeared in the Russian version of Ladyžhenskaya book [13]) and the proofs are based on accurate
analysis of hydrodynamic potentials. See also Vorovich and Yudovich [19] for q > 6/5; a different approach
is presented in Amrouche and Girault [3], with the aid of vector potentials. As usual, the case q = 2 can be
handled without potential theory, see Solonnikov and Ščadilov [17], Constantin and Foias [8], and a recent
overview about the history of the problem can be also found in Galdi [9, Ch. IV].
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Moreover, Beirão da Veiga [4] introduced for the case q = 2 an elegant, ingenious, and extremely simple
approach, which is based essentially only on W 2,2(Ω)-estimates for the solution of scalar Poisson problems.
Inspired by the latter reference (especially [4, § 4]) we will use the same technique to decouple the equation
for the velocity from that for the pressure. Nevertheless, the extension to the non-Hilbertian setting and
also a more general derivation of the a priori estimates are new (Our proof can also be easily extended to
any space dimension d ≥ 2 and to a non-zero velocity boundary datum).

2 Preliminary results and a priori estimates

One of the pre-requisites is the Banach contraction/fixed-point theorem, and it is interesting to note how
following [4] a technique typical of non-linear functional analysis is used also in a linear context. The other
pre-requisite is the following estimate for the scalar Poisson problem, see Simader and Sohr [14] for a proof,
also in very general domains.

Lemma 1 Let Ω be as in Theorem 1 and let be given F ∈ Lr(Ω), for 1 < r < ∞. Then, there exists

Cr = C(r,Ω) > 0 such that

‖Φ‖W 2,r ≤ Cr‖F‖Lr , (3)

where Φ is the unique strong solution of the Dirichlet problem
{

−∆Φ = F in Ω,

Φ = 0 on ∂Ω.

Remark 1 The estimate (3) is classical, at least for a bounded smooth domain, and follows from the theory
of singular integrals. For r = 2, estimate (3) can be proved by Nirenberg’s translations method, without
resorting to Calderón-Zygmund estimates, see for instance the clear presentation in [6, §9].

To construct strong solutions to the Stokes system, we approximate –for λ ∈]0, 1]– the Stokes system (1)
by the “penalty method” [18] (called also “numerical regularization” [10]) with the system











−ν∆u+∇π = f in Ω,

λπ +∇ · u = g in Ω,

u = 0 on ∂Ω.

(4)

A peculiar use of system (4) comes from [4], but recall that approximation by the penalized system (4) has
been also previously used in a different way in [3, §5]. As in [4], we further approximate system (4) by the
following family of systems indexed by the parameter t ∈ [0, 1]











−ν∆u+ t∇π = f in Ω,

λπ + t∇ · u = g in Ω,

u = 0 on ∂Ω.

(5)

For t = 1 system (5) reduces to (4), while for t = 0 we have the two decoupled problems (observe also that
each component ui of the velocity solves a scalar Poisson problem)

{

−ν∆u = f in Ω,

u = 0 on ∂Ω,
λ π = g in Ω.

For t = 0, by using Lemma 1 it follows that there exists a unique solution (u, π) ∈ Xq to (5), such that

ν‖u‖W 2,q + ‖π‖W 1,q ≤ Cq‖f‖Lq +
1

λ
‖g‖W 1,q ,

and this estimate cannot be uniform in λ, since π is obtained simply as g(x)
λ

.
As first step (cf. [4, § 4]) we show that problem (5) is uniquely solvable for all t ∈ [0, t0], for some

t0 ∈]0, 1], which possibly depends on λ. To this end we consider the following problem: Given (v, p) ∈ Xq

find (u, π) ∈ Xq such that
{

−ν∆u = f − t∇p in Ω,

u = 0 on ∂Ω,
and λπ = g − t∇ · v in Ω. (6)
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Lemma 2 There exists t0 > 0 such that the map Xq ∋ (v, p) 7→ (u, π) ∈ Xq is a strict contraction for all

t ∈ [0, t0]. Then, for all t ∈ [0, t0] there exists a unique solution (u, π) ∈ Xq of (5), satisfying the following

estimate:

‖u‖W 2,q + ‖∇π‖Lq ≤
2Cq

ν
‖f‖Lq +

2

λ
‖∇g‖Lq .

