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Abstract

We carry out an arithmetical study of analytic functions f :
[0, 1]→ [0, 1] that by restriction induce a bijection Q∩ [0, 1]→
Q ∩ [0, 1]. The existence of such functions shows that, unless
f(x) has some additional property of an algebraic nature, very
little can be said about the distribution of rational points on
its graph. Some more refined questions involving heights are
also explored.

1 Introduction

The problem of constructing and studying transcendental analytic
functions which assume algebraic values at many algebraic points has
a long history. In 1886 Weierstrass gave an example (published in
[Wei23]) of an entire transcendental function f that maps the set of
algebraic numbers into itself, and that furthermore satisfies f(Q) ⊆ Q.
Various other constructions followed, for example that of van der
Poorten [vdP68], who has shown that there exist transcendental an-
alytic functions that, together will all their derivatives, map every
number field to itself.

Following in this long tradition, in a recent conversation Umberto
Zannier, with an eye to arithmetical applications, asked whether there
exist transcendental functions f : [0, 1]→ [0, 1] that induce bijections
of Q ∩ [0, 1] with itself. This is indeed an interesting question, be-
cause it helps shed light on the kind of hypotheses necessary on a
function f(x) in order to study the distribution of rational points on
its graph. As it turns out, the answer is affirmative: transcendental,
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analytic functions that induce bijections of Q ∩ [0, 1] with itself do
exist. In particular, if g(x) is a general analytic function, satisfying no
particular algebraic property, then very little information on the dis-
tribution of rational points on the graph of g can be obtained besides
that afforded by the theorems of Bombieri-Pila [BP89], Pila [Pil91],
and Pila-Wilkie [PW06], which was the original motivation of Zan-
nier’s question. One should contrast this fact with the much tamer
behaviour exhibited by algebraic functions:

Lemma 1. Suppose f : [0, 1] → [0, 1] is algebraic and induces a
bijection of Q ∩ [0, 1] with itself: then f(x) is a linear fractional
transformation (that is, a rational function of degree one) with ra-
tional coefficients. More precisely, there exists a ∈ Q such that either
f(x) = x

ax+(1−a)x or f(x) = (a−1)(x−1)
ax+(1−a) .

Proof. Since f(x) is algebraic, there exists a polynomial p(x, y) ∈
Q[x, y] such that p(x, f(x)) is identically zero. Suppose first that
degy p(x, y) ≥ 2. By Hilbert’s irreducibility theorem, we can find a
rational number x0 ∈ [0, 1] such that p(x0, y) ∈ Q[y] is irreducible
of degree ≥ 2: but this implies that f(x0), which by definition is a
root of the equation p(x0, y) = 0, is not a rational number, contra-
diction. Conversely, suppose that degx p(x, y) ≥ 2. Then by Hilbert
irreducibility again there exists y0 ∈ Q ∩ [0, 1] such that p(x, y0) is ir-
reducible of degree at least 2: but this implies that the inverse image
of y0 via f is not rational, contradiction. So p(x, y) is linear in x and
y, hence f(x) is a linear fractional transformation. One checks easily
that the only linear fractional transformations that induce bijections
of Q ∩ [0, 1] are those given in the statement.

Notice that this lemma – which is well-known to experts – gives
an easy criterion to show that the functions we construct are tran-
scendental (see for example remark 4). While investigating Zannier’s
question, I found out that the existence of functions as those studied
in this paper had already been established by Franklin [Fra25], but his
construction was somewhat indirect and his point of view mostly an-
alytical, which makes his approach not especially well-suited to study
arithmetical questions.

In this note, on the other hand, we consider the problem from
a more arithmetical standpoint, and in particular we give a new,
slightly simplified construction (section 2) which, being more explicit
than Franklin’s, also allows us to treat problems in the spirit of the
Bombieri–Pila, Pila, and Pila–Wilkie counting theorems. We show for
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example (section 3) that the functions produced from a further refining
of our construction satisfy an inequality of the form h(f(x)) ≤ b(h(x))
for all x ∈ Q∩ [0, 1], where by h(x) we mean the standard logarithmic
height of the rational number x and b(t) is a certain explicit bound
function. We also prove (section 4) that the graph of these bijec-
tions f(x) can be made to contain “many” rational points of bounded
height, in the sense of the Pila counting theorem. These results can
be compared with work of Surroca [Sur06] and Boxall-Jones [BJ15],
who prove upper bounds for the number of rational points of bounded
height lying on the graphs of transcendental functions ([Sur06] con-
siders entire transcendental functions that map every number field to
itself, while [BJ15] deals with entire functions of finite order and pos-
itive lower order). Finally, our explicit descriptions also make it clear
that, unlike what happens with – say – rational functions, for the
functions f(x) we construct there are infinitely many rational num-
bers in [0, 1] for which the height of f(x) is dramatically smaller than
the height of x. It is this last phenomenon in particular that makes
it impossible to gain more information on the distribution of rationals
points on the graph of f(x) besides what is already contained in the
theorems of Bombieri, Pila, and Wilkie.

2 The basic construction

We begin by describing the simplest version of our construction, which
gives a new proof of the existence of (many) functions of the kind
considered in the introduction:

Theorem 2. Let {gn(x)}n≥0 be any countable family of functions
[0, 1] → [0, 1]. There exists a strictly increasing analytic function
f : [0, 1]→ [0, 1] such that

1. f restricts to a bijection Q ∩ [0, 1]→ Q ∩ [0, 1];

2. f is different from all the gn(x).