Proof Let be given (vi, pi) ∈ Xq, for i = 1, 2. We denote by (ui, πi) the corresponding solutions to prob-
lem (6). By using the equations satisfied by (u1 − u2, π1 − π2) we obtain

ν‖u1 − u2‖W 2,q + ‖∇π1 −∇π2‖Lq ≤ t Cq‖∇p1 −∇p2‖Lq +
t

λ
‖v1 − v2‖W 2,q .

Consequently, if

t ≤ t0 := min

{

ν

2Cq
,
λ

2

}

, (7)

the map (v, p) 7→ (u, π) is a strict contraction, and its unique fixed point (u, π) ∈ Xq satisfies











−ν∆u = f − t∇π in Ω,

λπ = g − t∇ · u in Ω,

u = 0 on ∂Ω.

By using again (3) this shows that, for all t ∈ [0, t0],

‖u‖W 2,q + ‖∇π‖Lq ≤
Cq

ν
‖f‖Lq +

t Cq

ν
‖∇π‖Lq +

1

λ
‖g‖W 1,q +

t

λ
‖u‖W 2,q ,

and by using the bound on t0 from (7) we get

‖u‖W 2,q + ‖∇π‖Lq ≤
Cq

ν
‖f‖Lq +

1

λ
‖g‖W 1,q +

1

2
(‖∇π‖Lq + ‖u‖W 2,q ) ,

concluding the proof.

Observe that estimates are still not uniform as λ→ 0+. We will overcome this by proper a priori estimates
on strong solutions of system (5).

2.1 A priori estimates

In order to further apply the contraction argument for all t ∈ [0, 1], we need some a priori estimates
on solutions to (5). In [4, Eq. (4.3)] very precise estimates are obtained for q = 2 by the translation
method. The same approach seems not replicable here, and to obtain suitable estimates we will verify that
systems (1), (4), and (5) are all elliptic in the sense of Agmon, Douglis, and Nirenberg [2] (denoted ADN
later on). We recall that the theory developed in [1,2] shows estimates, provided that the solution exists in
appropriate spaces. Generally speaking, the most difficult part is that of showing such existence and one
can refer to Temam [18, Ch. I], for a proof of existence for the two dimensional Stokes system.

The system (1) is ADN. We will mainly check that the boundary conditions in the Stokes system (1) are
complementing [2, § 2]. This result seems very classical even if the available references (e.g. [18, Ch 1,§ 2], [3,
§ 4], and [16, § 3]) are not detailed enough for a non-expert reader and also for our purposes of proving
similar estimates for the modified systems (4) and (5). On the other hand, full details on several first order
formulations of (1) can be found in Bochev and Gunzburger [5, Appendix D] and for related systems see also
Kozono and Yanagisawa [12]. For the reader’s convenience, but also to clarify some delicate points about
the algebraic conditions, we start by a meticulous inspection of system (1). For simplicity we assume ν = 1,
since estimates for different values of the viscosity can be obtained by scaling of the variables Ui = ui for
i = 1, 2, 3, and U4 = π. For any P ∈ Ω and Ξ = (ξ1, ξ2, ξ3) ∈ R3 the matrix lij(P,Ξ) = lij(Ξ), i, j = 1, . . . , 4,
associated with the system is the following:

lij(Ξ) :=









−|Ξ|2 0 0 ξ1
0 −|Ξ|2 0 ξ2
0 0 −|Ξ|2 ξ3
ξ1 ξ2 ξ3 0









.

3



With the weights s1 = s2 = s3 = 0, and s4 = −1; t1 = t2 = t3 = 2, and t4 = 1, it turns out that the
principal part is l′ij(Ξ) = lij(Ξ) and that

|L(Ξ)| = |det l′ij(Ξ)| = |Ξ|6,

showing that the system is uniformly elliptic, with constant of ellipticity A = 1, see [2, Eq. (1.7)]. (In space
dimension d ≥ 3 there is no need to check the supplementary condition on L, see [2, p. 39].) The boundary
conditions associated to any P ∈ ∂Ω are expressed by the matrix Bhj(P,Ξ) = Bhj(Ξ), for h = 1, 2, 3 and
j = 1, 2, 3, 4

Bhj(Ξ) :=





1 0 0 0
0 1 0 0
0 0 1 0



 ,

and, by choosing the weights r1 = r2 = r3 = 0, and r4 = 1, it turns out that B′

hj(Ξ) = Bhj(Ξ).
Next, we check that the boundary conditions are complementing. We first evaluate the adjoint matrix

Ljk(Ξ) := (l′)−1
jk

(Ξ)L(Ξ) (namely the transpose of the co-factor matrix of l′ij(Ξ), see [2, Eq. (3.2)])

Ljk(Ξ) = |ξ|2









ξ22 + ξ23 −ξ1 ξ2 −ξ1 ξ3 −ξ1 |ξ|
2

−ξ1 ξ2 ξ21 + ξ23 −ξ2 ξ3 −ξ2 |ξ|
2

−ξ1 ξ3 − ξ2 ξ3 ξ21 + ξ22 −ξ3 |ξ|
2

−ξ1 |ξ|
2 −ξ2 |ξ|

2 −ξ3 |ξ|
2 −|ξ|4









.

As in [2, Sec. 2], taking the exterior normal unit vector n at P ∈ ∂Ω and a tangent vector Ξ 6= 0, we have to
check that the rows of the matrix

∑4
j=1B

′

hj(Ξ+ τ n)Ljk(Ξ+ τ n) are linearly independent (as polynomials

in the complex variable τ), modulo the polynomial M+(Ξ, τ) defined below by (8).
Without loss of generality, by means of translations and orthonormal transformations (the equations

are invariant by these transformations), we can take P = (0, 0, 0) n = (0, 0,−1) and Ξ = (|Ξ|, 0, 0). We also
observe that since Ξ and n are orthogonal |Ξ + τn|2 = (Ξ + τn) · (Ξ + τn) = |Ξ|2 + τ2, and the equation
L(Ξ + τ n) = 0 has three roots with positive imaginary part, all equal to τ+ = i|Ξ|, hence

M+(Ξ, τ) := (τ − i|Ξ|)3. (8)

In this way we get

4
∑

j=1

B′

hj(Ξ + τn)Ljk(Ξ + τn) = (|Ξ|2 + τ2)





τ2 0 τ |Ξ| −|Ξ|(|Ξ|2 + τ2)
0 Ξ2 + τ2 0 0

τ |Ξ| 0 |Ξ|2 τ |Ξ|2



 ,

If there exists constants C1, C2, C3 such that
∑3

h=1

∑4
j=1 ChB

′

hj(Ξ+τn)Ljk(Ξ+τn) ≡ 0 modulo M+(Ξ, τ),
and observing that the second column has only one non-vanishing term, then necessarily

C2(|Ξ|2 + τ2)2 ≡ 0
(

mod M+(Ξ, τ)
)

.

Since the polynomial (in τ) (|Ξ|2 + τ2)2 has only two roots equal to i|Ξ|, then C2 = 0, because of the
definition (8). Moreover, by considering the third column, we will also have to satisfy

(|Ξ|2 + τ2)(C1τ |Ξ|+ C3|Ξ|2) ≡ 0
(

mod M+(Ξ, τ)
)

,

but again this is possible only if C1 = C3 = 0, because on the left-hand side we can have at most two roots
equal to i|Ξ|, one coming from the term (|Ξ|2 + τ2) and the other one existing for a suitable choice of the
parameters C1, C2 in the first order polynomial C1τ |Ξ| + C3|Ξ|2. This shows that C1 = C3 = 0, proving
that the rows are linearly independent, hence that the complementary condition is satisfied. This proves
that provided that there exists a solution (u, π) ∈ Xq, then it satisfies the estimate (2).

The system (4) is ADN. Let us consider, for λ ∈]0, 1], system (4). The matrix associated is now the
following

lij(Ξ) :=









−|ξ|2 0 0 ξ1
0 −|ξ|2 0 ξ2
0 0 −|ξ|2 ξ3
ξ1 ξ2 ξ3 λ









.

With the same weights as before l′ij(Ξ) = lij(Ξ) and

|L(Ξ)| = |det l′ij(Ξ)| = |Ξ|6(1 + λ),
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hence the system is still uniformly elliptic, with constant of ellipticity A = 2. Since λ > 0, then M+(Ξ, τ) is
the same as in (8). The adjoint matrix Ljk(Ξ) is now:

Ljk(Ξ) = |ξ|2









ξ22 + ξ23 + |ξ|2 λ −ξ1 ξ2 −ξ1 ξ3 −ξ1 |ξ|
2

−ξ1 ξ2 ξ21 + ξ23 + |ξ|2 λ −ξ2 ξ3 −ξ2 |ξ|
2

−ξ1 ξ3 −ξ2 ξ3 ξ21 + ξ22 + |ξ|2 λ − ξ3 |ξ|
2

−ξ1 |ξ|
2 −ξ2 |ξ|

2 −ξ3 |ξ|
2 −|ξ|4









.