In particular, since the set of all rational functions with rational coef-
ficients is countable, there exists such an analytic function that is not
a rational function.

The idea is simple: we enumerate the rational numbers contained
in the interval [0, 1] as x0, x1, . . ., and construct a sequence of (strictly
increasing) polynomials fn(x) such that fn(xi) is rational for all i ≤
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n/2 and xi is in the image of fn for all i ≤ n/2. We make this con-
struction in such a way that fn+1(xi) = fn(xi) for all i = 0, . . . , bn/2c,
which ensures that at least the first of these two properties is preserved
in the passage to the limit. Moreover, we can also make the second
property pass to the limit if we additionally require that (at least for
n large enough) the inverse image f−1n (xi) does not depend on n.

The proof we give below implements exactly this idea, up to a little
bookkeeping to keep track of precisely which rationals have already
been considered.

Proof. Let {xn}n≥0, {yn}n≥0 be two (not necessarily distinct) enumer-
ations of the rationals in [0, 1], with x0 = y0 = 0, x1 = y1 = 1. We
look for an f of the form

f(x) =
∞∑
n=1

pn(x)

where the pn(x) (for n ≥ 1) are polynomials satisfying the following
properties:

(a) supz∈C,|z|≤2 |pn(z)| ≤ 4 · (3/4)n and supx∈[0,1] |p′n(x)| ≤ 41−n;

(b) there is a bijective map

j : N → N
n 7→ jn

such that pn(xjm) = 0 for all 0 ≤ m < n.

(c) p1(x) = x and p2(x) = 0.

Property (a) ensures that f(x) is an analytic function on [0, 1]: in-
deed if this property is satisfied then the series defining f(x) converges
uniformly on D2 := {z ∈ C, |z| < 2}, so f(x) extends to a holomor-
phic function on all of D2 and in particular it is real analytic on [0, 1].
Properties (a) and (c) also ensure that f is strictly increasing on the
interval [0, 1], because

f ′(x) =
∞∑
n=1

p′n(x) ≥ p′1(x)−
∑
n≥2

|p′n(x)| ≥ 1−
∑
n≥1

4−n > 0. (1)

Notice that if the map n 7→ jn is given, then in order to satisfy
properties (a) and (b) one can simply take

pn(x) =
εn
n

n−1∏
k=0

(x− xjk) (2)
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if εn is sufficiently small; we shall then make this choice from the start,
namely, we set pn(x) to be the polynomial given by formula (2), and
we shall choose n 7→ jn and εn in what follows. By the triangular
inequality, for all x ∈ D2 we have

∏n−1
i=0 |x − xi| ≤ 3n, hence it is not

hard to see that in order to satisfy the inequalities in (a) it suffices to
take εn in the interval [0, 41−n].

We shall write fn(x) for the partial sums
∑n

m=1 pm(x). Our choices
imply that for all indices n ∈ N we have f(xjm) = fn(xjm) for all
n ≥ m, since

f(xm)− fn(xjm) =
∑
k>n

pk(xjm)

and the pk(xjm) all vanish for k > n ≥ m. Also notice that each
function x 7→ fn(x) is obviously continuous, and it is bijective from
[0, 1] to itself: to see this, observe that properties (b) and (c) together
with our definition of pn(x) imply fn(0) = 0 and fn(1) = 1 for all
n, and furthermore by the same estimate as in equation (1) we have
f ′n(x) > 0 for all x ∈ (0, 1). For later use, notice that we also have

|f ′n(x)| ≤ 1 +
∑
n≥1

4−n ≤ 2 ∀x ∈ (0, 1) and ∀n ≥ 1. (3)

We shall now define the map n 7→ jn and the parameters εn re-
cursively. We take j0 = 0, j1 = 1 and ε1 = 1, ε2 = 0, so that
f2(x) = f1(x) = p1(x) = x and p2(x) = 0. Now assume that we have
already defined jn and εn for all n ≤ m and set Jm := {j0, . . . , jm}. We
shall show that we can construct εm+1 and jm+1, and that in fact one
can take all the εn to be rational numbers. Together with the choices
we have already made, this implies that our inductive construction
satisfies the following properties: for all j ∈ Jm and all n ≥ m we
have fn(xj) = fm(xj) = f(xj); moreover, fn(x) is a polynomial with
rational coefficients, hence for all j ∈ Jm we have f(xj) = fm(xj) ∈ Q.
We distinguish two cases:

1. Suppose that m+1 is odd. Let a = min(N\Jm) and set jm+1 = a.
Notice that the set {j0, j1, . . . , jm} has cardinality m+ 1, hence
a ≤ m+ 1. We have

f(xjm+1) = f(xa)

=
∞∑
n=1

pn(xa) =
∑
n≤m

pn(xa) + pm+1(xa) +
∑

n>m+1

pn(xa);
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independently of the choice of the parameters εn for n > m+ 1,
our construction ensures that pn(xa) = 0 for all n > m+ 1 ≥ a,
so we have

∑
n>m+1 pn(xa) = 0 and

f(xa) = fm+1(xa) =
∑
n≤m

pn(xa) +
εm+1

m+ 1

m∏
k=0

(xa − xjk);

what we require is that f(xa) be a rational number, and that
εm+1 be sufficiently small and rational. Since rational numbers
are dense in R, it is clear that we can choose a rational number
z ∈ [0, 1] that satisfies all of the following properties:

• z 6∈ {f(xj)
∣∣ j ∈ Jm};

• the quantity

(m+ 1) ·

(
z −

∑
n≤m

pn(xa)

)
·
m∏
k=0

(xa − xjk)−1

does not exceed 4−m;

• z 6= gm/2−1(xa) (recall that {gn}n∈N is the given set of func-
tions we wish to avoid).