We take the same vectors Ξ and n as before, the matrix Bhj(Ξ) is unchanged as well, and it follows:

4
∑

j=1

B′

hj(Ξ + τn)Ljk(Ξ + τn)

= (|Ξ|2 + τ2) ·





τ2 + λ (|Ξ|2 + τ2) 0 |Ξ| τ −|Ξ| (|Ξ|2 + τ2)
0 (1 + λ)(|Ξ|2 + τ2) 0 0

|Ξ| τ 0 Ξ2 + λ (|Ξ|2 + τ2) τ |Ξ|2



 .

We prove that the rows are linearly independent. In fact C2 must be zero exactly by the same argument as
before. Next if (|Ξ|2 + τ2)

(

C1τ |Ξ|+ C3(Ξ
2 + λ (|Ξ|2 + τ2))

)

≡ 0, then

C1τ |Ξ|+ C3(Ξ
2 + λ (|Ξ|2 + τ2)) ≡ (τ − i|Ξ|)2

(

mod M+(Ξ, τ)
)

,

which cannot hold for any choice of C1, C3, since the left hand side should have two coincident roots equal
to i|Ξ| and this is impossible. This shows that provided that (u, π) ∈ Xq is a solution to (4), then (2) holds
true (This result is stated without proof also in [3, §5]). In particular, estimate (2) is independent of λ since
either the ellipticity constant or the roots of L(Ξ+ τn) do not depend on it. As in [1,2] the representation’s
formula (by means of the Poisson kernel and simple-wave expansions from [11]) shows that the constant
depend mainly on the ellipticity constant, together with the order of the operator, the space dimension,
and the domain Ω, see [1, p. 652].

The system (5) is ADN. For λ ∈]0, 1] and t ∈ [0, 1] the matrix associated with the system (5) is

lij(Ξ) :=









−|ξ|2 0 0 ξ1t

0 −|ξ|2 0 ξ2t

0 0 −|ξ|2 ξ3t

ξ1t ξ2t ξ3t λ









.

With the same weights as before l′ij(Ξ) = lij(Ξ) and |L(Ξ)| = |det l′ij(Ξ)| = |Ξ|6(t2+λ), hence the system is
uniformly elliptic, for fixed t, λ ∈]0, 1], but the constant of ellipticity is not uniform with respect to t, λ ∈]0, 1].
We recall that later on we will need to use the a priori estimates only for t ∈ [t0, 1], where t0 > 0 is that
from Lemma 2 and consequently

|L(Ξ)| = |det l′ij(Ξ)| ≥ |Ξ|6 t20 ∀λ ∈]0, 1] and ∀ t ∈ [t0, 1].

Hence, with this restricted set of parameters the system is uniformly elliptic with constant A = max
{

2, 1/t20
}

.

The adjoint matrix Ljk(Ξ) is

Ljk(Ξ) = |ξ|2









(ξ22 + ξ23)t
2 + |ξ|2 λ −ξ1 ξ2t

2 −ξ1 ξ3t
2 −ξ1 t|ξ|

2

−ξ1 ξ2t
2 (ξ21 + ξ23)t

2 + |ξ|2 λ −ξ2 ξ3t
2 −ξ2 |ξ|

2t

−ξ1 ξ3t
2 −ξ2 ξ3t

2 (ξ21 + ξ22)t
2 + |ξ|2 λ − ξ3 |ξ|

2t

−ξ1 |ξ|
2t −ξ2 |ξ|

2t −ξ3 |ξ|
2t −|ξ|4









.