We set εm+1 := (m + 1) ·

(
z −

∑
n≤m

pn(xa)

)
·
m∏
k=0

(xa − xjk)−1,

which is easily seen to be a rational number. By construction,
this choice ensures that

f(xa) = fm+1(xa) = z ∈ Q ∩ [0, 1]

and |εm+1| ≤ 4−m; furthermore, it also ensures that f(x) 6=
gm/2−1(x) as functions, since we have f(xa) = z 6= gm/2−1(xa),
and this independently of the choice of εn for n > m+ 1.

2. Suppose that m+ 1 is even. Let b the least natural number such
that yb does not belong to the set {fm(xj)

∣∣ j ∈ Jm}. We want to
choose jm+1 and εm+1 in such a way that f(xjm+1) = yb and εm+1

is again sufficiently small and rational. Consider the function

hm : x 7→ yb − fm(x)∏m
k=0(x− xjk)

;
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as fm(x) : [0, 1] → [0, 1] is a bijection, there exists a unique
x ∈ [0, 1] such that fm(x) = yb. By assumption, we have
x 6∈ {xj0 , xj1 , . . . , xjm}, so the function hm is continuous in a
neighbourhood of x, since the denominator does not vanish for
x sufficiently close to x. Because of the density of Q ∩ [0, 1] in
[0, 1] and of the fact that hm(x) is continuous in a neighbour-
hood of x and satisfies hm(x) = 0, there exists a rational number
z ∈ [0, 1] \ {xj0 , xj1 , . . . , xjm} such that |hm(z)| < (m+ 1)−14−m.
We set jm+1 to be the unique index such that xjm+1 = z; the
construction ensures that jm+1 6∈ {j0, . . . , jm}. Finally, we take
εm+1 := (m + 1)hm(z), which by construction satisfies |εm+1| <
4−m, and which is a rational number since hm(x) is a rational
function (with rational coefficients). We then have

f(xjm+1) = fm+1(z) =
∑

n≤m+1

pn(z)

=
∑
n≤m

pn(z) +
m+ 1

m+ 1
hm(z) ·

m∏
k=0

(z − xjk) = yb,

and this independently of the choice of εn for n > m+ 1.

It is clear that we can carry out this construction for all m. We claim
that the resulting function f(x) satisfies the properties given in the
statement. Indeed:

• step (1) of the above procedure ensures that min(N \ J2k) is
strictly increasing as a function of k, hence that

⋃
m≥0 Jm = N.

As we have already seen, f(xj) is rational whenever j ∈ Jm for
some m, hence f(xj) ∈ Q ∩ [0, 1] for all j ∈

⋃
m≥0 Jm = N.

Since {xj
∣∣ j ∈ N} = Q ∩ [0, 1], this implies that f(Q ∩ [0, 1]) ⊆

Q ∩ [0, 1].

• when applying step (1) of the above procedure for m = 2k,
k ≥ 1, we make certain that f(x) 6= gk−1(x). Since k − 1 ranges
over all the natural numbers, this implies that f(x) 6= gk(x) for
all k.

• finally, step (2) ensures that the quantity

min
{
b
∣∣ ∀j ∈ J2k we have yb 6= f2k(xj)

}
is strictly increasing as a function of k, hence for all b ∈ N there
exists an m ∈ N large enough that yb = fm(xj) for some j ∈ Jm.
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As we have already seen, this implies f(xj) = fm(xj) = yb,
so yb ∈ f(Q ∩ [0, 1]). Since this holds for all b and we have
{yb

∣∣ b ∈ N} = Q ∩ [0, 1] by construction, this implies that
f(Q ∩ [0, 1]) is onto Q ∩ [0, 1] as claimed.

Remark 3. It is not hard to realize that, since we can choose a count-
able number of parameters εn, and for each we have countably many
choices, the set of functions f satisfying the conclusion of the theo-
rem has the cardinality of the continuum. This gives a different (and
perhaps more natural) proof of the fact that we can avoid any given
set of functions, as long as it is countable. The presentation we have
decided to give, on the other hand, has the advantage to make clear
that the whole procedure is completely constructive.

Remark 4. As it was already true of Franklin’s method [Fra25],
a slight modification of the proof of theorem 2 shows the following
stronger result: given ε > 0 and a strictly increasing analytic function
g : [0, 1] → [0, 1] with g(0) = 0 and g(1) = 1, there exists an analytic
function f : [0, 1]→ [0, 1] that induces a bijection of Q∩[0, 1] and such
that ‖f − g‖∞ < ε, where ‖ · ‖∞ denotes the supremum (or uniform)
norm. The modifications one needs to make to the previous argument
are minimal: we simply start with f0(x) = g(x), and at each step we
choose εn to be a real number smaller than 4−nε.

This also gives a different proof of the existence of transcendental
functions that induce bijections of Q ∩ [0, 1] with itself. Indeed, we
know from lemma 1 that the algebraic functions with this property are
very sparse, so it’s easy to see that we can choose a strictly increasing
analytic function g : [0, 1]→ [0, 1] which is far from all of them in the
supremum norm and satisfies g(0) = 0, g(1) = 1. We then use the
argument just sketched to produce an analytic function f(x) inducing
a bijection on Q ∩ [0, 1] and very close to g(x) in the uniform norm:
provided that ‖f − g‖∞ is small enough, f(x) cannot be any of the
functions described in lemma 1, so it is a transcendental function with
the property we are interested in. The author is grateful to Umberto
Zannier for this remark.

3 Height bounds

In the interest of clarity we now briefly discuss our conventions for the
notion of height of a rational number. For x ∈ Q we write D(x) ∈ N>0
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(resp. N(x) ∈ Z) for the denominator (resp. numerator) of x when it
is written in lowest terms. By the height of x we mean its logarithmic
height, namely

h(x) = log max{|N(x)|, D(x)};

we shall also use H(x) to denote max{|N(x)|, D(x)}. Notice that if x
is a rational in the interval [0, 1], then h(x) = logD(x). The function
D obviously satisfies the following properties:

D(x1+ . . .+xn) ≤ lcm{D(x1), · · · , D(xn)}, D(x1x2) = D(x1)D(x2);

analogously, the function h satisfies (see for example [Wal00, Chapter
3])

h(x1 + . . .+ xn) ≤ h(x1) + . . .+ h(xn) + (n− 1) log 2,

h(x1x2) ≤ h(x1) + h(x2), h(1/x) = h(x).

We shall make free use of these properties without further comment.
We can now define the lexicographic ordering ≺ on the rational

numbers in the interval [0, 1] as follows: we say that q1 ≺ q2 if either
H(q1) < H(q2) holds, or we have both H(q1) = H(q2) and q1 < q2. It
is easy to see that this is a well-ordering of Q ∩ [0, 1]. We can then
define the lexicographic enumeration x0, x1, . . . of the rationals in [0, 1]:
we set x0 = 0 and, for n ≥ 0,

xn+1 = min
≺

(Q ∩ [0, 1]) \ {x0, . . . , xn},

where by min≺ we mean the minimum with respect to the lexico-
graphic ordering. It is easy to check that the following lemma holds.

Lemma 5. Let (xn)n∈N be the lexicographic enumeration of the ra-
tionals in the interval [0, 1]. For all n ≥ 2 we have H(xn) ≥

√
2n;

equivalently, given q ∈ Q∩ (0, 1), the unique index n for which q = xn
satisfies n ≤ H(q)2

2
.

Remark 6. Asymptotically, these inequalities are not sharp: indeed,
it is well-known that limn→∞

H(xn)√
n

= π√
3
. However, the only possible

improvement lies in the constant factor sitting in front of
√
n (resp. of

H(q)2), and not in the functional form of the bound; since we are not
interested in especially sharp results, we chose to use the inequalities
of lemma 5 because of their particularly simple form.

We can now prove the following strengthening of theorem 2:
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Theorem 7. Let {gn(x)}n≥0 be any countable family of functions
[0, 1] → [0, 1]. There exists a strictly increasing analytic function
f : [0, 1]→ [0, 1] such that

1. f restricts to a bijection Q ∩ [0, 1]→ Q ∩ [0, 1];

2. f is different from all the gn(x);

3. h(f(x)) ≤ B(H(x)2), where B : N \ {0} → N is given by B(t) =
4t · 48t · Γ(t).

Proof. We follow closely the proof of theorem 2 (keeping in particular
all the notation), and only point out the necessary adjustments to the
argument. Let

X(n) =

{
48tΓ(t), if t ≥ 1

1, if t = 0,

and notice that the function X(n) satisfies the inequality

n−1∑
k=0

X(k) ≤ X(n) ∀n ≥ 1;

we shall need this fact in what follows, and we will often use it in the
equivalent form

∑n
k=0X(k) ≤ 2X(n). We take xn and yn to both be

the lexicographic enumeration of the rationals; we shall endeavour to
choose the sequences jn, εn in such a way that the following hold:

1. h
(εn
n

)
≤ nX(n) for all n ≥ 1;

2. h(xjk) ≤ X(n) for all 0 ≤ k ≤ n.

Assuming now that we can indeed choose jn, εn so as to satisfy
1 and 2 above, for all x ∈ Q ∩ [0, 1] and for all n ≥ 1 we have the
following inequalities:

h(fn(x)) = logD(fn(x))

= logD

(
n∑

m=1

pm(x)

)
≤ log lcm{D(pm(x))

∣∣ m = 1, . . . , n}

= log lcm

{
D

(
εm
m

m−1∏
k=0

(x− xjk)

) ∣∣ m = 1, . . . , n

}
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≤
n∑

m=1

logD
(εm
m

)
+

n−1∑
k=0

logD(x− xjk) (4)

≤
n∑

m=1

h
(εm
m

)
+

n−1∑
k=0

(logD(x) + logD(xjk))

=
n∑

m=1

h
(εm
m

)
+

n−1∑
k=0

(h(x) + h(xjk))

≤
n∑

m=1

mX(m) + nh(x) +
n−1∑
k=0

X(k)

≤ n

n∑
m=1

X(m) + nh(x) +
n−1∑
k=0

X(k)

≤ nh(x) + 3nX(n).