The complementing conditions with the same matrix Bhj(Ξ) concerns the rows of

4
∑

j=1

B′

hj(Ξ + τn)Ljk(Ξ + τn)

= (|Ξ|2 + τ2) ·





t2τ2 + λ (|Ξ|2 + τ2) 0 t2|Ξ| τ −t|Ξ| (|Ξ|2 + τ2)
0 (t2 + λ)(|Ξ|2 + τ2) 0 0

t2|Ξ| τ 0 t2Ξ2 + λ (|Ξ|2 + τ2) t τ |Ξ|2



 .
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Exactly the same calculations as before show that the rows are linearly independent modulo M+(Ξ, τ) (still
the same as in (8)). This proves the following result: Provided that (u, π) ∈ Xq is a solution to (5), for some
t ∈ [t0, 1], then there exists C(t0, q, Ω) > 0 such that

ν ‖u‖W 2,q + ‖∇π‖Lq ≤ C(t0, q, Ω)(‖f‖Lq + ‖∇g‖Lq ). (9)

Remark 2 The reader should be warned that the constant t0 depends on λ, hence it may look that (9) is
not suitable to get uniform estimates from the regularization/approximation by means of system (5). This
is overcome by first fixing some λ > 0 and allowing the parameter t to span [t0, 1]. Next, having proved
existence of a unique solution to (5) for t = 1 (which turns out to be penalized Stokes system (4)), we can
use the a priori estimates for (4), which are independent of λ.

3 Proof of the main result

Following closely [4], we show that if we are able to solve (5) for some t ≥ t0, then we are able to solve it
for all t ∈ [t0, 1].

Lemma 3 Let us assume that the problem (5) is solvable in Xq for some t ≥ t0 > 0. Then, there exists δ > 0,
independent of t, such that (5) is solvable in Xq for all t ∈ [t, t+ δ]

Proof Let us consider, for given (v, p) ∈ Xq and ∆t ≥ 0, the system











−ν∆u+ t∇π = f −∆t ∇p in Ω,

λπ + t∇ · u = g −∆t ∇ · v in Ω,

u = 0 on ∂Ω.

(10)

By hypothesis system (10) is uniquely solvable in Xq and, by using the a priori estimate (9), we show that
there exists δ > 0 such that the map (v, p) 7→ (u, π) is a contraction if 0 ≤ ∆t ≤ δ. In fact, given (vi, pi) ∈ Xq,
then (ui, πi) ∈ Xq are solutions to (10), satisfying the estimate (9). From the equation for the difference,
we get

ν‖u1 − u2‖W 2,q + ‖∇π1 −∇π2‖Lq ≤ C(t0, q, Ω) δ (‖∇p1 −∇p2‖Lq + ‖v1 − v2‖W 2,q ) .

By choosing

δ :=
ν

2C(t0, q, Ω)

we have again a strict contraction, hence we can uniquely solve (5) for t ∈ [t, t+ δ].

Proof (Proof of Theorem 1) Let be given λ ∈]0, 1]. By Lemma 2 there exists t0 = t0(λ), such that (5)
is solvable for all t ∈ [0, t0]. By Lemma 3 there exists δ = δ(t0) > 0, such that, we can solve (5) for
t ∈ [t0, t0 +mδ], for all m ∈ N. This implies that with a finite number of steps we can solve problem (5) for
all t ∈ [0, 1] (the number of steps depends on t0, hence on λ). In particular, we constructed (uλ, πλ) ∈ Xq,
the unique solution of (5) for t = 1 (and it is denoted in this way to emphasize the λ-dependence). By using
the a priori estimate (2) (which is valid since system (5) reduces to (4) when t = 1), we obtain

ν‖uλ‖W 2,q + ‖∇πλ‖Lq ≤ c(q,Ω) (‖f‖Lq + ‖∇g‖Lq ) .

For 1 < q < ∞ the space Xq is reflexive, hence there exists a couple (u, π) ∈ Xq and a positive sequence
{λn}n, such that limn→+∞ λn = 0, with

(uλn
, πλn

)⇀ (u, π) weakly in Xq.

By multiplying (5) by (φ, ψ) ∈ W 1,q′

0 (Ω)×Mq′ , by integrating by parts, and by taking the limit over n, it
follows that the couple (u, π) ∈ Xq satisfies

ν

∫

Ω

∇u∇φ dx−

∫

Ω

π∇ · φ dx+

∫

Ω

∇ · uψ dx =

∫

Ω

fφ dx+

∫

Ω

g ψ dx

and (u, π) ∈ Xq is then a weak solution to (1). By lower semi-continuity of the norm it also follows that
(2) holds true. This ends the proof since (u, π) is a weak solution with the requested regularity, hence it is
unique, see e.g. [9, Ch. IV.6].
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