In particular, if we evaluate fn(x) at x = xjk with k ≤ n we have
h(xjk) ≤ X(k) ≤ X(n), hence h(fn(xjk)) ≤ 4nX(n); since further-
more we have f(xjk) = fk(xjk) for all k ≥ 1, we obtain for all k ≥ 1
the inequality

h(f(xjk)) = h(fk(xjk)) ≤ 4kX(k). (5)

Furthermore, we claim that, given x ∈ Q ∩ [0, 1], the corresponding
index k such that x = xjk satisfies k ≤ H(x)2. We now prove this
statement. Notice first that this is obviously true for k = 0, 1, so we
can assume k ≥ 2. Following the procedure described in the proof
of theorem 2, at every step such that m + 1 is odd we let jm+1 =
minN \ Jm; as we have j0 = 0 and j1 = 1, this implies that, for all
integers t ≥ 0, at step m + 1 = 2t + 1 we have jm+1 ≥ t + 1, which
means that all the xn with n ≤ t are among the xjs for s ≤ 2t. Hence,
letting t be the index such that x = xt, the unique index k such that
t = jk satisfies

k ≤ 2t ≤ H(xt)
2 = H(x)2,

where we have used lemma 5 (recall that we have assumed k ≥ 2).
From this fact and equation (5) we then deduce the inequality

h(f(x)) ≤ 4H(x)2X
(
H(x)2

)
.

To establish the theorem, therefore, it suffices to show that it is
possible to choose the sequences jn and εn so as to satisfy conditions
1 and 2 above. Again we consider separately the case of m + 1 being
odd or even.
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• m+ 1 is odd. We have a ≤ m+ 1, hence

h(xjm+1) = h(xa) ≤ h(xm+1) ≤ m+ 1 ≤ X(m+ 1).

We now need to choose z and εm+1, which are related by

z =
∑
n≤m

pn(xa) +
εm+1

m+ 1

m∏
k=0

(xa − xjk),

in such a way that εm+1 does not exceed 4−m and the corre-
sponding z does not belong to the set

{f(xj)
∣∣ j ∈ Jm} ∪ {gm/2−1(xa)}.

Since this set has cardinality m + 2 and the map εm+1 7→ z is
injective, there are at most m + 2 values of εm+1 that we need
to exclude. Hence there exists an s ∈ {0, . . . ,m + 2} such that

s
(m+2)4m

≤ 4−m is an acceptable value of εm+1. Finally, for the

heights of xjm+1 = xa and εm+1

m+1
we have the estimates

h(xa) = logD(xa) ≤ log a ≤ log(m+ 1) ≤ X(m+ 1)

and

h

(
εm+1

m+ 1

)
= logD

(
εm+1

m+ 1

)
= log ((m+ 1)(m+ 2)) +m log 4

≤ (m+ 1)X(m+ 1),

which finishes the inductive step in this case.

• m + 1 is even. Notice first that we have b ≤ m + 1, hence
h(yb) ≤ log(m + 1). Recall then that we defined εm+1 by the
formula

εm+1 = (m+ 1)
yb − fm(z)∏m
k=0(z − xjk)

, (6)

where z is a rational number sufficiently close to x (the only real
number in [0, 1] such that fm(x) = yb). We now want to show
that z can be chosen to be of controlled height, and use this fact
to also bound the height of εm+1.

Let a0 < a1 < . . . < am be the increasing reordering of the
points xj0 , xj1 , . . . , xjm . There is a unique index t such that at <
x < at+1. For ease of exposition, let us assume that at+1 −
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x ≤ x − at (that is, x lies to the right of the midpoint of the
segment [at, at+1]), the other case being perfectly symmetric. We
let M := 2(m + 1) · exp (13mX(m)) · 4m and take z to be the
maximum of the set

{q ∈ Q ∩ [0, 1]
∣∣ H(q) ≤M, q < x}.

Notice that the distance between z and x is at most 1/M . We
now estimate the corresponding value of εm+1, studying sepa-
rately numerator and denominator of (6).

As for the former, we have already remarked that the derivative
of fn(x) is bounded in absolute value by 2 (see equation (3));
from Lagrange’s theorem we then get

|fm(z)− yb| = |fm(z)− fm(x)| = |f ′m(ξ)(z−x)| ≤ 2|z−x| ≤ 2

M
,

where ξ is a suitable point between z and x.

Now consider the denominator of the right hand side of (6).
Notice that for k < t we have

|z − ak| = (z − ak+1) + (ak+1 − ak) ≥ ak+1 − ak

and since ak+1, ak are distinct we have

|z − ak| ≥ ak+1 − ak

≥ 1

D(ak+1 − ak)
= exp(− logD(ak+1 − ak))
≥ exp(− logD(ak+1)− logD(ak))

= exp(−h(ak+1)− h(ak));

(7)

a similar argument works for k > t + 1. Recalling that the ai,
i = 0, . . . ,m, are a permutation of the xjk , k = 0, . . . ,m, and
that by the inductive assumption we have H(xjk) ≤ X(k), we
obtain∣∣∣∣ 1∏

k(z − xjk)

∣∣∣∣ ≤
≤
∏

k<t exp(h(ak+1) + h(ak)) ·
∏

k>t+1 exp(h(ak−1) + h(ak))

|(z − at)(z − at+1)|
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<
1

|(z − at)(z − at+1)|
· exp

(
2

m∑
k=0

X(k)

)
(8)

≤ 1

|(z − at)(z − at+1)|
· exp (4X(m)) .

Thus we only need to estimate the distances |z − at|, |z − at+1|.

– If |z−at| < |z−at+1|, then z lies to the left of the midpoint
of the segment [at, at+1] while x (by assumption) lies to the
right of it; hence we have

at + at+1

2
− 1

M
≤ x− 1

M
≤ z <

at + at+1

2

and therefore

at+1 − at
2

− 1

M
≤ z − at <

at+1 − at
2

.

By the same argument as in equation (7), and since h(at)
and h(at+1) do not exceed X(m), we then get

z − at ≥
at+1 − at

2
− 1

M

≥ 1

2
exp(−2X(m))− 1

M

≥ 1

3
exp(−2X(m)).

Since at+1 − z ≥ z − at by assumption, we finally obtain∣∣∣∣ 1∏
k(z − xjk)

∣∣∣∣ ≤ exp (4X(m))

|(z − at)(z − at+1)|
≤ 9 exp (4X(m) + 4X(m))

= 9 exp(8X(m)).

– If |z−at| ≥ |z−at+1|, then it suffices to give a lower bound
for |z − at+1|, which we do as follows. By construction we
have z < x < at+1, so it suffices to give a lower bound for
at+1−x. We set qm(x) := yb−fm(x) and observe that using
Lagrange’s theorem we have

|qm(at+1)| = |qm(at+1)− qm(x)|
= |q′m(ξ)(at+1 − x)|
= |f ′m(ξ)| · (at+1 − x)

≤ 2(at+1 − x),

(9)
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where ξ is a certain point in the interval (x, at+1). Thus it
suffices to give a lower bound for |qm(at+1)| = |fm(at+1) −
yb|: notice that this number is nonzero (by assumption y
does not belong to the set fm(Jm)) and its height is at most

logD(h(yb)) + logD(fm(at+1)) = h(yb) + h(fm(at+1))

≤ log(m+ 1) + 4mX(m),

where we have used inequality (5) and the fact that at+1 is
one of the m+ 1 numbers xj0 , . . . , xjm . Thus we have

|qm(at+1)| ≥ exp (− log(m+ 1)− 4mX(m))

=
exp (−4mX(m))

m+ 1
;

we deduce from (9) that

z − at ≥ at+1 − z ≥ at+1 − x ≥
1

2(m+ 1)
exp (−4mX(m)) ,

and putting everything together we obtain∣∣∣∣ 1∏
k(z − xjk)

∣∣∣∣ ≤ exp(4X(m))

|(z − at)(z − at+1)|
≤ 4(m+ 1)2 · exp (8mX(m) + 4X(m))

≤ exp (13mX(m)) .

Thus we see that in all cases the quantity

∣∣∣∣ 1∏m
k=0(z − xjk)

∣∣∣∣ is

bounded above by exp (13mX(m))). Combining our bounds on
the numerator and denominator of the right hand side of (6), we
see that our choice of z leads to a value of εm+1 that is bounded
above by

εm+1 ≤ (m+ 1)

∣∣∣∣ yb − fm(z)∏m
k=0(z − xjk)

∣∣∣∣
≤ 2(m+ 1) exp (13mX(m))

M
= 4−m,

and xjm+1 := z has height at most

log(M) = log (2(m+ 1) · exp (13mX(m)) · 4m)

≤ 14mX(m) < X(m+ 1).
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Finally, the height of
εm+1

m+ 1
(that is, the logarithm of its de-

nominator) is at most

logD(yb − fm(z)) + log

∣∣∣∣∣N
(

m∏
k=0

(z − xjk)

)∣∣∣∣∣
≤ h(yb) + h(fm(z)) +

m∑
k=0

h(z − xjk)

≤ h(yb) +mh(z) + 3mX(m) + (m+ 1) log 2

+ (m+ 1)h(z) +
m∑
k=0

h(xjk)

≤ log(m+ 1) + (2m+ 1)h(z) + 3mX(m)

+ (m+ 1) log 2 +
m∑
k=0

X(k)

≤ log(m+ 1) + (2m+ 1)h(z)

+ (m+ 1) log 2 + (3m+ 2)X(m)

≤ log(m+ 1) + 14(2m+ 1)mX(m)

+ (m+ 1) log 2 + (3m+ 2)X(m)

≤ 48m2X(m) = m(48mX(m)) = mX(m+ 1)

< (m+ 1)X(m+ 1),

where we have used (4) on the second line and h(z) ≤ 14mX(m)
on the fifth.

This concludes the inductive step, and therefore the proof of the the-
orem.

Remark 8. While there is certainly room to improve the bound B(t)
of the previous theorem (for example, the numerical constant 48 is far
from optimal), without any new ideas it seems unlikely that one can
do substantially better than B(t) = Γ(t); let us rapidly go through
the proof again to see why we cannot expect to beat this bound. In
order to get a lower bound for the denominator of (6), we estimate the
height of qm(at+1); since qm(x) is a polynomial of degree m and the
height of at+1 could potentially be comparable with X(m), at least if
at+1 = xjm , the bound we get for h(qm(at+1)) will roughly be of size
mX(m). On the other hand, in order for the ratio defining εn+1 to be
small enough, we need at the very least the numerator to be smaller
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than the denominator; since the lower bound for the denominator is no
be better than exp(−mX(m)), in the notation of the previous proof
we will have to take M at least of size exp(mX(m)), which means
that we cannot rule out z = xjm+1 being of height ≈ mX(m). Hence
with the present method we don’t expect to be able to do better than
X(m+ 1) ≥ mX(m), that is, X(m) ≥ Γ(m).

4 Graphs with “many” rational points of

small height

Recall the following celebrated result of Pila, already referred to in
the introduction:

Theorem 9. ([Pil91, Theorem 9]) Let f : [0, 1]→ [0, 1] be a transcen-
dental analytic function. For all ε > 0, the function

Cf (T ) = #
{
x ∈ Q ∩ [0, 1]

∣∣ H(x) ≤ T,H(f(x)) ≤ T
}

satisfies limT→∞Cf (T )T−ε = 0.

One can ask whether this theorem is optimal, that is, if the gauge
functions xε can be replaced by anything smaller. The answer is
that theorem 9 is indeed sharp, in the following sense. We say that
a function s : R → R is slowly increasing if for all ε > 0 we
have limx→∞ x

−εs(x) = 0. Conversations between Pila and Bombieri
([Pil04, §7.5]) led to the construction, for any slowly increasing func-
tion s, of an analytic function f and an unbounded sequence of posi-
tive integers Tn such that Cf (Tn) ≥ s(Tn), which shows that theorem
9 cannot be substantially improved.

Through a slight modification of the construction of section 2 we
now show that theorem 9 is sharp (in the sense above) also if we restrict
our attention to functions f : [0, 1] → [0, 1] that induce bijections of
Q ∩ [0, 1] with itself:

Theorem 10. Let s(x) be a slowly increasing function and {gn(x)}n∈N
be any countable sequence of functions [0, 1] → [0, 1]. There exists a
strictly increasing analytic function f : [0, 1]→ [0, 1] such that

• f restricts to a bijection Q ∩ [0, 1]→ Q ∩ [0, 1];

• f is different from all the gn(x);
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• for infinitely many values of T ∈ R>0 we have

Cf (T ) = #
{
x ∈ Q ∩ [0, 1]

∣∣ H(x) ≤ T,H(f(x)) ≤ T
}
≥ s(T ).

(10)

As before, the idea is to use an iterative construction. What
changes with respect to the proof of theorem 2, however, is that we
take many more steps of type (1) than steps of type (2), as we now
make precise:

Proof. Let (xi)i∈N and (yj)j∈N be two enumerations of the rationals
in [0, 1]. While yj can be arbitrary, we take xi to be given by the
lexicographic ordering as in the previous section: we set x0 = 0 and,
by induction, we let xi+1 to be the (lexicographic) minimum of the set
Q∩ [0, 1] \ {x0, . . . , xi}. Again we shall construct the function f(x) as
a limit of polynomials fn(x) ∈ Q[x], where

fn+1(x) = fn(x) + εn
∏
q∈Qn

(x− q)

for some rational number εn and some subset Qn of Q ∩ [0, 1]. We
shall require that Qn ⊆ Qn+1 for all n. We shall also construct an
auxiliary sequence zn of rational numbers with the property that zn
is the inverse image of yn through the limit function f(x). In the first
step of the recursion we set f0(x) = x. We now show how to construct
εn, Qn, and zn assuming that fn(x) has been defined.

Since fn(x) is a polynomial, say of degree dn, we can find a constant
bn large enough that for all rational numbers in [0, 1] we have

H(fn(x)) ≤ bnH(x)dn .

We can assume without loss of generality that bn ≥ 1, and we obtain
the existence of a constant cn > 0 such that for all T ≥ bn we have

#{q ∈ Q ∩ [0, 1]
∣∣ H(q) ≤ T,H(fn(q)) ≤ T}
≥ #{q ∈ Q ∩ [0, 1]

∣∣ H(q) ≤ T, bnH(q)dn ≤ T}
= #{q ∈ Q ∩ [0, 1]

∣∣ H(q) ≤ (T/bn)1/dn}
≥ cnT

2/dn .

Since by assumption T−2/dns(T ) tends to 0 as T tends to infinity, we

can choose a value Tn ∈ N, Tn > bn, so large that cnT
2/dn
n ≥ s(Tn).

Without loss of generality we shall also assume that the inequality
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Tn ≥ Tn−1 + n holds, so that in particular the sequence Tn satisfies
limn→∞ Tn = +∞.

We now turn to the definition of the quantities εn, Qn, zn. We start
by setting

Qn = {q ∈ Q ∩ [0, 1]
∣∣ H(q) ≤ Tn} ∪ {z0, . . . , zn−1},

which obviously contains Qn′ for all n′ < n. Notice that for n = 0
we assume {z0, . . . , zn−1} to be the empty set. Independently of the
choice of εn or of any of the Qn′′ for n′′ > n (as long as they contain
Qn), our choice of Qn implies that f(q) = fn(q) for all rationals q of
height at most Tn; in turn, this gives

#{q ∈ Q ∩ [0, 1]
∣∣ H(q) ≤ Tn, H(f(q)) ≤ Tn}

= #{q ∈ Q ∩ [0, 1]
∣∣ H(q) ≤ Tn, H(fn(q)) ≤ Tn} > s(Tn),

so that our limit function f(x), if it exists, does indeed satisfy inequal-
ity (10) for infinitely many values of T .

We still need to ensure that our limit function f(x) exists, is an-
alytic, strictly increasing, induces a bijection from Q ∩ [0, 1] to itself,
and is different from all the functions gn(x). This is done in the same
spirit as in the proof of theorem 2. More precisely,

1. by the same argument as in the proof of theorem 2, in order
to guarantee that the limit function f(x) is analytic and mono-
tonically increasing it suffices to choose the εn to be sufficiently
small (say less than 4−|Qn|−1|Qn|−1);

2. the construction implies that f(x) is rational whenever x is ra-
tional: indeed, for any given x ∈ Q ∩ [0, 1] there exists n ∈ N
such that Tn > H(x); it follows that x belongs to Qm for all
m ≥ n, hence that f(x) = fn(x) is rational, because fn(x) is a
polynomial with rational coefficients;

3. to ensure that the limit function f(x) maps Q∩ [0, 1] onto itself
it suffices to ensure that every yj lies in the image of f(x). This
will be achieved by choosing the sequences zn, εn in such a way
that fm(zn) = yn for all m > n;

4. we shall inductively choose the sequences zn, εn so as to ensure
that f(x) is distinct from all the gn(x); more precisely, at step
n of the construction we shall make sure that f(x) is different
from gn(x).
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Before proving that we can realize the construction in such a way
as to satisfy constraints 1, 3 and 4 above, we make a preliminary re-
mark. Since the limit function f(x) we are constructing is going to be
a strictly increasing bijection of [0, 1] with itself, it will certainly be
different from all the functions gn(x) that do not possess this prop-
erty. Hence, replacing (gn)n∈N with a subsequence if necessary, we can
assume that every gn(x) is a strictly increasing bijection of [0, 1] with
itself: this slightly simplifies the argument to follow.

We now show that we can indeed achieve 1, 3 and 4. Our con-
struction of the sets Qn immediately implies that fm(zn) = fn+1(zn)
for all m > n, so in order for property 3 to be satisfied it suffices to
choose εn, zn in such a way that

yn = fn+1(zn) = fn(zn) + εn
∏
q∈Qn

(zn − q).

We use this equation to define εn in terms of zn, so that we only need
to choose the latter. Two cases arise:

• Suppose that we have fn(z) = yn for some z ∈ Qn. Then we
have f(z) = fn(z) = yn, so in order to satisfy 3 we can simply
take zn = z, and in order to satisfy 1 it suffices to take εn to be
rational and smaller than 4−|Qn|−1|Qn|−1. Hence we just need to
prove that, with a suitable choice of εn, we can also make sure
that 4 is satisfied. To this end, consider the set

Q̃n+1 = {r ∈ Q ∩ [0, 1]
∣∣ Tn < H(r) ≤ Tn+1} \ {z0, . . . , zn−1};

we claim that it is nonempty. Indeed we have assumed Tn+1 to
be at least Tn + n+ 1, so the cardinality of Q̃n+1 is at least

|{q ∈ Q ∩ [0, 1]
∣∣ Tn < H(q) ≤ Tn+1}

∣∣− n
≥
∣∣{q ∈ Q ∩ [0, 1]

∣∣ H(q) ∈ {Tn + 1, . . . , Tn + n+ 1}}
∣∣− n

≥
∣∣∣∣{ 1

Tn + 1
, . . . ,

1

Tn + n+ 1

}∣∣∣∣− n = 1.

Let r be any element of Q̃n+1. Since H(r) ≤ Tn+1, the number
r belongs to Qm for all m ≥ n+ 1, hence

f(r) = fn+1(r) = fn(r) + εn
∏
q∈Qn

(r − q);

in order to make sure that f(x) 6= gn(x), it suffices to choose εn
in such a way that the above expression is different from gn(r).
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• If instead yn does not belong to the set {fn(z)
∣∣ z ∈ Qn}, then,

since fn is a bijection from [0, 1] to itself (cf. the proof of theorem
2), there is a z ∈ [0, 1] \ Qn such that fn(z) = yn. If we now
choose zn to be close enough to z, then (by continuity, and since
the denominator does not vanish in z 6∈ Qn) we can ensure that

εn =
yn − fn(zn)∏
q∈Qn

(zn − q)

is smaller than 4−|Qn|−1|Qn|−1. Finally we can also make sure
that f(x) 6= gn(x) by picking zn distinct from g−1n (yn); notice
that this last condition makes sense, because gn : [0, 1] → [0, 1]
is a bijection, hence g−1n (yn) consists of precisely one point.

This concludes the iterative step of the construction, and shows
that we can indeed find a function f(x) as in the statement of the
theorem.
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